1. <rp id="zsypk"></rp>

      2. 初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

        時(shí)間:2022-12-22 18:12:08 總結(jié) 我要投稿

        初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)合集15篇

          總結(jié)是事后對(duì)某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析的一種書(shū)面材料,它可以明確下一步的工作方向,少走彎路,少犯錯(cuò)誤,提高工作效益,讓我們好好寫(xiě)一份總結(jié)吧。總結(jié)你想好怎么寫(xiě)了嗎?下面是小編整理的初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié),僅供參考,歡迎大家閱讀。

        初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)合集15篇

        初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

          一、重要概念

          1.數(shù)的分類(lèi)及概念數(shù)系表:

          說(shuō)明:分類(lèi)的原則:1)相稱(chēng)(不重、不漏) 2)有標(biāo)準(zhǔn)

          2.非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱(chēng)。(表為:x0)

          性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)數(shù)均為0。

          3.倒數(shù):

         、俣x及表示法

         、谛再|(zhì):A.a1/a(a1);B.1/a中,aa1時(shí),1/aD.積為1。

          4.相反數(shù):

         、俣x及表示法

         、谛再|(zhì):A.a0時(shí),aB.a與-a在數(shù)軸上的位置;C.和為0,商為-1。

          5.數(shù)軸:

         、俣x(三要素)

          ②作用:A.直觀(guān)地比較實(shí)數(shù)的大小;B.明確體現(xiàn)絕對(duì)值意義;C.建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。

          6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)-自然數(shù))

          定義及表示:

          奇數(shù):2n-1

          偶數(shù):2n(n為自然數(shù))

          7.絕對(duì)值:

          ①定義(兩種):

          代數(shù)定義:

          幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。

          ②│a│0,符號(hào)││是非負(fù)數(shù)的標(biāo)志;

         、蹟(shù)a的絕對(duì)值只有一個(gè);

          ④處理任何類(lèi)型的題目,只要其中有││出現(xiàn),其關(guān)鍵一步是去掉││符號(hào)。

          二、實(shí)數(shù)的運(yùn)算

          1.運(yùn)算法則(加、減、乘、除、乘方、開(kāi)方)

          2.運(yùn)算定律(五個(gè)-加法[乘法]交換律、結(jié)合律;[乘法對(duì)加法的]

          分配律)

          3.運(yùn)算順序:A.高級(jí)運(yùn)算到低級(jí)運(yùn)算;B.(同級(jí)運(yùn)算)從左

          到右(如5 C.(有括號(hào)時(shí))由小到中到大。

          三、應(yīng)用舉例(略)

          附:典型例題

          1.已知:a、b、x在數(shù)軸上的位置如下圖,求證:│x-a│+│x-b│=b-a.

          2.已知:a-b=-2且ab0,(a0,b0),判斷a、b的符號(hào)。

        初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

          定義

          只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是2次的整式方程叫做一元二次方程(quadratice quation of one variable或asingle―variable quadratice quation)。

          一元二次方程有三個(gè)特點(diǎn):

         。1)含有一個(gè)未知數(shù);

         。2)且未知數(shù)的最高次數(shù)是2;

          (3)是整式方程。要判斷一個(gè)方程是否為一元二次方程,先看它是否為整式方程,若是,再對(duì)它進(jìn)行整理。如果能整理為ax2+bx+c=0(a0)的形式,則這個(gè)方程就為一元二次方程。里面要有等號(hào),且分母里不含未知數(shù)。

          補(bǔ)充說(shuō)明

          1、方程的兩根與方程中各數(shù)有如下關(guān)系:X1+X2=―b/a,X1X2=c/a(也稱(chēng)韋達(dá)定理)。

          2、方程兩根為x1,x2時(shí),方程為:x2―(x1+x2)X+x1x2=0(根據(jù)韋達(dá)定理逆推而得)。

          3、在系數(shù)a0的情況下,b2―4ac0時(shí)有2個(gè)不相等的實(shí)數(shù)根,b2―4ac=0時(shí)有兩個(gè)相等的實(shí)數(shù)根,b2―4ac0時(shí)無(wú)實(shí)數(shù)根。(在復(fù)數(shù)范圍內(nèi)有兩個(gè)復(fù)數(shù)根)。

          一般式

          ax2+bx+c=0(a、b、c是實(shí)數(shù),a0)

          例如:x2+2x+1=0

          配方式

          a(x+b/2a)2=(b2―4ac)/4a

          兩根式(交點(diǎn)式)

          a(x―x1)(x―x2)=0

        初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

          第21章二次根式知識(shí)框圖

          理解并掌握下列結(jié)論:

         。1)是非負(fù)數(shù);(2);(3);

          I.二次根式的定義和概念:

          1、定義:一般地,形如√ā(a≥0)的代數(shù)式叫做二次根式。當(dāng)a>0時(shí),√a表示a的算數(shù)平方根,√0=0

          2、概念:式子√。╝≥0)叫二次根式!台。╝≥0)是一個(gè)非負(fù)數(shù)。

          II.二次根式√ā的簡(jiǎn)單性質(zhì)和幾何意義

          1)a≥0;√ā≥0[雙重非負(fù)性]

          2)(√。2=a(a≥0)[任何一個(gè)非負(fù)數(shù)都可以寫(xiě)成一個(gè)數(shù)的平方的形式]3)√(a^2+b^2)表示平面間兩點(diǎn)之間的距離,即勾股定理推論。

          IV.二次根式的乘法和除法

          1運(yùn)算法則

          √a√b=√ab(a≥0,b≥0)

          √a/b=√a/√b(a≥0,b>0)

          二數(shù)二次根之積,等于二數(shù)之積的二次根。2共軛因式

          如果兩個(gè)含有根式的代數(shù)式的積不再含有根式,那么這兩個(gè)代數(shù)式叫做共軛因式,也稱(chēng)互為有理化根式。

          V.二次根式的加法和減法

          1同類(lèi)二次根式

          一般地,把幾個(gè)二次根式化為最簡(jiǎn)二次根式后,如果它們的被開(kāi)方數(shù)相同,就把這幾個(gè)二次根式叫做同類(lèi)二次根式。2合并同類(lèi)二次根式

          把幾個(gè)同類(lèi)二次根式合并為一個(gè)二次根式就叫做合并同類(lèi)二次根式。

          3二次根式加減時(shí),可以先將二次根式化為最簡(jiǎn)二次根式,再將被開(kāi)方數(shù)相同的進(jìn)行合并

          Ⅵ.二次根式的混合運(yùn)算

          1確定運(yùn)算順序2靈活運(yùn)用運(yùn)算定律3正確使用乘法公式4大多數(shù)分母有理化要及時(shí)

          5在有些簡(jiǎn)便運(yùn)算中也許可以約分,不要盲目有理化

          VII.分母有理化

          分母有理化有兩種方法I.分母是單項(xiàng)式

          如:√a/√b=√a×√b/√b×√b=√ab/b

          II.分母是多項(xiàng)式要利用平方差公式

          如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-bIII.分母是多項(xiàng)式要利用平方差公式

          如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b第22章一元二次方程知識(shí)框圖

          旋轉(zhuǎn)的定義

          旋轉(zhuǎn)對(duì)稱(chēng)中心

          大于360°)。

          把一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角度后,與初始圖形重合,這種

          圖形叫做旋轉(zhuǎn)對(duì)稱(chēng)圖形,這個(gè)定點(diǎn)叫做旋轉(zhuǎn)對(duì)稱(chēng)中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角(旋轉(zhuǎn)角小于0°,

          也就是說(shuō):

         、僦行膶(duì)稱(chēng)圖形:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我們就說(shuō),這個(gè)圖形成中心對(duì)稱(chēng)圖形。

         、谥行膶(duì)稱(chēng):如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,那么我們就說(shuō),這兩個(gè)圖形成中心對(duì)稱(chēng)。

          中心對(duì)稱(chēng)圖形

          正(2N)邊形(N為大于1的正整數(shù)),線(xiàn)段,矩形,菱形,圓

          只是中心對(duì)稱(chēng)圖形

          平行四邊形等.第24章圓知識(shí)框圖

          圓和點(diǎn)的位置關(guān)系:以點(diǎn)P與圓O的為例(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO<r。

          直線(xiàn)與圓有3種位置關(guān)系:無(wú)公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線(xiàn)叫做圓的割線(xiàn);圓與直線(xiàn)有唯一公共點(diǎn)為相切,這條直線(xiàn)叫做圓的切線(xiàn),這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。以直線(xiàn)AB與圓O為例(設(shè)OP⊥AB于P,則PO是AB到圓心的距離):AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO<r。

          兩圓之間有5種位置關(guān)系:無(wú)公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有兩個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內(nèi)切P=R-r;內(nèi)含P<R-r。

