《一次函數與二元一次方程(組)》說課稿及教案設計
一、教材分析
1、教材的地位和作用
函數、方程和不等式都是人們刻畫現實世界的重要數學模型。用函數的觀點看方程(組)與不等式,使學生不僅能加深對方程(組)、不等式的理解,提高認識問題的水平,而且能從函數的角度將三者統(tǒng)一起來,感受數學的統(tǒng)一美。本節(jié)課是學生學習完一次函數、一元一次方程及一元一次不等式的聯系后對一次函數和二元一次方程(組)關系的探究,學生在探索過程中體驗數形結合的思想方法和數學模型的應用價值,這對今后的學習有著十分重要的意義。
2、教學重難點
重點:一次函數與二元一次方程(組)關系的探索。
難點:綜合運用方程(組)、不等式和函數的知識解決實際問題。
3、教學目標
知識技能:理解一次函數與二元一次方程(組)的關系,會用圖象法解二元一次方程組。
數學思考:經歷一次函數與二元一次方程(組)關系的探索及相關實際問題的解決過程,學會用函數的觀點去認識問題。
解決問題:能綜合應用一次函數、一元一次方程、一元一次不等式、二元一次方程(組)解決相關實際問題。
情感態(tài)度:在探究活動中培養(yǎng)學生嚴謹的科學態(tài)度和勇于探索的科學精神,在師生、生生的交流活動中,學會與人合作,學會傾聽、欣賞和感悟,體驗數學的價值,建立自信心。
二、教法說明
對于認知主體學生來說,他們已經具備了初步探究問題的能力,但是對知識的主動遷移能力較弱,為使學生更好地構建新的認知結構,促進學生的發(fā)展,我將在教學中采用探究式教學法。以學生為中心,使其在生動活潑、民主開放、主動探索的氛圍中愉快地學習。
三、教學過程
(一)感知身邊數學
學生已經學習過列方程(組)解應用題,因此可能列出一元一次方程 或二元一次方程組,用方程模型解決問題。結合前面對一次函數與一元一次方程、一元一次不等式之間關系的探究,我自然地提出問題:一次函數與二元一次方程組之間是否也有聯系呢?,從而揭示課題。
[設計意圖]建構主義認為,在實際情境中學習可以激發(fā)學生的學習興趣。因此,用上網收費這一生活實際創(chuàng)設情境,并用問題啟發(fā)學生去思、鼓勵學生去探、激勵學生去說,努力給學生造成心求通而未能得,口欲言而不能說的情勢,從而喚起學生強烈的求知欲,使他們以躍躍欲試的姿態(tài)投入到探索活動中來。
(二)享受探究樂趣
1、探究一次函數與二元一次方程的關系
[設計意圖]用一連串的問題引導學生發(fā)現一次函數與二元一次方程在數與形兩個方面的關系,為探索二元一次方程組的解與直線交點坐標的關系作好鋪墊。
2、探究一次函數與二元一次方程組的關系
[設計意圖] 學生經過自主探索、合作交流,從數和形兩個角度認識一次函數與二元一次方程組的關系,真正掌握本節(jié)課的重點知識,從而在頭腦中再現知識的形成過程,避免單純地記憶,使學習過程成為一種再創(chuàng)造的過程。此時教師及時對學生進行鼓勵,充分肯定學生的探究成果,關注學生的情感體驗。
(三)乘坐智慧快車
例題:我市一家電信公司給顧客提供兩種上網收費方式:方式A以每分0.1元的價格按上網時間計費;方式B除收月基費20元外再以每分0 .05元的價格按上網時間計費。如何選擇收費方式能使上網者更合算?
[設計意圖]為培養(yǎng)學生的發(fā)散思維和規(guī)范解題的習慣,引導學生將上網問題延伸為例題,并用問題:你家選擇的上網收費方式好嗎?再次激起學生強烈的求知欲望和主人翁的學習姿態(tài)。通過此問題的探究,使學生有效地理解本節(jié)課的難點,體會數形結合這一思想方法的應用。
(四)體驗成功喜悅
1、搶答題
2、旅游問題
[設計意圖]抓住學生對競爭充滿興趣的心理特征,用搶答題使學生的眼、耳、腦、口得到充分的調動,并在搶答中品味成功的快樂,提高思維的速度。在學生感興趣的旅游問題中,進一步培養(yǎng)學生應用數學的意識,更好地促進學生對本節(jié)課難點的理解和應用,幫助學生不斷完善新的認知結構。
(五)分享你我收獲
在課堂臨近尾聲時,向學生提出:通過今天的學習,你有什么收獲?你印象最深的是什么?
