初三數(shù)學(xué)上冊知識點(diǎn)總結(jié)
漫長的學(xué)習(xí)生涯中,是不是聽到知識點(diǎn),就立刻清醒了?知識點(diǎn)有時(shí)候特指教科書上或考試的知識。哪些才是我們真正需要的知識點(diǎn)呢?以下是小編幫大家整理的初三數(shù)學(xué)上冊知識點(diǎn)總結(jié),僅供參考,大家一起來看看吧。
初三數(shù)學(xué)上冊知識點(diǎn)總結(jié) 1
第21章二次根式
1、二次根式:一般地,式子叫做二次根式。
注意:
。1)若這個(gè)條件不成立,則不是二次根式;
。2)是一個(gè)重要的非負(fù)數(shù),即; ≥0。
2、重要公式:
3、積的算術(shù)平方根:
積的算術(shù)平方根等于積中各因式的算術(shù)平方根的積;
4、二次根式的乘法法則:。
5、二次根式比較大小的方法:
。1)利用近似值比大;
。2)把二次根式的系數(shù)移入二次根號內(nèi),然后比大;
(3)分別平方,然后比大小。
6、商的算術(shù)平方根:,商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根。
7、二次根式的除法法則:
分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎健?/p>
8、最簡二次根式:
。1)滿足下列兩個(gè)條件的二次根式,叫做最簡二次根式,①被開方數(shù)的因數(shù)是整數(shù),因式是整式,②被開方數(shù)中不含能開的盡的因數(shù)或因式;
。2)最簡二次根式中,被開方數(shù)不能含有小數(shù)、分?jǐn)?shù),字母因式次數(shù)低于2,且不含分母;
。3)化簡二次根式時(shí),往往需要把被開方數(shù)先分解因數(shù)或分解因式;
。4)二次根式計(jì)算的最后結(jié)果必須化為最簡二次根式。
9、同類二次根式:幾個(gè)二次根式化成最簡二次根式后,如果被開方數(shù)相同,這幾個(gè)二次根式叫做同類二次根式。
10、二次根式的混合運(yùn)算:
。1)二次根式的混合運(yùn)算包括加、減、乘、除、乘方、開方六種代數(shù)運(yùn)算,以前學(xué)過的,在有理數(shù)范圍內(nèi)的一切公式和運(yùn)算律在二次根式的混合運(yùn)算中都適用;
。2)二次根式的運(yùn)算一般要先把二次根式進(jìn)行適當(dāng)化簡,例如:化為同類二次根式才能合并;除法運(yùn)算有時(shí)轉(zhuǎn)化為分母有理化或約分更為簡便;使用乘法公式等。
第22章一元二次方程
1、一元二次方程的一般形式:
a≠0時(shí),ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關(guān)問題時(shí),多數(shù)習(xí)題要先化為一般形式,目的是確定一般形式中的a、 b、 c;其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的代數(shù)式。
2、一元二次方程的解法:一元二次方程的四種解法要求靈活運(yùn)用,其中直接開平方法雖然簡單,但是適用范圍較小;公式法雖然適用范圍大,但計(jì)算較繁,易發(fā)生計(jì)算錯(cuò)誤;因式分解法適用范圍較大,且計(jì)算簡便,是首選方法;配方法使用較少。
3、一元二次方程根的判別式:當(dāng)ax2+bx+c=0
。╝≠0)時(shí),Δ=b2—4ac叫一元二次方程根的判別式。請注意以下等價(jià)命題:
Δ>0 <=>有兩個(gè)不等的實(shí)根;
4、平均增長率問題————————應(yīng)用題的類型題之一(設(shè)增長率為x):
。1)第一年為a ,第二年為a(1+x) ,第三年為a(1+x)2。
。2)常利用以下相等關(guān)系列方程:第三年=第三年或第一年+第二年+第三年=總和。
第23章旋轉(zhuǎn)
1、概念:
把一個(gè)圖形繞著某一點(diǎn)O轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換叫做旋轉(zhuǎn),點(diǎn)O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角。
旋轉(zhuǎn)三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方面、旋轉(zhuǎn)角
2、旋轉(zhuǎn)的性質(zhì):
。1)旋轉(zhuǎn)前后的兩個(gè)圖形是全等形;
。2)兩個(gè)對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等
。3)兩個(gè)對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角
3、中心對稱:
把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對稱或中心對稱,這個(gè)點(diǎn)叫做對稱中心。
這兩個(gè)圖形中的對應(yīng)點(diǎn)叫做關(guān)于中心的對稱點(diǎn)。
4、中心對稱的性質(zhì):
(1)關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。
。2)關(guān)于中心對稱的兩個(gè)圖形是全等圖形。