          圓的平面幾何性質(zhì)和定理

          一有關(guān)圓的基本性質(zhì)與定理

         、艌A的確定:不在同一直線(xiàn)上的三個(gè)點(diǎn)確定一個(gè)圓。

          圓的對(duì)稱(chēng)性質(zhì):圓是軸對(duì)稱(chēng)圖形,其對(duì)稱(chēng)軸是任意一條通過(guò)圓心的直線(xiàn)。圓也是中心對(duì)稱(chēng)圖形,其對(duì)稱(chēng)中心是圓心。垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的2條弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的2條弧。

         、朴嘘P(guān)圓周角和圓心角的性質(zhì)和定理在同圓或等圓中,如果兩個(gè)圓心角,兩個(gè)圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那么他們所對(duì)應(yīng)的其余各組量都分別相等。一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。直徑所對(duì)的圓周角是直角。90度的圓周角所對(duì)的弦是直徑。

         、怯嘘P(guān)外接圓和內(nèi)切圓的性質(zhì)和定理

         、僖粋(gè)三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線(xiàn)的交點(diǎn),到三角形三個(gè)頂點(diǎn)距離相等;

         、趦(nèi)切圓的圓心是三角形各內(nèi)角平分線(xiàn)的交點(diǎn),到三角形三邊距離相等。③S三角=1/2*△三角形周長(zhǎng)*內(nèi)切圓半徑

         、軆上嗲袌A的連心線(xiàn)過(guò)切點(diǎn)(連心線(xiàn):兩個(gè)圓心相連的線(xiàn)段)

         、輬AO中的弦PQ的中點(diǎn)M,過(guò)點(diǎn)M任作兩弦AB,CD,弦AD與BC分別交PQ于X,Y,則M為XY之中點(diǎn)。

          〖有關(guān)切線(xiàn)的性質(zhì)和定理〗

          圓的切線(xiàn)垂直于過(guò)切點(diǎn)的半徑;經(jīng)過(guò)半徑的一端,并且垂直于這條半徑的直線(xiàn),是這個(gè)圓的切線(xiàn)。

          切線(xiàn)的判定方法:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。

          切線(xiàn)的性質(zhì):(1)經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。(2)經(jīng)過(guò)切點(diǎn)垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心。(3)圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑。

          切線(xiàn)長(zhǎng)定理:從圓外一點(diǎn)到圓的兩條切線(xiàn)的長(zhǎng)相等,那點(diǎn)與圓心的連線(xiàn)平分切線(xiàn)的夾角。〖有關(guān)圓的計(jì)算公式〗

          1.圓的周長(zhǎng)C=2πr=πd2.圓的面積S=πr^2;3.扇形弧長(zhǎng)l=nπr/1804.扇形面積S=π(R^2-r^2)5.圓錐側(cè)面積S=πrl

          第25章概率初步知識(shí)框圖

          第26章二次函數(shù)

          知識(shí)框圖

          定義與定義表達(dá)式

          一般地,自變量x和因變量y之間存在如下關(guān)系:

          一般式:y=ax^2+bx+c(a≠0,a、b、c為常數(shù)),則稱(chēng)y為x的二次函數(shù)。頂點(diǎn)式:y=a(x-h)^2+k

          交點(diǎn)式(與x軸):y=a(x-x1)(x-x2)

          重要概念:(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a

          1.拋物線(xiàn)是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線(xiàn)x=-b/2a。

          對(duì)稱(chēng)軸與拋物線(xiàn)唯一的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。

          特別地,當(dāng)b=0時(shí),拋物線(xiàn)的對(duì)稱(chēng)軸是y軸(即直線(xiàn)x=0)2.拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標(biāo)為P(-b/2a,(4ac-b)/4a)當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b-4ac=0時(shí),P在x軸上。3.二次項(xiàng)系數(shù)a決定拋物線(xiàn)的開(kāi)口方向和大小。

          當(dāng)a>0時(shí),拋物線(xiàn)向上開(kāi)口;當(dāng)a<0時(shí),拋物線(xiàn)向下開(kāi)口。|a|越大,則拋物線(xiàn)的開(kāi)口越小。

          4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱(chēng)軸的位置。

          當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱(chēng)軸在y軸左;因?yàn)槿魧?duì)稱(chēng)軸在左邊則對(duì)稱(chēng)軸小于0,也就是-b/2a0,所以b/2a要小于0,所以a、b要異號(hào)

          事實(shí)上,b有其自身的幾何意義:拋物線(xiàn)與y軸的交點(diǎn)處的該拋物線(xiàn)切線(xiàn)的函數(shù)解析式(一次函數(shù))的斜率k的值?赏ㄟ^(guò)對(duì)二次函數(shù)求導(dǎo)得到。5.常數(shù)項(xiàng)c決定拋物線(xiàn)與y軸交點(diǎn)。拋物線(xiàn)與y軸交于(0,c)6.拋物線(xiàn)與x軸交點(diǎn)個(gè)數(shù)

          Δ=b-4ac>0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。Δ=b-4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。_______

          Δ=b-4ac<0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

          當(dāng)a>0時(shí),函數(shù)在x=-b/2a處取得最小值f(-b/2a)=4ac-b/4a;在{x|x-b/2a}上是增函數(shù);拋物線(xiàn)的開(kāi)口向上;函數(shù)的值域是{y|y≥4ac-b/4a}相反不變

          當(dāng)b=0時(shí),拋物線(xiàn)的對(duì)稱(chēng)軸是y軸,這時(shí),函數(shù)是偶函數(shù),解析式變形為y=ax+c(a≠0)解析式:

          第27章相似知識(shí)框圖

          相似三角形的認(rèn)識(shí)

          對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形。(similartriangles);橄嗨菩蔚娜切谓凶鱿嗨迫切

          相似三角形的判定方法

          根據(jù)相似圖形的特征來(lái)判斷。(對(duì)應(yīng)邊成比例,對(duì)應(yīng)角相等)

          1.平行于三角形一邊的直線(xiàn)(或兩邊的延長(zhǎng)線(xiàn))和其他兩邊相交,所構(gòu)成的三角形與原三角形相似;

         。ㄟ@是相似三角形判定的引理,是以下判定方法證明的基礎(chǔ)。這個(gè)引理的證明方法需要平行線(xiàn)分線(xiàn)段成比例的證明)

          2.如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似;

          直角三角形相似判定定理

          1.斜邊與一條直角邊對(duì)應(yīng)成比例的兩直角三角形相似。

          2.直角三角形被斜邊上的高分成的兩個(gè)直角三角形與原直角三角形相似,并且分成的兩個(gè)直角三角形也相似。射影定理

          三角形相似的判定定理推論

          推論一:頂角或底角相等的那個(gè)的兩個(gè)等腰三角形相似。推論二:腰和底對(duì)應(yīng)成比例的兩個(gè)等腰三角形相似。推論三:有一個(gè)銳角相等的兩個(gè)直角三角形相似。

          推論四:直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形都相似。

          推論五:如果一個(gè)三角形的兩邊和其中一邊上的中線(xiàn)與另一個(gè)三角形的對(duì)應(yīng)部分成比例,那么這兩個(gè)三角形相似。

          推論六:如果一個(gè)三角形的兩邊和第三邊上的中線(xiàn)與另一個(gè)三角形的對(duì)應(yīng)部分成比例,那么這兩個(gè)三角形相似。

          相似三角形的性質(zhì)

          1.相似三角形的一切對(duì)應(yīng)線(xiàn)段(對(duì)應(yīng)高、對(duì)應(yīng)中線(xiàn)、對(duì)應(yīng)角平分線(xiàn)、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比。

          2.相似三角形周長(zhǎng)的比等于相似比。3.相似三角形面積的比等于相似比的平方。

          相似三角形的特例

          能夠完全重合的兩個(gè)三角形叫做全等三角形。(congruenttriangles)全等三角形是相似三角形的特例。全等三角形的特征:1.形狀完全相同,相似比是k=1。

          全等三角形一定是相似三角形,而相似三角形不一定是全等三角形。

          因此,相似三角形包括全等三角形。全等三角形的定義

          能夠完全重合的兩個(gè)三角形稱(chēng)為全等三角形。(注:全等三角形是相似三角形中的特殊情況)當(dāng)兩個(gè)三角形完全重合時(shí),互相重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn),互相重合的邊叫做對(duì)應(yīng)邊,互相重合的角叫做對(duì)應(yīng)角。

          由此,可以得出:全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等。

          (1)全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊;(2)全等三角形對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角;(3)有公共邊的,公共邊一定是對(duì)應(yīng)邊;(4)有公共角的,角一定是對(duì)應(yīng)角;(5)有對(duì)頂角的,對(duì)頂角一定是對(duì)應(yīng)角;三角形全等的判定公理及推論

          1、三組對(duì)應(yīng)邊分別相等的兩個(gè)三角形全等(簡(jiǎn)稱(chēng)SSS或“邊邊邊”),這一條也說(shuō)明了三角形具有穩(wěn)定性的原因。