[設計意圖]培養(yǎng)學生歸納和語言表達能力,鼓勵學生從數學知識、數學方法和數學情感等方面進行自我評價。
(六)開拓嶄新天地
1、數學日記
2、布置作業(yè)
[設計意圖]新課程強調發(fā)展學生數學交流的能力,用數學日記給學生提供一種表達數學思想方法和情感的方式,以體現評價體系的多元化,并使學生嘗試用數學的眼睛觀察事物,體驗數學的價值。作業(yè)由必做題和選做題組成,體現分層教學,讓不同的人在數學上得到不同的發(fā)展。
四、教學設計反思
1、貫穿一個原則以學生為主體的原則
2、突出一個思想數形結合的思想
3、體現一個價值數學建模的價值
4、滲透一個意識應用數學的意識
《一次函數與二元一次方程(組)》教案
教學目標
知識技能:理解一次函數與二元一次方程(組)的關系,會用圖象法解二元一次方程組。
情感態(tài)度:在探究活動中培養(yǎng)學生嚴謹的科學態(tài)度和勇于探索的科學精神,在師生、生生的交流活動中,學會與人合作,學會傾聽、欣賞和感悟,體驗數學的價值,建立自信心。
教學重難點
重點:一次函數與二元一次方程(組)關系的探索。
難點:綜合運用方程(組)、不等式和函數的知識解決實際問題。
教學過程
(一)引入新課
多媒體播放一段發(fā)生在電信公司里的'情景:一顧客準備辦理上網業(yè)務,發(fā)現有兩種收費方式:方式A以每分鐘0.1元的價格按上網時間計費;方式B除收月基費20元外再以每分鐘0.05元的價格按上網時間計費。顧客說他每月上網的費用按這兩種收費方式計算都是一樣多。求這位顧客打算每月上網多長時間?多少費用?
學生已經學習過列方程(組)解應用題,因此可能列出一元一次方程 或二元一次方程組,用方程模型解決問題。結合前面對一次函數與一元一次方程、一元一次不等式之間關系的探究,我自然地提出問題:一次函數與二元一次方程組之間是否也有聯系呢?,從而揭示課題。
(二)進行新課
1、探究一次函數與二元一次方程的關系
填空:二元一次方程 可以轉化為 ________。
思考:(1)直線 上任意一點 一定是方程 的解嗎?(2)是否任意的二元一次方程都可以轉化為這種一次函數的形式?
(3)是否直線上任意一點的坐標都是它所對應的二元一次方程的解?
2、探究一次函數圖像與二元一次方程組的關系
(1)在同一坐標系中畫出一次函數 和 的圖象,觀察兩直線的交點坐標是否是方程組 的解?并探索:是否任意兩個一次函數的交點坐標都是它們所對應的二元一次方程組的解?
此時教師留給學生充分探索交流的時間與空間,對學生可能出現的疑問給予幫助,師生共同歸納出:從形的角度看,解方程組相當于確定兩條直線交點的坐標。
(2)當自變量 取何值時,函數 與 的值相等?這個函數值是什么?這一問題與解方程組 是同一問題嗎?
進一步歸納出:從數的角度看,解方程組相當于考慮自變量為何值時兩個函數的值相等,以及這個函數值是何值。
3、列一元二次不等式
例題:我市一家電信公司給顧客提供兩種上網收費方式:方式A以每分0.1元的價格按上網時間計費;方式B除收月基費20元外再以每分0 .05元的價格按上網時間計費。如何選擇收費方式能使上網者更合算?
解法1:設上網時間為 分,若按方式A則收 元;若按方式B則收 元。然后在同一坐標系中分別畫出這兩個函數的圖象,計算出交點坐標 ,結合圖象,利用直線上點位置的高低直觀地比較函數值的大小,得到當一個月內上網時間少于400分時,選擇方式A省錢;當上網時間等于400分時,選擇方式A、B沒有區(qū)別;當上網時間多于400分時,選擇方式B省錢。
解法2:設上網時間為 分,方式B與方式A兩種計費的差額為 元,得到一次函數: ,即 ,然后畫出函數的圖象,計算出直線與 軸的交點坐標,類似地用點位置的高低直觀地找到答案。
注意:所畫的函數圖象都是射線。
4、習題
(1)、以方程 的解為坐標的所有點都在一次函數 _____的圖象上。
(2)、方程組 的解是________,由此可知,一次函數 與 的圖象必有一個交點,且交點坐標是________。
5、旅游問題
古城荊州歷史悠久,文化燦爛。
今年,大型歷史劇《萬歷首輔張居正》在荊州封鏡后,來荊州的游客更是絡繹不絕。據悉,張居正紀念館門票標價20元/張,近期正在進行優(yōu)惠活動,購買時有兩種方式:方式A是團隊中每位游客按8折購買;方式B是團隊中除5張按標價購買外,其余按7折購買。如果你是團隊的負責人,你會如何選擇購買方式使整個團隊更合算?
【《一次函數與二元一次方程(組)》說課稿及教案設計】相關文章:
一次函數與二元一次方程說課稿04-02
《二元一次方程組》說課稿03-02
《二元一次方程組》說課稿01-06
二元一次方程組說課稿06-19
二元一次方程組的說課稿04-07
一次函數與二元一次方程說課稿范文10-24
《一次函數與二元一次方程》說課稿范文04-11
二元一次方程與一次函數說課稿07-20
二元一次方程組教案設計06-12