變量與函數(shù)說課稿課件
一、說內(nèi)容
1.教材的地位和作用
本部分是高中數(shù)學(xué)教材必修一第二章第一節(jié)課的內(nèi)容.
本節(jié)課是在復(fù)習(xí)初中函數(shù)概念的基礎(chǔ)上,通過對實例的分析進(jìn)一步揭示函數(shù)概念的實質(zhì)是:表示兩個數(shù)集的元素之間,按照某種法則確定的一種對應(yīng)關(guān)系。然后用集合語言給出函數(shù)的一個新的定義。它既是對初中的函數(shù)概念的一個提高,又為揭示函數(shù)是一種特殊的映射作了準(zhǔn)備,這種編寫也體現(xiàn)了在認(rèn)識上由特殊到一般的新課程理念。
2.教學(xué)重點和難點 重點:
函數(shù)的概念的理解
難點:對函數(shù)符號y?f(x)的理解。
二、說教學(xué)目標(biāo)
1、知識目標(biāo):
(1)會用集合與對應(yīng)的語言刻畫函數(shù); (2)會求一些簡單函數(shù)的定義域和值域。
2、能力目標(biāo):通過實例引導(dǎo)學(xué)生直觀感知,初步學(xué)會從圖形(或圖象)、表格中獲取有用信息,從而體會函數(shù)基本概念的意義。培養(yǎng)學(xué)生分析問題、解決問題的能力。
3、情感目標(biāo):通過對本節(jié)課的學(xué)習(xí),增強(qiáng)學(xué)生認(rèn)識問題、解決問題后的成功感,從而提高學(xué)習(xí)數(shù)學(xué)的興趣.
三、說教法
為了體現(xiàn)以學(xué)生發(fā)展為本,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)循序漸進(jìn)的教學(xué)原則,根據(jù)本節(jié)課的特點,我采用了引導(dǎo)發(fā)現(xiàn)和歸納概括相結(jié)合的教學(xué)方法,通過提出問題、思考問題、解決問題等教學(xué)過程,再通過具體問題的提出和解決,來激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的學(xué)習(xí)主動性.
四、說學(xué)法
我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo).我以教學(xué)大綱和課程標(biāo)準(zhǔn)為指導(dǎo),輔以多媒體手段,采用新課改所提倡的學(xué)生自主探究、合作交流的學(xué)習(xí)方法.學(xué)生在創(chuàng)設(shè)的問題情景中,通過觀察、概括、
歸納,體現(xiàn)了學(xué)生的主體地位,培養(yǎng)了學(xué)生由具體到抽象,由特殊到一般的數(shù)學(xué)思維能力,形成鍥而不舍的鉆研精神。
五、說教學(xué)過程
(一)情景導(dǎo)入:
復(fù)習(xí)初中的常量、變量與函數(shù)的概念
復(fù)習(xí)再現(xiàn)初中變量觀點描述函數(shù)的`概念,為后面用集合和對應(yīng)的觀點來定義函數(shù)奠定基礎(chǔ)。
請同學(xué)觀看幾段視頻(神州六號的發(fā)射,花開放的過程,人身高的變化過程,汽車行駛的過程,運動員跳水的過程等)。
在這些過程中,總是因為一個量的變化影響著另外一個量的變化,他們之間總存在著一些規(guī)律,本節(jié)課我們就來學(xué)習(xí)用數(shù)學(xué)知識描述這些規(guī)律——變量與函數(shù)(揭題)。
通過實例:(1)認(rèn)識生活中充滿變量間的依賴關(guān)系;(2)激發(fā)學(xué)生學(xué)習(xí)興趣,提高發(fā)散思維能力。
(二)概念的形成
1.探究實例:
1、(幻燈片1)如圖,這是某地一天內(nèi)的氣溫變化圖,請大家看圖回答。 (1)這天的6時、10時和14時的氣溫分別是多少?任意給出這天中的某一時刻,說出這一時刻的氣溫。
提出問題:在這個變化過程中,任取一個時刻t(時),請問都有幾個溫度與它相對應(yīng)?