          2、有兩邊及其夾角對(duì)應(yīng)相等的兩個(gè)三角形全等(SAS或“邊角邊”)。3、有兩角及其夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(ASA或“角邊角”)。由3可推到

          4、有兩角及一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等(AAS或“角角邊”)

          5、直角三角形全等條件有:斜邊及一直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等(HL或“斜邊,直角邊”)

          所以,SSS,SAS,ASA,AAS,HL均為判定三角形全等的定理。

          注意:在全等的判定中,沒(méi)有AAA和SSA,這兩種情況都不能唯一確定三角形的形狀。A是英文角的縮寫(xiě)(angle),S是英文邊的縮寫(xiě)(side)。全等三角形的性質(zhì)

          1、全等三角形的對(duì)應(yīng)角相等、對(duì)應(yīng)邊相等。2、全等三角形的對(duì)應(yīng)邊上的高對(duì)應(yīng)相等。3、全等三角形的對(duì)應(yīng)角平分線(xiàn)相等。4、全等三角形的對(duì)應(yīng)中線(xiàn)相等。5、全等三角形面積相等。6、全等三角形周長(zhǎng)相等。

          7、三邊對(duì)應(yīng)相等的兩個(gè)三角形全等。(SSS)

          8、兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等。(SAS)9、兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等。(ASA)

          10、兩個(gè)角和其中一個(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等。(AAS)11、斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等。(HL)全等三角形的運(yùn)用

          1、性質(zhì)中三角形全等是條件,結(jié)論是對(duì)應(yīng)角、對(duì)應(yīng)邊相等。而全等的判定卻剛好相反。2、利用性質(zhì)和判定,學(xué)會(huì)準(zhǔn)確地找出兩個(gè)全等三角形中的對(duì)應(yīng)邊與對(duì)應(yīng)角是關(guān)鍵。在寫(xiě)兩個(gè)三角形全等時(shí),一定把對(duì)應(yīng)的頂點(diǎn),角、邊的順序?qū)懸恢,為找?duì)應(yīng)邊,角提供方便。3,當(dāng)圖中出現(xiàn)兩個(gè)以上等邊三角形時(shí),應(yīng)首先考慮用SAS找全等三角形。

          第28章銳角三角函數(shù)

          知識(shí)框圖

          第29章投影與視圖知識(shí)框圖

          代數(shù)重點(diǎn)難點(diǎn)總結(jié)

          方程(組)

          一、基本概念

          1.方程、方程的解(根)、方程組的解、解方程(組)二、一元二次方程1.定義及一般形式:

          2.解法:⑴直接開(kāi)平方法(注意特征)⑵配方法(注意步驟推倒求根公式)⑶公式法:⑷因式分解法(特征:左邊=0)3.根的判別式:b24ac

          bc4.根與系數(shù)的關(guān)系(韋達(dá)定理):x1+x2=,x1x2=

          aa逆定理:若,則以x1,x2為根的一元二次方程是:a(x-x1)(x-x2)=0。5.常用等式:

          三、可化為一元二次方程的方程1.分式方程⑴定義

         、苹舅枷耄喝シ帜

         、腔窘夥ǎ孩偃シ帜阜á趽Q元法(如,)⑷驗(yàn)根及方法2.無(wú)理方程⑴定義

         、苹舅枷耄悍帜赣欣砘

         、腔窘夥ǎ孩俪朔椒ǎㄗ⒁饧记桑。。趽Q元法(例,)⑷驗(yàn)根及方法

          3.簡(jiǎn)單的二元二次方程組

          由一個(gè)二元一次方程和一個(gè)二元二次方程組成的二元二次方程組都可用代入法解。四、列方程解應(yīng)用題一概述

          列方程(組)解應(yīng)用題是中學(xué)數(shù)學(xué)聯(lián)系實(shí)際的一個(gè)重要方面。其具體步驟是:

         、艑忣}。理解題意。弄清問(wèn)題中已知量是什么,未知量是什么,問(wèn)題給出和涉及的相等關(guān)系是什么。

         、圃O(shè)元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來(lái)說(shuō),未知數(shù)越多,方程越易列,但越難解。

         、怯煤粗獢(shù)的代數(shù)式表示相關(guān)的量。

          ⑷尋找相等關(guān)系(有的由題目給出,有的由該問(wèn)題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個(gè)數(shù)與方程個(gè)數(shù)是相同的。⑸解方程及檢驗(yàn)。⑹答案。

          綜上所述,列方程解應(yīng)用題實(shí)質(zhì)是先把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題(設(shè)元、列方程),在由數(shù)學(xué)問(wèn)題的解決而導(dǎo)致實(shí)際問(wèn)題的解決(列方程、寫(xiě)出答案)。在這個(gè)過(guò)程中,列方程起著承前啟后的作用。因此,列方程是解應(yīng)用題的關(guān)鍵。

          函數(shù)及其圖象

          ★重難點(diǎn)★二次函數(shù)的圖象和性質(zhì)。一、平面直角坐標(biāo)系

          1.各象限內(nèi)點(diǎn)的坐標(biāo)的特點(diǎn)2.坐標(biāo)軸上點(diǎn)的坐標(biāo)的特點(diǎn)

          3.關(guān)于坐標(biāo)軸、原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)的特點(diǎn)4.坐標(biāo)平面內(nèi)點(diǎn)與有序?qū)崝?shù)對(duì)的對(duì)應(yīng)關(guān)系二、函數(shù)

          1.表示方法:⑴解析法;⑵列表法;⑶圖象法。

          2.確定自變量取值范圍的原則:⑴使代數(shù)式有意義;⑵使實(shí)際問(wèn)題有意義。

          3.畫(huà)函數(shù)圖象:⑴列表;⑵描點(diǎn);⑶連線(xiàn)。三、二次函數(shù)(定義→圖象→性質(zhì))⑴定義:

          ⑵圖象:拋物線(xiàn)(用描點(diǎn)法畫(huà)出:先確定頂點(diǎn)、對(duì)稱(chēng)軸、開(kāi)口方向,再對(duì)稱(chēng)地描點(diǎn))。用配方法變?yōu),則頂點(diǎn)為(h,k);對(duì)稱(chēng)軸為直線(xiàn)x=h;a>0時(shí),開(kāi)口向上;a0時(shí),在對(duì)稱(chēng)軸左側(cè),右側(cè);a

          四邊形

          ★重難點(diǎn)★相交線(xiàn)與平行線(xiàn)、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。分類(lèi)表:

          1.一般性質(zhì)(角)⑴內(nèi)角和:360°

         、祈槾芜B結(jié)各邊中點(diǎn)得平行四邊形。

          推論1:順次連結(jié)對(duì)角線(xiàn)相等的四邊形各邊中點(diǎn)得菱形。

          推論2:順次連結(jié)對(duì)角線(xiàn)互相垂直的四邊形各邊中點(diǎn)得矩形。⑶外角和:360°2.特殊四邊形

         、叛芯克鼈兊囊话惴椒:

          ⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定⑶判定步驟:四邊形→平行四邊形→矩形→正方形┗→菱形↑

         、葘(duì)角線(xiàn)的紐帶作用:3.對(duì)稱(chēng)圖形

         、泡S對(duì)稱(chēng)(定義及性質(zhì));⑵中心對(duì)稱(chēng)(定義及性質(zhì))4.有關(guān)定理:①平行線(xiàn)等分線(xiàn)段定理及其推論1、2②三角形、梯形的中位線(xiàn)定理

         、燮叫芯(xiàn)間的距離處處相等。(如,找下圖中面積相等的三角形)

          5.重要輔助線(xiàn):①常連結(jié)四邊形的對(duì)角線(xiàn);②梯形中常“平移一腰”、“平移對(duì)角線(xiàn)”、“作高”、“連結(jié)頂點(diǎn)和對(duì)腰中點(diǎn)并延長(zhǎng)與底邊相交”轉(zhuǎn)化為三角形。6.作圖:任意等分線(xiàn)段。

          第十章圓

          ★重難點(diǎn)★①圓的重要性質(zhì);②直線(xiàn)與圓、圓與圓的位置關(guān)系;③與圓有關(guān)的角的定理;④與圓有關(guān)的比例線(xiàn)段定理。一、圓的基本性質(zhì)1.圓的定義

          2.有關(guān)概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。3.“三點(diǎn)定圓”定理4.垂徑定理及其推論

          5.“等對(duì)等”定理及其推論

          5.與圓有關(guān)的角:⑴圓心角定義(等對(duì)等定理)⑵圓周角定義(圓周角定理,與圓心角的關(guān)系)⑶弦切角定義(弦切角定理)二、直線(xiàn)和圓的位置關(guān)系

