1. <rp id="zsypk"></rp>

      2. 高三數(shù)學《二面角》說課稿

        時間:2020-11-04 11:59:54 說課稿 我要投稿

        高三數(shù)學《二面角》說課稿

          作為一名優(yōu)秀的教育工作者,總不可避免地需要編寫說課稿,借助說課稿可以更好地提高教師理論素養(yǎng)和駕馭教材的能力。那么應當如何寫說課稿呢?下面是小編整理的高三數(shù)學《二面角》說課稿,僅供參考,希望能夠幫助到大家。

        高三數(shù)學《二面角》說課稿

          高三數(shù)學《二面角》說課稿1

          一、教材分析

          1、教材地位和作用

          二面角及其平面角的概念是立體幾何最重要的概念之一。二面角的概念發(fā)展、完善了空間角的概念;而二面角的平面角不但定量描述了兩相交平面的相對位置,同時它也是空間中線線、線面、面面垂直關系的一個匯集點。搞好本節(jié)課的學習,對學生系統(tǒng)地掌握直線和平面的知識乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。教學大綱明確要求要讓學生掌握二面角及其平面角的概念和運用。

          2、教學目標

          根據(jù)上面對教材的分析,并結合學生的認知水平和思維特點,確定本節(jié)課的教學目標:

          認知目標:

          (1)使學生正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。

         。2)進一步培養(yǎng)學生把空間問題轉化為平面問題的化歸思想。

          能力目標:以培養(yǎng)學生的創(chuàng)新能力和動手能力為重點。

         。1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學生的創(chuàng)新能力。

          (2)通過對圖形的觀察、分析、比較和操作來強化學生的動手操作能力。

          教育目標:

          (1)使學生認識到數(shù)學知識來自實踐,并服務于實踐,從而增強學生應用數(shù)學的意識。

         。2)通過揭示線線、線面、面面之間的內在聯(lián)系,進一步培養(yǎng)學生聯(lián)系的辯證唯物主義觀點。

          3、本節(jié)課教學的重、難點是兩個過程的教學:

         。1)二面角的平面角概念的形成過程。

          (2)尋找二面角的平面角的方法的發(fā)現(xiàn)過程。

          其理由如下:

         。1)現(xiàn)行教材省略了概念的形成過程和方法的發(fā)現(xiàn)過程,沒有反映出科學認識產生的辯證過程,與學生的認知規(guī)律相悖,給學生的學習造成了很大的困難,非常不利于學生創(chuàng)新能力、獨立思考能力以及動手能力的培養(yǎng)。

         。2)現(xiàn)代認知學認為,揭示知識的形成過程,對學生學習新知識是十分必要的。同時通過展現(xiàn)知識的發(fā)生、發(fā)展過程,給學生思考、探索、發(fā)現(xiàn)和創(chuàng)新提供了最大的空間,可以使學生在整個教學過程中始終處于積極的思維狀態(tài),進而培養(yǎng)他們獨立思考和大膽求索的精神,這樣才能全面落實本節(jié)課的教學目標。

          二、指導思想和教學方法

          在設計本教學時,主要貫徹了以下兩個思想:

          1、樹立以學生發(fā)展為本的思想。通過構建以學習者為中心、有利于學生主體精神、創(chuàng)新能力健康發(fā)展的寬松的教學環(huán)境,提供學生自主探索和動手操作的機會,鼓勵他們創(chuàng)新思考,親身參與概念和方法的形成過程。2、堅持協(xié)同創(chuàng)新原則。把教材創(chuàng)新、教法創(chuàng)新以及學法創(chuàng)新有機地統(tǒng)一起來,因為只有教師創(chuàng)新地教,學生創(chuàng)新地學,才能營建一個有利于創(chuàng)新能力培養(yǎng)的良好環(huán)境。

          首先是教材創(chuàng)新。

         。1)在二面角的平面角概念引入上,我變課本上的“直接給出定義”為“類比——猜想——操作——定義”,也就是變封閉的、邏輯演繹體系為開放的、探索性的發(fā)現(xiàn)過程。

         。2)在引入定義之后,例題講解之前,引導學生發(fā)現(xiàn)尋找二面角的平面角的方法,為例題做好鋪墊。

         。3)重新編排例題。

          其次是教法創(chuàng)新。采用多種創(chuàng)新的教學方法,包括問題解決法、類比發(fā)現(xiàn)法、研究發(fā)現(xiàn)法等教學方法。

          這組教學方法的特點是教師通過創(chuàng)設問題情境,引導學生逐步發(fā)現(xiàn)知識的形成過程,使教學活動真正建立在學生自主活動和探索的基礎上,著力培養(yǎng)學生的創(chuàng)新能力。

          這組教學方法使得學生在解決問題的過程中學數(shù)學,用數(shù)學,不僅強調動腦思考,而且強調動手操作,親身體驗,注重多感官參與、多種心理能力的投入,通過學生全面、多樣的主體實踐活動,促進他們獨立思考能力、動手能力等多方面素質的整體發(fā)展。

          教學手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學需要,確定利用《幾何畫板》制作課件來輔助教學;此外,為加強直觀教學,教師可預先做好一些模型。