從圖中我們可以看到,隨著時間t(時)的變化,相應(yīng)地氣溫T(℃)也隨之變化,并且在這個變化過程中任取一個時刻t(時)都只有一個溫度T(℃)與它對應(yīng)。
2、(幻燈片2)如下表,銀行對各種不同的存款方式都規(guī)定了相應(yīng)的利率,下表是2002年7月中國工商銀行為“整存整取”的存款方式規(guī)定的利率:
從上表可以看出,對于任意的x的值,y都有唯一的值與它對應(yīng)。
3、(幻燈片3)如果用r表示圓的半徑,S表示圓的面積,則S與r之間滿足下列關(guān)系:提出問題:請問任取一個不同的r ,S的值有幾個?
請大家填寫下表:
從上表可以看出,對于任意的r 的值,S都有唯一的值與它對應(yīng)。
2.引出概念
從上面的三個函數(shù)關(guān)系的例子,回答以下問題: 1.三個函數(shù)例子的自變量和因變量分別是什么? 2.自變量和因變量的取值范圍分別是什么? 3.自變量和因變量之間有何關(guān)系? 總結(jié)出函數(shù)關(guān)系的實質(zhì):是表達(dá)兩個數(shù)集的元素之間,按照某種法則確定的一種對應(yīng)關(guān)系。
用集合語言來更確切地刻畫函數(shù)的定義:設(shè)集合A是一個非空的數(shù)集,對A內(nèi)任意數(shù)x,按照確定的法則f,都有唯一確定的數(shù)值與它對應(yīng),則這種對應(yīng)關(guān)系叫做集合A上的一個函數(shù)。記作:y?f(x),x?A.
利用實際問題引出概念,激發(fā)學(xué)生興趣,給學(xué)生思考、探索的空間,讓學(xué)生體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,提高分析和解決問題的能力。
(三)概念深化
從上面的三個函數(shù)關(guān)系的例子,提出以下問題,請同學(xué)們完成, 1.指出定義域,并寫出值域。 2.區(qū)分函數(shù)與函數(shù)值 3.作為函數(shù)有幾個要素?
4.如何檢驗給定的兩個變量之間是否具有函數(shù)關(guān)系?
5.在函數(shù)關(guān)系式中,函數(shù)的定義域有時可以省略,你能明確它的定義域嗎? 在實際問題中定義域還受到誰的制約?
通過實例和問題,突破理解對應(yīng)法則這一難點。
(四)習(xí)題探討
用多媒體依次出示教材上的三個例題,老師先分析每個例題,學(xué)生分組討論,然后自己獨立完成,最后通過大屏幕展示規(guī)范的解題格式。
對例1,讓學(xué)生求解后,規(guī)范解題格式,小節(jié)求定義域的方法。 對例2,學(xué)生自我完成后相互對照交流,小節(jié)求值域的方法。
對例3,先讓同學(xué)們交流討論,啟發(fā)學(xué)生把x-1看作一個整體,不妨先用t來表示,體會整體代換的思想。小節(jié)求對應(yīng)法則,即求解析式的方法。
通過例題的講解,規(guī)范解題格式,培養(yǎng)解題規(guī)范的習(xí)慣。
(五)鞏固練習(xí)
教材第33頁練習(xí)A1-5題,練習(xí)B1-5題。
通過不同形式的練習(xí)使學(xué)生理解函數(shù)的概念,能熟練的求函數(shù)的定義域和對應(yīng)法則。
(六)歸納小結(jié)
在老師的啟發(fā)誘導(dǎo)下,學(xué)生觀察、歸納、總結(jié),教師完善。 知識上:1.理解函數(shù)的概念;
2.會求簡單函數(shù)的定義域、值域、對應(yīng)法則。
思想方法上:整體代換的思想
讓學(xué)生積極發(fā)言,歸納總結(jié)本節(jié)課的收獲,老師及時點評并歸納總結(jié),使學(xué)生對所學(xué)內(nèi)容有一個整體的
(七)布置作業(yè)
1.必做題:見課本第52頁習(xí)題2-1A1、4題;B第4題
2.選做題:由投影展示.
目的:提高同學(xué)們的求知欲和滿足不同層次的學(xué)生要求.
六、說板書
在板書中突出本節(jié)重點,將強(qiáng)調(diào)的地方用紅色筆標(biāo)注,整個板書充分體現(xiàn)精講多練的教學(xué)方法.
【變量與函數(shù)說課稿課件】相關(guān)文章:
高中變量與函數(shù)說課稿02-19
變量與函數(shù)教學(xué)反思01-02
變量的說課稿06-23
變量與函數(shù)的練習(xí)題04-18
初中數(shù)學(xué)《變量與函數(shù)》教案04-08