          1.三種位置及判定與性質(zhì):相離、相切、相交2.切線(xiàn)的性質(zhì)(重點(diǎn))

          3.切線(xiàn)的判定定理(重點(diǎn))。圓的切線(xiàn)的判定有⑴⑵

          4.切線(xiàn)長(zhǎng)定理

          三、圓換圓的位置關(guān)系

          1.五種位置關(guān)系及判定與性質(zhì):(重點(diǎn):相切)外離、外切、相交、內(nèi)切、內(nèi)含

          2.相切(交)兩圓連心線(xiàn)的性質(zhì)定理3.兩圓的公切線(xiàn):⑴定義⑵性質(zhì)四、與圓有關(guān)的比例線(xiàn)段1.相交弦定理2.切割線(xiàn)定理

          五、與和正多邊形

          1.圓的內(nèi)接、外切多邊形(三角形、四邊形)2.三角形的外接圓、內(nèi)切圓及性質(zhì)3.圓的外切四邊形、內(nèi)接四邊形的`性質(zhì)4.正多邊形及計(jì)算中心角:

          內(nèi)角的一半:(解Rt△OAM可求出相關(guān)元素等)六、一組計(jì)算公式1.圓周長(zhǎng)公式2.圓面積公式3.扇形面積公式4.弧長(zhǎng)公式

          5.弓形面積的計(jì)算方法

          6.圓柱、圓錐的側(cè)面展開(kāi)圖及相關(guān)計(jì)算七、點(diǎn)的軌跡六條基本軌跡八、有關(guān)作圖

          1.作三角形的外接圓、內(nèi)切圓2.平分已知弧

          3.作已知兩線(xiàn)段的比例中項(xiàng)4.等分圓周:4、8;6、3等分九、基本圖形十、重要輔助線(xiàn)1.作半徑

          2.見(jiàn)弦往往作弦心距

          3.見(jiàn)直徑往往作直徑上的圓周角4.切點(diǎn)圓心莫忘連

          5.兩圓相切公切線(xiàn)(連心線(xiàn))6.兩圓相交公共弦

        初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

          單項(xiàng)式與多項(xiàng)式

          僅含有一些數(shù)和字母的乘法包括乘方運(yùn)算的式子叫做單項(xiàng)式單獨(dú)的一個(gè)數(shù)或字母也是單項(xiàng)式。

          單項(xiàng)式中的數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式或字母因數(shù)的數(shù)字系數(shù),簡(jiǎn)稱(chēng)系數(shù)。

          當(dāng)一個(gè)單項(xiàng)式的系數(shù)是1或—1時(shí),“1”通常省略不寫(xiě)。

          一個(gè)單項(xiàng)式中,所有字母的指數(shù)的和叫做這個(gè)單項(xiàng)式的次數(shù)。

          如果在幾個(gè)單項(xiàng)式中,不管它們的系數(shù)是不是相同,只要他們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么,這幾個(gè)單項(xiàng)式就叫做同類(lèi)單項(xiàng)式,簡(jiǎn)稱(chēng)同類(lèi)項(xiàng)所有的常數(shù)都是同類(lèi)項(xiàng)。

          1、多項(xiàng)式

          有有限個(gè)單項(xiàng)式的代數(shù)和組成的式子,叫做多項(xiàng)式。

          多項(xiàng)式里每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),不含字母的項(xiàng),叫做常數(shù)項(xiàng)。

          單項(xiàng)式可以看作是多項(xiàng)式的特例

          把同類(lèi)單項(xiàng)式的系數(shù)相加或相減,而單項(xiàng)式中的字母的乘方指數(shù)不變。

          在多項(xiàng)式中,所含的不同未知數(shù)的個(gè)數(shù),稱(chēng)做這個(gè)多項(xiàng)式的元數(shù)經(jīng)過(guò)合并同類(lèi)項(xiàng)后,多項(xiàng)式所含單項(xiàng)式的個(gè)數(shù),稱(chēng)為這個(gè)多項(xiàng)式的項(xiàng)數(shù)所含個(gè)單項(xiàng)式中次項(xiàng)的次數(shù),就稱(chēng)為這個(gè)多項(xiàng)式的次數(shù)。

          2、多項(xiàng)式的值

          任何一個(gè)多項(xiàng)式,就是一個(gè)用加、減、乘、乘方運(yùn)算把已知數(shù)和未知數(shù)連接起來(lái)的式子。

          3、多項(xiàng)式的恒等

          對(duì)于兩個(gè)一元多項(xiàng)式fx、gx來(lái)說(shuō),當(dāng)未知數(shù)x同取任一個(gè)數(shù)值a時(shí),如果它們所得的值都是相等的,即fa=ga,那么,這兩個(gè)多項(xiàng)式就稱(chēng)為是恒等的記為fx==gx,或簡(jiǎn)記為fx=gx。

          性質(zhì)1如果fx==gx,那么,對(duì)于任一個(gè)數(shù)值a,都有fa=ga。

          性質(zhì)2如果fx==gx,那么,這兩個(gè)多項(xiàng)式的個(gè)同類(lèi)項(xiàng)系數(shù)就一定對(duì)應(yīng)相等。

          4、一元多項(xiàng)式的根

          一般地,能夠使多項(xiàng)式fx的值等于0的未知數(shù)x的值,叫做多項(xiàng)式fx的根。

          多項(xiàng)式的加、減法,乘法

          1、多項(xiàng)式的加、減法

          2、多項(xiàng)式的乘法

          單項(xiàng)式相乘,用它們系數(shù)作為積的系數(shù),對(duì)于相同的字母因式,則連同它的指數(shù)作為積的一個(gè)因式。

          3、多項(xiàng)式的乘法

          多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式等每一項(xiàng)乘以另一個(gè)多項(xiàng)式的各項(xiàng),再把所得的積相加。

          常用乘法公式

          公式I平方差公式

          a+ba—b=a^2—b^2

          兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積等于這兩個(gè)數(shù)的平方差。

        初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

          三角形的外心定義:

          外心:是三角形三條邊的垂直平分線(xiàn)的交點(diǎn),即外接圓的圓心。

          外心定理:三角形的三邊的垂直平分線(xiàn)交于一點(diǎn)。該點(diǎn)叫做三角形的外心。

          三角形的外心的性質(zhì):

          1、三角形三條邊的垂直平分線(xiàn)的交于一點(diǎn),該點(diǎn)即為三角形外接圓的圓心;

          2、三角形的外接圓有且只有一個(gè),即對(duì)于給定的三角形,其外心是的,但一個(gè)圓的內(nèi)接三角形卻有無(wú)數(shù)個(gè),這些三角形的外心重合;

          3、銳角三角形的外心在三角形內(nèi);

          鈍角三角形的外心在三角形外;

          直角三角形的外心與斜邊的中點(diǎn)重合。

          在△ABC中

          4、OA=OB=OC=R

          5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA

          6、S△ABC=abc/4R

        初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

          1、弧長(zhǎng)公式

          n°的圓心角所對(duì)的弧長(zhǎng)l的計(jì)算公式為L(zhǎng)=nπr/180

          2、扇形面積公式,其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長(zhǎng).

          S=﹙n/360﹚πR2=1/2×lR

          3、圓錐的側(cè)面積,其中l(wèi)是圓錐的母線(xiàn)長(zhǎng),r是圓錐的地面半徑.

          S=1/2×l×2πr=πrl

          4、弦切角定理

          弦切角:圓的切線(xiàn)與經(jīng)過(guò)切點(diǎn)的弦所夾的角,叫做弦切角.

          弦切角定理:弦切角等于弦與切線(xiàn)夾的弧所對(duì)的圓周角.

          一、選擇題

          1.(20xxo珠海,第4題3分)已知圓柱體的底面半徑為3cm,髙為4cm,則圓柱體的側(cè)面積為()

          A.24πcm2B.36πcm2C.12cm2D.24cm2

          考點(diǎn):圓柱的計(jì)算.

          分析:圓柱的側(cè)面積=底面周長(zhǎng)×高,把相應(yīng)數(shù)值代入即可求解.

          解答:解:圓柱的側(cè)面積=2π×3×4=24π.

          故選A.

          點(diǎn)評(píng):本題考查了圓柱的計(jì)算,解題的關(guān)鍵是弄清圓柱的側(cè)面積的計(jì)算方法.

          2.(20xxo廣西賀州,第11題3分)如圖,以AB為直徑的⊙O與弦CD相交于點(diǎn)E,且AC=2,AE=,CE=1.則弧BD的長(zhǎng)是()

          A.B.C.D.

          考點(diǎn):垂徑定理;勾股定理;勾股定理的逆定理;弧長(zhǎng)的計(jì)算.

          分析:連接OC,先根據(jù)勾股定理判斷出△ACE的形狀,再由垂徑定理得出CE=DE,故=,由銳角三角函數(shù)的定義求出∠A的度數(shù),故可得出∠BOC的度數(shù),求出OC的長(zhǎng),再根據(jù)弧長(zhǎng)公式即可得出結(jié)論.