          最后是學法創(chuàng)新。意在指導學生會創(chuàng)新地學。

          1、樂學:在整個學習過程中學生要保持強烈的好奇心和求知欲,不斷強化自己的創(chuàng)新意識,全身心地投入到學習中去,成為學習的主人。

          2、學會:在掌握基礎知識的同時,學生要注意領會化歸、類比聯(lián)想等數(shù)學思想方法的運用,學會建立完善的認知結構。

          3、會學:通過自已親身參與,學生要領會復習類比和深入研究這兩種知識創(chuàng)新的方法,從而既學到知識,又學會創(chuàng)新。

          三、程序安排

         。ㄒ唬、二面角

          1、揭示概念產生背景。

          心理學研究表明,當學生明確數(shù)學概念的學習目的和意義時,就會對概念的學習產生濃厚的興趣。創(chuàng)設問題情境,激發(fā)了學生的創(chuàng)新意識,營造了創(chuàng)新思維的氛圍。

          問題情境1、我們是如何定量研究兩平行平面的相對位置的?

          問題情境2、立幾中常用距離和角來定量描述兩個元素之間的相對位置,為什么不引入兩平行平面所成的角?

          問題情境3、我們應如何定量研究兩個相交平面之間的相對位置呢?

          通過這三個問題,打開了學生的原有認知結構,為知識的創(chuàng)新做好了準備;同時也讓學生領會到,二面角這一概念的產生是因為研究兩相交平面的相對位置的需要,從而明確新課題研究的必要性,觸發(fā)學生積極思維活動的展開。

          2、展現(xiàn)概念形成過程。

          高三數(shù)學《二面角》說課稿2

          一、教材簡析:

          1.地位與作用:

          本節(jié)是高二數(shù)學下冊第九章《直線、平面、簡單幾何體》中相關§96二面角的求解問題。是在立體幾何知識學習完畢,學生已具有了一定的空間想象能力,掌握了一定的立體幾何的研究方法的基礎之上,對二面角求解方法進行的一個補充。二面角的求解是立體幾何部分的一個重點也是一個難點,本節(jié)內容為學生提供一個新的視角。

          2.教學內容及目標

          教學內容:

          將異面直線兩點間距離公式變形應用于求二面角,變形所得公式就是本節(jié)所學主要內容,暫且稱這個公式為二面角余弦公式。

          教學目標:

          知識目標:異面直線兩點間距離公式在求二面角中的應用;

          能力目標:

         。1)推廣引申不但能加深對原題的理解,而且對于擴大解題效果,提高解題能力,培養(yǎng)發(fā)散思維,激發(fā)創(chuàng)新意識,都有不可忽視的積極作用。

         。2)通過轉化問題探究公式條件的過程,培養(yǎng)學生探索問題的精神,提高學生化歸的意識和轉化的能力。

          情感目標:通過問題的轉化過程,讓學生認識萬物都處于聯(lián)系之中,我們要用聯(lián)系的觀點看待問題。

          3.教學重點和教學難點

          重點:二面角余弦公式條件的發(fā)現(xiàn),結構的'確定;

          難點:二面角余弦公式條件的發(fā)現(xiàn),結構的確定;

          二、學情分析:

          1.起點能力分析

          立體幾何知識學習完畢,學生已具有了一定的空間想象能力,掌握了一定的立體幾何的研究方法,并成為本節(jié)的學習基礎。

          2.一般特點分析

          高二學生觀察力已具有一定的目的性、精細性、持久性,有意識記占主導地位、意義識記以占重要地位,同時概念理解能力、推理能力有所提高,具有一定的掌握和運用邏輯法則的能力,但由于認知水平的不同,學生掌握和運用邏輯法則的能力存在不平衡性。

          三、教法分析:

          本節(jié)采用啟導法,以質疑啟發(fā)、直觀啟發(fā)為主,通過一系列帶有啟發(fā)性、思考性的問題,創(chuàng)設問題情境,引導學生思考,教師適時演示,利用多媒體的直觀性,激發(fā)學生的學習興趣,化靜為動,使學生始終處于主動探索問題的積極狀態(tài),從而培養(yǎng)學生的思維能力。

          四、學法指導:

          根據(jù)學法指導自主性和差異性原則,讓學生在“觀察——發(fā)現(xiàn)——推理——應用”的學習過程中,自主參與知識的發(fā)生、發(fā)展、形成的過程,使學生掌握知識,發(fā)展思維能力。

          五、教學程序

          1.教學思路

          設疑導入→構建條件→形成公式→公式應用→教學反思。

          2.教學環(huán)節(jié)安排

         。ㄒ唬榫吃O置:

          習題1:教科書80頁題10

          設計意圖:由此題與學生共同回顧二面角的定義及其求解方法,并且根據(jù)題設條件,由學生發(fā)現(xiàn)該二面角的求解由異面直線AC、DB的位置關系來確定,提出為什么異面直線可以確定二面角,異面直線怎樣確定二面角呢?引出問題二,從而進入第二環(huán)節(jié)——探索研究。

         。ǘ、探索研究:

          問題二:

          問1:什么是異面直線的公垂線?兩異面直線有多少條公垂線?