5、中心對稱圖形:
把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形叫做中心對稱圖形,這個(gè)點(diǎn)就是它的對稱中心。
初三數(shù)學(xué)上冊知識點(diǎn)總結(jié) 2
。ㄈ切沃形痪的定理)
三角形的中位線平行于三角形的第三邊,并且等于第三邊的一半。
。ㄆ叫兴倪呅蔚男再|(zhì))
①平行四邊形的對邊相等;
、谄叫兴倪呅蔚膶窍嗟;
③平行四邊形的對角線互相平分。
(矩形的性質(zhì))
、倬匦尉哂衅叫兴倪呅蔚囊磺行再|(zhì);
、诰匦蔚乃膫(gè)角都是直角;
、劬匦蔚膶蔷相等。
正方形的判定與性質(zhì)
1、判定方法:
1鄰邊相等的矩形;
2鄰邊垂直的菱形;
3對角線垂直的矩形;
4對角線相等的菱形;
2、性質(zhì):
1邊:四邊相等,對邊平行;
2角:四個(gè)角都相等都是直角,鄰角互補(bǔ);
3對角線互相平分、垂直、相等,且每長對角線平分一組內(nèi)角。
等腰三角形的判定定理
。ǖ妊切蔚呐卸ǚ椒ǎ
1、有兩條邊相等的三角形是等腰三角形。
2、判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這個(gè)三角形是等腰三角形簡稱:等角對等邊。
角平分線:把一個(gè)角平分的射線叫該角的角平分線。
定義中有幾個(gè)要點(diǎn)要注意一下的,學(xué)習(xí)方法,就是角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對稱軸才會(huì)用直線的,這也涉及到軌跡的問題,一個(gè)角個(gè)角平分線就是到角兩邊距離相等的點(diǎn)
性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上
標(biāo)準(zhǔn)差與方差
極差是什么:一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差叫做極差,即極差=值—最小值。
計(jì)算器——求標(biāo)準(zhǔn)差與方差的一般步驟:
1、打開計(jì)算器,按“ON”鍵,按“MODE”“2”進(jìn)入統(tǒng)計(jì)SD狀態(tài)。
2、在開始數(shù)據(jù)輸入之前,請務(wù)必按“SHIFT”“CLR”“1”“=”鍵清除統(tǒng)計(jì)存儲器。
3、輸入數(shù)據(jù):按數(shù)字鍵輸入數(shù)值,然后按“M+”鍵,就能完成一個(gè)數(shù)據(jù)的輸入。如果想對此輸入同樣的數(shù)據(jù)時(shí),還可在步驟3后按“SHIET”“;”,后輸入該數(shù)據(jù)出現(xiàn)的頻數(shù),再按“M+”鍵。
4、當(dāng)所有的數(shù)據(jù)全部輸入結(jié)束后,按“SHIFT”“2”,選擇的是“標(biāo)準(zhǔn)差”,就可以得到所求數(shù)據(jù)的標(biāo)準(zhǔn)差;
5、標(biāo)準(zhǔn)差的平方就是方差。
初三數(shù)學(xué)上冊知識點(diǎn)總結(jié) 3
第1章 二次根式
學(xué)生已經(jīng)學(xué)過整式與分式,知道用式子可以表示實(shí)際問題中的數(shù)量關(guān)系。解決與數(shù)量關(guān)系有關(guān)的問題還會(huì)遇到二次根式。二次根式 一章就來認(rèn)識這種式子,探索它的性質(zhì),掌握它的運(yùn)算。
在這一章,首先讓學(xué)生了解二次根式的概念,并掌握以下重要結(jié)論:
注:關(guān)于二次根式的運(yùn)算,由于二次根式的乘除相對于二次根式的加減來說更易于掌握,教科書先安排二次根式的乘除,再安排二次根式的加減。二次根式的乘除一節(jié)的內(nèi)容有兩條發(fā)展的線索。一條是用具體計(jì)算的例子體會(huì)二次根式乘除法則的合理性,并運(yùn)用二次根式的乘除法則進(jìn)行運(yùn)算;一條是由二次根式的乘除法則得到并運(yùn)用它們進(jìn)行二次根式的化簡。
二次根式的加減一節(jié)先安排二次根式加減的內(nèi)容,再安排二次根式加減乘除混合運(yùn)算的內(nèi)容。在本節(jié)中,注意類比整式運(yùn)算的有關(guān)內(nèi)容。例如,讓學(xué)生比較二次根式的加減與整式的加減,又如,通過例題說明在二次根式的運(yùn)算中,多項(xiàng)式乘法法則和乘法公式仍然適用。這些處理有助于學(xué)生掌握本節(jié)內(nèi)容。
第2章 一元二次方程
學(xué)生已經(jīng)掌握了用一元一次方程解決實(shí)際問題的方法。在解決某些實(shí)際問題時(shí)還會(huì)遇到一種新方程 一元二次方程。一元二次方程一章就來認(rèn)識這種方程,討論這種方程的解法,并運(yùn)用這種方程解決一些實(shí)際問題。
本章首先通過雕像設(shè)計(jì)、制作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學(xué)生通過數(shù)值代入的方法找出某些簡單的一元二次方程的解,對一元二次方程的解加以體會(huì),并給出一元二次方程的根的概念,22.2降次解一元二次方程一節(jié)介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。