          解答:解:連接OC,

          ∵△ACE中,AC=2,AE=,CE=1,

          ∴AE2+CE2=AC2,

          ∴△ACE是直角三角形,即AE⊥CD,

          ∵sinA==,

          ∴∠A=30°,

          ∴∠COE=60°,

          ∴=sin∠COE,即=,解得OC=,

          ∵AE⊥CD,

          ∴=,

          ∴===.

          故選B.

        初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

          1、圖形的相似

          相似多邊形的對(duì)應(yīng)邊的比值相等,對(duì)應(yīng)角相等;

          兩個(gè)多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比值也相等,那么這兩個(gè)多邊形相似;

          相似比:相似多邊形對(duì)應(yīng)邊的比值。

          2、相似三角形

          判定:

          平行于三角形一邊的直線(xiàn)和其它兩邊相交,所構(gòu)成的三角形和原三角形相似;

          如果兩個(gè)三角形的三組對(duì)應(yīng)邊的比相等,那么這兩個(gè)三角形相似;

          如果兩個(gè)三角形的兩組對(duì)應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么兩個(gè)三角形相似;

          如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么兩個(gè)三角形相似。

          3相似三角形的周長(zhǎng)和面積

          相似三角形(多邊形)的周長(zhǎng)的比等于相似比;

          相似三角形(多邊形)的面積的比等于相似比的平方。

          4位似

          位似圖形:兩個(gè)多邊形相似,而且對(duì)應(yīng)頂點(diǎn)的連線(xiàn)相交于一點(diǎn),對(duì)應(yīng)邊互相平行,這樣的兩個(gè)圖形叫位似圖形,相交的點(diǎn)叫位似中心。

        初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

          圓的全章復(fù)習(xí)

          圓的基礎(chǔ)知識(shí)(1)圓的有關(guān)概念:

          弦,弧,半圓,弓形,弓形高,等。[含同圓等圓),弦心距,直徑等。

          (2)圓的確定

          圓心決定位置,半徑?jīng)Q定大小,不共線(xiàn)的三點(diǎn)確定一個(gè)圓。注意:作圖(兩邊中垂線(xiàn)找交點(diǎn)),外心的位置,外心到三角形各頂點(diǎn)距離等

          圓的對(duì)稱(chēng)性:軸對(duì)稱(chēng),中心對(duì)稱(chēng),旋轉(zhuǎn)不變性

          2.圓與其它圖形

         。1)點(diǎn)與圓三種

         。2)直線(xiàn)與圓

          相離dr

          ①一條直線(xiàn)與圓三種相切dr

          相交d

          r②兩條直線(xiàn)與圓有關(guān)的角:圓周角,弦切角,圓外角等比例線(xiàn)段:圓冪定理等

         、廴龡l直線(xiàn)與圓即三角形與圓

          三角形“四心”的區(qū)別:垂心意義三條高的交點(diǎn)性質(zhì)等式積:位置銳角三角形:內(nèi)部直角三角形:直角頂點(diǎn)鈍角三角形:外部必在三角形內(nèi)部ahabhbchc重心三條中線(xiàn)的交點(diǎn)同一中線(xiàn)上重心到頂點(diǎn)的距離是它到該頂點(diǎn)的對(duì)邊距離的2倍外心

          1.外接圓的圓心

          2.三邊中垂線(xiàn)的交點(diǎn)

          3.內(nèi)切圓的圓心

          4.三條角平分線(xiàn)的交點(diǎn)到三角形三頂點(diǎn)距離相等銳角三角形:內(nèi)部直角三角形:斜邊中點(diǎn)鈍角三角形:外部到三角形三邊距離相等與頂點(diǎn)連線(xiàn)平分該內(nèi)角必在三角形內(nèi)部?jī)?nèi)心

          ④四條直線(xiàn)與圓為180內(nèi)切四邊形:對(duì)角之和的和相等外切四邊形:兩組對(duì)邊

         。3)兩圓與直線(xiàn)

          兩圓外切時(shí)連心線(xiàn)過(guò)內(nèi)公切線(xiàn)切點(diǎn)與該切線(xiàn)垂直。兩圓內(nèi)切時(shí)連心線(xiàn)過(guò)切點(diǎn),垂直于過(guò)切點(diǎn)的切線(xiàn)。

          兩圓相交時(shí),連心線(xiàn)垂直于公共弦,并且平分公共弦。

          3.圓與圓的位置關(guān)系:

          (1).掌握?qǐng)A與圓的五種位置關(guān)系,類(lèi)比于點(diǎn)與圓,直線(xiàn)與圓的位置關(guān)系,能通過(guò)兩圓半徑r1,r2及圓心距d三者的數(shù)量關(guān)系,判斷兩圓位置關(guān)系,或通過(guò)位置關(guān)系,判斷數(shù)量關(guān)系。

          (2).在數(shù)軸上表示當(dāng)d在不同位置時(shí),兩圓的位置關(guān)系。

          (3).在證明兩圓的或多圓的圖形時(shí),常加的輔助線(xiàn):公共弦、公切線(xiàn);圓心距,連心線(xiàn)。

          (4).當(dāng)兩圓相交時(shí),連心線(xiàn)垂直平分公共弦。當(dāng)兩圓內(nèi)切時(shí),連心線(xiàn)垂直于公切線(xiàn)。當(dāng)兩圓外切時(shí),連心線(xiàn)垂直于內(nèi)公切線(xiàn)。

          (5).公切線(xiàn)是指兩個(gè)圓公共的切線(xiàn),如果兩圓在公切線(xiàn)同旁則稱(chēng)外公切線(xiàn),如果兩圓在公切線(xiàn)兩旁則稱(chēng)內(nèi)切線(xiàn)。公切線(xiàn)上兩切點(diǎn)間線(xiàn)段的長(zhǎng)叫公切線(xiàn)長(zhǎng)。(Rr)(外離時(shí))

          (6).如圖內(nèi)公切線(xiàn)長(zhǎng)d(Rr)(外離、外切、相交時(shí))外公切線(xiàn)長(zhǎng)dd圓心距

          R大圓半徑

          r小圓半徑

          R≥r

          2222

          內(nèi)公切線(xiàn)Rr夾角一半sin

          d的正弦值

          外公切線(xiàn)Rr夾角一半sin

          d的正弦值

          (7).公切線(xiàn)條數(shù)①內(nèi)含0條0dRr②內(nèi)切1條dRr③相交2條RrdRr④外切3條dRr⑤外離4條dRr4,定理

         。1)垂徑定理及推論:過(guò)圓心;垂直弦;平分弦(非直徑);平分優(yōu)。黄椒至踊。恢2求3。

         。2)圓心角,弦,弦心距,弧之間關(guān)系:同圓等圓中知1得3。

         。3)與圓有關(guān)的角:圓心角,圓周角,弦切角,圓內(nèi)角,圓外角,圓內(nèi)接四邊形外角,內(nèi)對(duì)角,對(duì)角

          1.一條弧所對(duì)圓周角等于它所對(duì)的圓心角的一它所對(duì)弧度數(shù)的一半半,圓周角的度數(shù)等于角相等;

          2.同弧或等弧所對(duì)的圓周圓周角的性質(zhì)相等的圓周角所對(duì)的弧也相等

          3.直徑所對(duì)的圓周角是直角,90的圓周角所對(duì)的弦是直角

          (4)切線(xiàn)的判定、性質(zhì):

          ①判定:常見(jiàn)的證法連半徑,證垂直,判斷切線(xiàn),“連垂切”或作垂直證d=r

          ②性質(zhì):若一條直線(xiàn)滿(mǎn)足過(guò)圓心、過(guò)切點(diǎn),垂直于切線(xiàn)中任意兩條,可得另外一條。常見(jiàn)“切連垂”

         。5)和圓有關(guān)的比例線(xiàn)段:

          相交弦定理及推論,切割線(xiàn)定理及推論,圓冪定理

          5.和圓有關(guān)的計(jì)算

         。1)求線(xiàn)段

          ①直徑、半徑

         、诖箯蕉ɡ恚呵笙议L(zhǎng)、弦心距、拱高

          ③切線(xiàn)長(zhǎng)、公切線(xiàn)長(zhǎng)(外公切線(xiàn)長(zhǎng),內(nèi)公切線(xiàn)長(zhǎng))

         、苤苯侨切蝺(nèi)切圓半徑

         、萑我馊切蝺(nèi)切圓半徑與面積、周長(zhǎng)的關(guān)系

         、薜冗吶切蝺(nèi)切圓半徑:外接圓半徑=1:2

         、吲c圓有關(guān)的比例線(xiàn)段、弦長(zhǎng)、切線(xiàn)長(zhǎng)等

         。2)求角

          圓心角,圓周角,弦切角,兩切線(xiàn)夾角,公切線(xiàn)夾角

          6.常見(jiàn)輔助線(xiàn)