          問2:設異面直線a、b公垂線為l,則a、b、l三條直線可以確定多少個平面?

          問3:這兩相交平面可以構成兩對二面角,這兩對二面角大小有什么關系?(設計意圖:到此完成由異面直線構造二面角)

          問4:從四個二面角任選一個二面角,該二面角的大小與異面直線位置有什么關系?

          通過問題的層層深入,讓學生自己觀察、思考得出異面直線的位置可以確定二面角的大小的結論。再通過教具的演示讓學生發(fā)現(xiàn)線段AM、BN、AB、MN任意一個的改變都會影響異面直線的位置,說明這四條線段可以共同確定二面角,從而發(fā)現(xiàn)公式的結構,突破難點;

          問5:令a∩l=A,b∩l=B,M∈a,N∈b且MA=m,NB=n,AB=d,MN=l,求二面角α―l―β。

          通過問題5將異面直線的位置量化,由學生自己推導,得出二面角的余弦公式

          設計意圖:通過問題5設出四條線段的長,求二面角的大小,從做輔助線、確定二面角平面角,到在三角形中計算求值,最后整理解題過程,由學生自主解決,教師適時引導,多問學生為什么,糾正學生語言表達上的錯誤,提示解題不符邏輯關系的地方,讓學生在相互補充,相互找不足的這一自我評價、自我調整過程中,完善推理過程,得出二面角的余弦公式。通過這一數(shù)學交流活動,暴露學生的思維過程,提高學生語言表達能力,培養(yǎng)學生合情推理能力,注重學生作為個體發(fā)展能力的同時,也注重培養(yǎng)學生協(xié)同合作共同探索、的精神。并且讓學生體會數(shù)學學習不僅重在學習一個結論,而是注重學習的過程,讓學生在自己發(fā)現(xiàn)結論、自己推得公式中體驗成功。

          問題三:用問題二的方法求解習題一

          設計意圖:鞏固公式的應用,明確如何應用公式;通過對比公式與習題一的條件,讓學生認識到本節(jié)所學求二面角的方法是對教科書習題一般化所得的結論,體會數(shù)學從“特殊”到“一般”,再從“一般”到“特殊”的研究過程。

          問題四:將公式條件中二面角兩半平面的線段放到了以棱上線段為公共邊的三角形中,作為了兩三角形的高。

          設計意圖:通過這一過程,進一步深化所推公式中量的理解,其作用是半平面用三角形表示,更有利于在柱體或錐體中解決二面角的求解問題;

         。ㄈ㈧柟逃柧

          習題2

          1.(改編自教科書80頁題11)把長、寬分別為4、3的長方形ABCD沿對角線AC折疊,使BD長為7/5,求二面角B―AC―D。

          2.(教科書80頁題11)把長、寬分別為4、3的長方形ABCD沿對角線AC折疊成直二面角,求頂點B與D之間的距離。

          設計意圖:

          題1是對問題四結論的簡單應用。此題題設是將平面圖形折成立體圖形,求形成的二面角的大小,鞏固平面圖形折疊過程中量的變化情況。

          題2讓學生認識:二面角余弦公式建立了四個線段、一個角五個量間的關系,知道其中任意四個,都可以求第五個量,加深對公式的認識,熟悉公式的變形應用。

          習題3:(選自2005年湖南高考題)已知四邊形ABCD是上、下底邊分別為2和6,高為的等腰梯形,將它沿對稱軸OO′折成直二面角,求二面角O―AC―O′的大小。

          設計意圖:讓學生創(chuàng)設公式應用條件,自主解決問題,同時再次鞏固立體空間中量的求解用平面解決的思想方法。

         。ㄋ模偨Y提煉:

          1.說明本節(jié)所學求二面角方法的可行性;

          2.說明本節(jié)所學求二面角方法的合理性;

          3.本節(jié)所學求二面角的方法不是教科書中的定理、公式,因此不能作為已知結論在解答題中應用。但學習重視結果,更注重學習的過程,這節(jié)課學習的意義,不是公式本身,而是用已知的知識探究出新的解決問題的方法的過程。

          (五):作業(yè)

          習題4、為必做題,習題5為選做題

          設計意圖:布置作業(yè)有彈性,避免一刀切,將上述思維發(fā)散的過程延伸到課后,使學生活躍的思維得以發(fā)展,進而形成思維習慣。

          總之,在整個課堂教學中,努力挖掘蘊含于知識生成過程中的數(shù)學思想方法,有機結合,有意滲透,以培養(yǎng)學生的思維能力。

        【高三數(shù)學《二面角》說課稿】相關文章:

        高三數(shù)學說課稿模板01-17

        數(shù)學說課稿04-07

        數(shù)學廣角說課稿11-07

        小學數(shù)學《約分》說課稿12-24

        數(shù)學小熊請客說課稿04-07

        高三語文將進酒說課稿07-06

        高三語文《將進酒》說課稿09-24

        高三數(shù)學教學反思04-07

        小學數(shù)學口算乘法說課稿04-07

        小學數(shù)學解方程說課稿04-07

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>