          半徑、直徑、弦心距、“切連垂”、連心線(xiàn)、公共弦、公切線(xiàn)

          7.圓中常見(jiàn)圖形

          直角三角形等腰三角形圓內(nèi)接四邊形相似三角形

          8.正多邊形和圓

          (n2)180正n邊形的內(nèi)角和為(n2)180有n個(gè)相等的內(nèi)角,每個(gè)內(nèi)角的度數(shù)為

          n注意:正多邊形的外交和始終為3609.弧長(zhǎng)公式:lnR

          180nR210.扇形面積公式:3

        初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

          1二次根式:形如a(a0)的式子為二次根式;性質(zhì):a(a0)是一個(gè)非負(fù)數(shù);

          a2aa0。

          2二次根式的乘除:ababa0,b0;

          aaa0,b0。bb3二次根式的加減:二次根式加減時(shí),先將二次根式華為最簡(jiǎn)二次根式,再將被開(kāi)方數(shù)相同的二次根式進(jìn)行合并。

          4海倫-秦九韶公式:S是三角形的面積,Sp(p)(pb)(pc),p為pabc。2第二章一元二次方程

          1一元二次方程:等號(hào)兩邊都是整式,且只有一個(gè)未知數(shù),未知數(shù)的最高次是2的方程。

          2一元二次方程的解法

          配方法:將方程的一邊配成完全平方式,然后兩邊開(kāi)方;

          bb24ac公式法:x2a因式分解法:左邊是兩個(gè)因式的乘積,右邊為零。

          3一元二次方程在實(shí)際問(wèn)題中的應(yīng)用

          4韋達(dá)定理:設(shè)x1,x2是方程ax2bxc0的兩個(gè)根,那么有x1x2,x1x2第三章旋轉(zhuǎn)

          1圖形的旋轉(zhuǎn)旋轉(zhuǎn):一個(gè)圖形繞某一點(diǎn)轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;

          對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連的線(xiàn)段的夾角等于旋轉(zhuǎn)角旋轉(zhuǎn)前后的圖形全等。

          2中心對(duì)稱(chēng):一個(gè)圖形繞一個(gè)點(diǎn)旋轉(zhuǎn)180度,和另一個(gè)圖形重合,則兩個(gè)圖形關(guān)于這個(gè)點(diǎn)中心對(duì)稱(chēng);

          中心對(duì)稱(chēng)圖形:一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180度后得到的圖形能夠和原來(lái)的圖形重合,則說(shuō)這個(gè)圖形是中心對(duì)稱(chēng)圖形;

          3關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)第四章圓

          1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義

          2垂直于弦的直徑

          圓是軸對(duì)稱(chēng)圖形,任何一條直徑所在的直線(xiàn)都是它的對(duì)稱(chēng)軸;

          垂直于弦的直徑平分弦,并且平方弦所對(duì)的兩條;平分弦的直徑垂直弦,并且平分弦所對(duì)的兩條弧。

          3弧、弦、圓心角

          在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所baca對(duì)的弦也相等。

          4圓周角

          在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半;

          半圓(或直徑)所對(duì)的圓周角是直角,90度的圓周角所對(duì)的弦是直徑。

          5點(diǎn)和圓的位置關(guān)系點(diǎn)在dr點(diǎn)在圓上d=r點(diǎn)在圓內(nèi)d相等,這一點(diǎn)和圓心的連線(xiàn)平分兩條切線(xiàn)的夾角。

          三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,圓心是三角形的三條角平分線(xiàn)的交點(diǎn),為三角形的內(nèi)心。

          6圓和圓的位置關(guān)系

          外離d>R+r外切d=R+r相交R-r第五章概率初步

          1概率意義:在大量重復(fù)試驗(yàn)中,事件A發(fā)生的頻率某個(gè)常數(shù)p附近,則常數(shù)p叫做事件A的概率。

          2用列舉法求概率

          一般的,在一次試驗(yàn)中,有n中可能的結(jié)果,并且它們發(fā)生的概率相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率就是p(A)=mnm穩(wěn)定在n3用頻率去估計(jì)概率

        初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

          1、概念:

          把一個(gè)圖形繞著某一點(diǎn)O轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換叫做旋轉(zhuǎn),點(diǎn)O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角。

          旋轉(zhuǎn)三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方面、旋轉(zhuǎn)角。

          2、旋轉(zhuǎn)的性質(zhì):

          (1)旋轉(zhuǎn)前后的兩個(gè)圖形是全等形;

          (2)兩個(gè)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。

          (3)兩個(gè)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線(xiàn)段的夾角等于旋轉(zhuǎn)角。

          3、中心對(duì)稱(chēng):

          把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱(chēng)或中心對(duì)稱(chēng),這個(gè)點(diǎn)叫做對(duì)稱(chēng)中心。

          這兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做關(guān)于中心的對(duì)稱(chēng)點(diǎn)。

          4、中心對(duì)稱(chēng)的性質(zhì):

         。1)關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形,對(duì)稱(chēng)點(diǎn)所連線(xiàn)段都經(jīng)過(guò)對(duì)稱(chēng)中心,而且被對(duì)稱(chēng)中心所平分。

          (2)關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形是全等圖形。

          5、中心對(duì)稱(chēng)圖形:

          把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱(chēng)圖形,這個(gè)點(diǎn)就是它的對(duì)稱(chēng)中心。

          6、坐標(biāo)系中的中心對(duì)稱(chēng)

          兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng)時(shí),它們的坐標(biāo)符號(hào)相反,

          即點(diǎn)P(x,y)關(guān)于原點(diǎn)O的對(duì)稱(chēng)點(diǎn)P(―x,―y)。

        初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

          1、矩形的概念

          有一個(gè)角是直角的平行四邊形叫做矩形。

          2、矩形的性質(zhì)

         。1)具有平行四邊形的一切性質(zhì)。

         。2)矩形的四個(gè)角都是直角。

         。3)矩形的對(duì)角線(xiàn)相等。

         。4)矩形是軸對(duì)稱(chēng)圖形。

          3、矩形的判定

         。1)定義:有一個(gè)角是直角的平行四邊形是矩形。

          (2)定理1:有三個(gè)角是直角的四邊形是矩形。

         。3)定理2:對(duì)角線(xiàn)相等的平行四邊形是矩形。

          4、矩形的面積:S矩形=長(zhǎng)×寬=ab

          1、正方形的概念

          有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。

          2、正方形的性質(zhì)

          (1)具有平行四邊形、矩形、菱形的一切性質(zhì);

         。2)正方形的四個(gè)角都是直角,四條邊都相等;

         。3)正方形的兩條對(duì)角線(xiàn)相等,并且互相垂直平分,每一條對(duì)角線(xiàn)平分一組對(duì)角;

          (4)正方形是軸對(duì)稱(chēng)圖形,有4條對(duì)稱(chēng)軸;

         。5)正方形的一條對(duì)角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形,兩條對(duì)角線(xiàn)把正方形分成四個(gè)全等的小等腰直角三角形;

         。6)正方形的一條對(duì)角線(xiàn)上的一點(diǎn)到另一條對(duì)角線(xiàn)的兩端點(diǎn)的距離相等。

          3、正方形的判定

         。1)判定一個(gè)四邊形是正方形的主要依據(jù)是定義,途徑有兩種:

          先證它是矩形,再證有一組鄰邊相等。

          先證它是菱形,再證有一個(gè)角是直角。

         。2)判定一個(gè)四邊形為正方形的一般順序如下:

          先證明它是平行四邊形;

          再證明它是菱形(或矩形);

          最后證明它是矩形(或菱形)。

        初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

          初三數(shù)學(xué)知識(shí)點(diǎn)第一章二次根式

          1二次根式:形如a(a0)的式子為二次根式;性質(zhì):a(a0)是一個(gè)非負(fù)數(shù);aaa0;

          2a2aa0。

          2二次根式的乘除:ababa0,b0;

          aaa0,b0。bb3二次根式的加減:二次根式加減時(shí),先將二次根式華為最簡(jiǎn)二次根式,再將被開(kāi)方數(shù)相同的二次根式進(jìn)行合并。

          4海倫-秦九韶公式:S是三角形的面積,Sp(p)(pb)(pc),p為pabc。2第二章一元二次方程

          1一元二次方程:等號(hào)兩邊都是整式,且只有一個(gè)未知數(shù),未知數(shù)的最高次是2的方程。

          2一元二次方程的解法

          配方法:將方程的一邊配成完全平方式,然后兩邊開(kāi)方;

          bb24ac公式法:x

          2a因式分解法:左邊是兩個(gè)因式的乘積,右邊為零。3一元二次方程在實(shí)際問(wèn)題中的應(yīng)用

          4韋達(dá)定理:設(shè)x1,x2是方程ax2bxc0的兩個(gè)根,那么有x1x2,x1x2第三章旋轉(zhuǎn)1圖形的旋轉(zhuǎn)

          旋轉(zhuǎn):一個(gè)圖形繞某一點(diǎn)轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;

          對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連的線(xiàn)段的夾角等于旋轉(zhuǎn)角旋轉(zhuǎn)前后的圖形全等。

          2中心對(duì)稱(chēng):一個(gè)圖形繞一個(gè)點(diǎn)旋轉(zhuǎn)180度,和另一個(gè)圖

          形重合,則兩個(gè)圖形關(guān)于這個(gè)點(diǎn)中心對(duì)稱(chēng);

          中心對(duì)稱(chēng)圖形:一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180度后得到的

          圖形能夠和原來(lái)的圖形重合,則說(shuō)這個(gè)圖形是中心對(duì)稱(chēng)圖形;

          3關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)第四章圓

          1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義2垂直于弦的直徑

          圓是軸對(duì)稱(chēng)圖形,任何一條直徑所在的直線(xiàn)都是它

          的對(duì)稱(chēng)軸;

          垂直于弦的直徑平分弦,并且平方弦所對(duì)的兩條;平分弦的直徑垂直弦,并且平分弦所對(duì)的兩條弧。3弧、弦、圓心角

          在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所

          baca對(duì)的弦也相等。

          4圓周角

          在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等

          于這條弧所對(duì)的圓心角的一半;

          半圓(或直徑)所對(duì)的圓周角是直角,90度的圓周角

          所對(duì)的弦是直徑。

          5點(diǎn)和圓的位置關(guān)系點(diǎn)在

          dr

          點(diǎn)在圓上d=r點(diǎn)在圓內(nèi)d相等,這一點(diǎn)和圓心的連線(xiàn)平分兩條切線(xiàn)的夾角。

          三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,

          圓心是三角形的三條角平分線(xiàn)的交點(diǎn),為三角形的內(nèi)心。

          7圓和圓的位置關(guān)系

          外離d>R+r外切d=R+r相交R-r第五章概率初步

          1概率意義:在大量重復(fù)試驗(yàn)中,事件A發(fā)生的頻率某個(gè)常數(shù)p附近,則常數(shù)p叫做事件A的概率。

          2用列舉法求概率

          一般的,在一次試驗(yàn)中,有n中可能的結(jié)果,并且它們發(fā)生的概率相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率就是p(A)=

          mnm穩(wěn)定在n3用頻率去估計(jì)概率

        初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

          1、圓、圓心、半徑、直徑、圓弧、弦、半圓的定義

          2、垂直于弦的直徑

          圓是軸對(duì)稱(chēng)圖形,任何一條直徑所在的直線(xiàn)都是它的對(duì)稱(chēng)軸;

          垂直于弦的直徑平分弦,并且平方弦所對(duì)的兩條;

          平分弦的直徑垂直弦,并且平分弦所對(duì)的兩條弧。

          3、弧、弦、圓心角

          在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等。

          4、圓周角

          在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半;

          半圓(或直徑)所對(duì)的圓周角是直角,90度的圓周角所對(duì)的弦是直徑。

          5、點(diǎn)和圓的位置關(guān)系

          點(diǎn)在圓外

          點(diǎn)在圓上d=r

          點(diǎn)在圓內(nèi)d

          定理:不在同一條直線(xiàn)上的三個(gè)點(diǎn)確定一個(gè)圓。

          三角形的外接圓:經(jīng)過(guò)三角形的三個(gè)頂點(diǎn)的圓,外接圓的圓心是三角形的三條邊的垂直平分線(xiàn)的交點(diǎn),叫做三角形的外心。

          6、直線(xiàn)和圓的位置關(guān)系

          相交d

          相切d=r

          相離d>r

          切線(xiàn)的性質(zhì)定理:圓的切線(xiàn)垂直于過(guò)切點(diǎn)的半徑;

          切線(xiàn)的判定定理:經(jīng)過(guò)圓的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn);

          切線(xiàn)長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(zhǎng)相等,這一點(diǎn)和圓心的連線(xiàn)平分兩條切線(xiàn)的夾角。

          三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,圓心是三角形的三條角平分線(xiàn)的交點(diǎn),為三角形的內(nèi)心。

          7、圓和圓的位置關(guān)系

          外離d>R+r

          外切d=R+r

          相交R―r

          內(nèi)切d=R―r

          內(nèi)含d

          8、正多邊形和圓

          正多邊形的中心:外接圓的圓心

          正多邊形的半徑:外接圓的半徑

          正多邊形的中心角:沒(méi)邊所對(duì)的圓心角

          正多邊形的邊心距:中心到一邊的距離

          9、弧長(zhǎng)和扇形面積

          弧長(zhǎng)

          扇形面積:xx

          10、圓錐的側(cè)面積和全面積

          側(cè)面積:xx

          全面積:xx

          11、(附加)相交弦定理、切割線(xiàn)定理

          第五章概率初步

          1、概率意義:在大量重復(fù)試驗(yàn)中,事件A發(fā)生的頻率穩(wěn)定在某個(gè)常數(shù)p附近,則常數(shù)p叫做事件A的概率。

          2、用列舉法求概率

          一般的,在一次試驗(yàn)中,有n中可能的結(jié)果,并且它們發(fā)生的概率相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率就是p(A)=

          3、用頻率去估計(jì)概率

        初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

          全套教科書(shū)包含了課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿)規(guī)定的“數(shù)與代數(shù)”“空間與圖形”“統(tǒng)計(jì)與概率”“實(shí)踐與綜合應(yīng)用”四個(gè)領(lǐng)域的內(nèi)容,在體系結(jié)構(gòu)的設(shè)計(jì)上力求反映這些內(nèi)容之間的聯(lián)系與綜合,使它們形成一個(gè)有機(jī)的整體。

          九年級(jí)上冊(cè)包括二次根式、一元二次方程、旋轉(zhuǎn)、圓、概率初步五章內(nèi)容,學(xué)習(xí)內(nèi)容涉及到了《課程標(biāo)準(zhǔn)》的四個(gè)領(lǐng)域。本冊(cè)書(shū)內(nèi)容分析如下:

          第21章二次根式

          學(xué)生已經(jīng)學(xué)過(guò)整式與分式,知道用式子可以表示實(shí)際問(wèn)題中的數(shù)量關(guān)系。解決與數(shù)量關(guān)系有關(guān)的問(wèn)題還會(huì)遇到二次根式!岸胃健币徽戮蛠(lái)認(rèn)識(shí)這種式子,探索它的性質(zhì),掌握它的運(yùn)算。

          在這一章,首先讓學(xué)生了解二次根式的概念,并掌握以下重要結(jié)論:

          注:關(guān)于二次根式的運(yùn)算,由于二次根式的乘除相對(duì)于二次根式的加減來(lái)說(shuō)更易于掌握,教科書(shū)先安排二次根式的乘除,再安排二次根式的加減。“二次根式的乘除”一節(jié)的內(nèi)容有兩條發(fā)展的線(xiàn)索。一條是用具體計(jì)算的例子體會(huì)二次根式乘除法則的合理性,并運(yùn)用二次根式的乘除法則進(jìn)行運(yùn)算;一條是由二次根式的乘除法則得到

          并運(yùn)用它們進(jìn)行二次根式的化簡(jiǎn)。

          “二次根式的加減”一節(jié)先安排二次根式加減的內(nèi)容,再安排二次根式加減乘除混合運(yùn)算的內(nèi)容。在本節(jié)中,注意類(lèi)比整式運(yùn)算的有關(guān)內(nèi)容。例如,讓學(xué)生比較二次根式的加減與整式的加減,又如,通過(guò)例題說(shuō)明在二次根式的運(yùn)算中,多項(xiàng)式乘法法則和乘法公式仍然適用。這些處理有助于學(xué)生掌握本節(jié)內(nèi)容。

          第22章一元二次方程

          學(xué)生已經(jīng)掌握了用一元一次方程解決實(shí)際問(wèn)題的方法。在解決某些實(shí)際問(wèn)題時(shí)還會(huì)遇到一種新方程——一元二次方程。“一元二次方程”一章就來(lái)認(rèn)識(shí)這種方程,討論這種方程的解法,并運(yùn)用這種方程解決一些實(shí)際問(wèn)題。

          本章首先通過(guò)雕像設(shè)計(jì)、制作方盒、排球比賽等問(wèn)題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學(xué)生通過(guò)數(shù)值代入的方法找出某些簡(jiǎn)單的一元二次方程的解,對(duì)一元二次方程的解加以體會(huì),并給出一元二次方程的根的概念,

          “22.2降次——解一元二次方程”一節(jié)介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說(shuō)明。

          (1)在介紹配方法時(shí),首先通過(guò)實(shí)際問(wèn)題引出形如的方程。這樣的方程可以化為更為簡(jiǎn)單的形如的方程,由平方根的概念,可以得到這個(gè)方程的解。進(jìn)而舉例說(shuō)明如何解形如的方程。然后舉例說(shuō)明一元二次方程可以化為形如的方程,引出配方法。最后安排運(yùn)用配方法解一元二次方程的例題。在例題中,涉及二次項(xiàng)系數(shù)不是1的一元二次方程,也涉及沒(méi)有實(shí)數(shù)根的一元二次方程。對(duì)于沒(méi)有實(shí)數(shù)根的一元二次方程,學(xué)了“公式法”以后,學(xué)生對(duì)這個(gè)內(nèi)容會(huì)有進(jìn)一步的理解。

          (2)在介紹公式法時(shí),首先借助配方法討論方程的解法,得到一元二次方程的求根公式。然后安排運(yùn)用公式法解一元二次方程的例題。在例題中,涉及有兩個(gè)相等實(shí)數(shù)根的一元二次方程,也涉及沒(méi)有實(shí)數(shù)根的一元二次方程。由此引出一元二次方程的解的三種情況。

          (3)在介紹因式分解法時(shí),首先通過(guò)實(shí)際問(wèn)題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運(yùn)用因式分解法解一元二次方程的例題。最后對(duì)配方法、公式法、因式分解法三種解一元二次方程的方法進(jìn)行小結(jié)。

          “22.3實(shí)際問(wèn)題與一元二次方程”一節(jié)安排了四個(gè)探究欄目,分別探究傳播、成本下降率、面積、勻變速運(yùn)動(dòng)等問(wèn)題,使學(xué)生進(jìn)一步體會(huì)方程是刻畫(huà)現(xiàn)實(shí)世界的一個(gè)有效的數(shù)學(xué)模型。

          第23章旋轉(zhuǎn)

          學(xué)生已經(jīng)認(rèn)識(shí)了平移、軸對(duì)稱(chēng),探索了它們的性質(zhì),并運(yùn)用它們進(jìn)行圖案設(shè)計(jì)。本書(shū)中圖形變換又增添了一名新成員――旋轉(zhuǎn)!靶D(zhuǎn)”一章就來(lái)認(rèn)識(shí)這種變換,探索它的性質(zhì)。在此基礎(chǔ)上,認(rèn)識(shí)中心對(duì)稱(chēng)和中心對(duì)稱(chēng)圖形。

          “23.1旋轉(zhuǎn)”一節(jié)首先通過(guò)實(shí)例介紹旋轉(zhuǎn)的概念。然后讓學(xué)生探究旋轉(zhuǎn)的性質(zhì)。在此基礎(chǔ)上,通過(guò)例題說(shuō)明作一個(gè)圖形旋轉(zhuǎn)后的圖形的方法。最后舉例說(shuō)明用旋轉(zhuǎn)可以進(jìn)行圖案設(shè)計(jì)。

          “23.2中心對(duì)稱(chēng)”一節(jié)首先通過(guò)實(shí)例介紹中心對(duì)稱(chēng)的概念。然后讓學(xué)生探究中心對(duì)稱(chēng)的性質(zhì)。在此基礎(chǔ)上,通過(guò)例題說(shuō)明作與一個(gè)圖形成中心對(duì)稱(chēng)的圖形的方法。這些內(nèi)容之后,通過(guò)線(xiàn)段、平行四邊形引出中心對(duì)稱(chēng)圖形的概念。最后介紹關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)的關(guān)系,以及利用這一關(guān)系作與一個(gè)圖形成中心對(duì)稱(chēng)的圖形的方法。

          “23.3課題學(xué)習(xí)圖案設(shè)計(jì)”一節(jié)讓學(xué)生探索圖形之間的變換關(guān)系(平移、軸對(duì)稱(chēng)、旋轉(zhuǎn)及其組合),靈活運(yùn)用平移、軸對(duì)稱(chēng)、旋轉(zhuǎn)的組合進(jìn)行圖案設(shè)計(jì)。

          第24章圓

          圓是一種常見(jiàn)的圖形。在“圓”這一章,學(xué)生將進(jìn)一步認(rèn)識(shí)圓,探索它的性質(zhì),并用這些知識(shí)解決一些實(shí)際問(wèn)題。通過(guò)這一章的學(xué)習(xí),學(xué)生的解決圖形問(wèn)題的能力將會(huì)進(jìn)一步提高。

          “24.1圓”一節(jié)首先介紹圓及其有關(guān)概念。然后讓學(xué)生探究與垂直于弦的直徑有關(guān)的結(jié)論,并運(yùn)用這些結(jié)論解決問(wèn)題。接下來(lái),讓學(xué)生探究弧、弦、圓心角的關(guān)系,并運(yùn)用上述關(guān)系解決問(wèn)題。最后讓學(xué)生探究圓周角與圓心角的關(guān)系,并運(yùn)用上述關(guān)系解決問(wèn)題。

          “24.2與圓有關(guān)的位置關(guān)系”一節(jié)首先介紹點(diǎn)和圓的三種位置關(guān)系、三角形的外心的概念,并通過(guò)證明“在同一直線(xiàn)上的三點(diǎn)不能作圓”引出了反證法。然后介紹直線(xiàn)和圓的三種位置關(guān)系、切線(xiàn)的概念以及與切線(xiàn)有關(guān)的結(jié)論。最后介紹圓和圓的位置關(guān)系。

          “24.3正多邊形和圓”一節(jié)揭示了正多邊形和圓的關(guān)系,介紹了等分圓周得到正多邊形的方法。

          “24.4弧長(zhǎng)和扇形面積”一節(jié)首先介紹弧長(zhǎng)公式。然后介紹扇形及其面積公式。最后介紹圓錐的側(cè)面積公式。

          第25章概率初步

          將一枚硬幣拋擲一次,可能出現(xiàn)正面也可能出現(xiàn)反面,出現(xiàn)正面的可能性大還是出現(xiàn)反面的可能性大呢?學(xué)了“概率”一章,學(xué)生就能更好地認(rèn)識(shí)這個(gè)問(wèn)題了。掌握了概率的初步知識(shí),學(xué)生還會(huì)解決更多的實(shí)際問(wèn)題。

          “25.1概率”一節(jié)首先通過(guò)實(shí)例介紹隨機(jī)事件的概念,然后通過(guò)擲幣問(wèn)題引出概率的概念。

          “25.2用列舉法求概率”一節(jié)首先通過(guò)具體試驗(yàn)引出用列舉法求概率的方法。然后安排運(yùn)用這種方法求概率的例題。在例題中,涉及列表及畫(huà)樹(shù)形圖。

          “25.3利用頻率估計(jì)概率”一節(jié)通過(guò)幼樹(shù)成活率和柑橘損壞率等問(wèn)題介紹了用頻率估計(jì)概率的方法。

          “25.4課題學(xué)習(xí)鍵盤(pán)上字母的排列規(guī)律”一節(jié)讓學(xué)生通過(guò)這一課題的研究體會(huì)概率的廣泛應(yīng)用。

        初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

          直角三角形的判定方法:

          判定1:定義,有一個(gè)角為90°的三角形是直角三角形。

          判定2:判定定理:以a、b、c為邊的三角形是以c為斜邊的直角三角形。如果三角形的三邊a,b,c滿(mǎn)足a2+b2=c2,那么這個(gè)三角形就是直角三角形。(勾股定理的逆定理)。

          判定3:若一個(gè)三角形30°內(nèi)角所對(duì)的邊是某一邊的一半,則這個(gè)三角形是以這條長(zhǎng)邊為斜邊的直角三角形。

          判定4:兩個(gè)銳角互為余角(兩角相加等于90°)的三角形是直角三角形。

          判定5:若兩直線(xiàn)相交且它們的斜率之積互為負(fù)倒數(shù),則兩直線(xiàn)互相垂直。那么

          判定6:若在一個(gè)三角形中一邊上的中線(xiàn)等于其所在邊的一半,那么這個(gè)三角形為直角三角形。

          判定7:一個(gè)三角形30°角所對(duì)的邊等于這個(gè)三角形斜邊的一半,則這個(gè)三角形為直角三角形。(與判定3不同,此定理用于已知斜邊的三角形。)

        【初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

        初三數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)12-06

        初三數(shù)學(xué)中考知識(shí)點(diǎn)總結(jié)09-21

        初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-08

        初三數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)07-31

        初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12-07

        人教版初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)04-24

        關(guān)于初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12-01

        初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)11-18

        初三數(shù)學(xué)上知識(shí)點(diǎn)總結(jié)02-18

        初三數(shù)學(xué)知識(shí)點(diǎn)整式總結(jié)04-11

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>