(1)在介紹配方法時(shí),首先通過實(shí)際問題引出形如 的方程。這樣的方程可以化為更為簡單的形如 的方程,由平方根的概念,可以得到這個(gè)方程的解。進(jìn)而舉例說明如何解形如 的方程。然后舉例說明一元二次方程可以化為形如 的方程,引出配方法。最后安排運(yùn)用配方法解一元二次方程的例題。在例題中,涉及二次項(xiàng)系數(shù)不是1的一元二次方程,也涉及沒有實(shí)數(shù)根的一元二次方程。對于沒有實(shí)數(shù)根的一元二次方程,學(xué)了公式法以后,學(xué)生對這個(gè)內(nèi)容會(huì)有進(jìn)一步的理解。
(2)在介紹公式法時(shí),首先借助配方法討論方程 的解法,得到一元二次方程的求根公式。然后安排運(yùn)用公式法解一元二次方程的例題。在例題中,涉及有兩個(gè)相等實(shí)數(shù)根的一元二次方程,也涉及沒有實(shí)數(shù)根的一元二次方程。由此引出一元二次方程的解的三種情況。
(3)在介紹因式分解法時(shí),首先通過實(shí)際問題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運(yùn)用因式分解法解一元二次方程的例題。最后對配方法、公式法、因式分解法三種解一元二次方程的方法進(jìn)行小結(jié)。
22.3實(shí)際問題與一元二次方程一節(jié)安排了四個(gè)探究欄目,分別探究傳播、成本下降率、面積、勻變速運(yùn)動(dòng)等問題,使學(xué)生進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的一個(gè)有效的數(shù)學(xué)模型。
初三數(shù)學(xué)上冊知識點(diǎn)總結(jié) 4
不等式的概念
1、不等式:用不等號表示不等關(guān)系的式子,叫做不等式。
2、不等式的解集:對于一個(gè)含有未知數(shù)的不等式,任何一個(gè)適合這個(gè)不等式的未知數(shù)的值,都叫做這個(gè)不等式的解。
3、對于一個(gè)含有未知數(shù)的不等式,它的所有解的集合叫做這個(gè)不等式的解的集合,簡稱這個(gè)不等式的解集。
4、求不等式的解集的過程,叫做解不等式。
5、用數(shù)軸表示不等式的方法。
不等式基本性質(zhì)
1、不等式兩邊都加上或減去同一個(gè)數(shù)或同一個(gè)整式,不等號的方向不變。
2、不等式兩邊都乘以或除以同一個(gè)正數(shù),不等號的方向不變。
3、不等式兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號的方向改變。
4、說明:
①在一元一次不等式中,不像等式那樣,等號是不變的,是隨著加或乘的運(yùn)算改變。
②如果不等式乘以0,那么不等號改為等號所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。
一元一次不等式
1、一元一次不等式的概念:一般地,不等式中只含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步驟:1去分母2去括號3移項(xiàng)4合并同類項(xiàng)5將x項(xiàng)的系數(shù)化為1。
一元一次不等式組
1、一元一次不等式組的概念:幾個(gè)一元一次不等式合在一起,就組成了一個(gè)一元一次不等式組。
2、幾個(gè)一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。
3、求不等式組的解集的過程,叫做解不等式組。
4、當(dāng)任何數(shù)x都不能使不等式同時(shí)成立,我們就說這個(gè)不等式組無解或其解為空集。
5、一元一次不等式組的解法
1分別求出不等式組中各個(gè)不等式的解集。
2利用數(shù)軸求出這些不等式的解集的公共部分,即這個(gè)不等式組的解集。
6、不等式與不等式組
不等式:
、儆梅枴担=,〈號連接的式子叫不等式。
、诓坏仁降膬蛇叾技由匣驕p去同一個(gè)整式,不等號的方向不變。
、鄄坏仁降膬蛇叾汲艘曰蛘叱砸粋(gè)正數(shù),不等號方向不變。
④不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號方向相反。
7、不等式的解集:
、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。
、谝粋(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
、矍蟛坏仁浇饧倪^程叫做解不等式。
初三數(shù)學(xué)上冊知識點(diǎn)總結(jié) 5
直角三角形的判定方法:
判定1:定義,有一個(gè)角為90°的三角形是直角三角形。
判定2:判定定理:以a、b、c為邊的三角形是以c為斜邊的直角三角形。如果三角形的三邊a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一個(gè)三角形30°內(nèi)角所對的邊是某一邊的一半,則這個(gè)三角形是以這條長邊為斜邊的直角三角形。
判定4:兩個(gè)銳角互為余角(兩角相加等于90°)的三角形是直角三角形。
判定5:若兩直線相交且它們的斜率之積互為負(fù)倒數(shù),則兩直線互相垂直。那么
判定6:若在一個(gè)三角形中一邊上的中線等于其所在邊的一半,那么這個(gè)三角形為直角三角形。
判定7:一個(gè)三角形30°角所對的邊等于這個(gè)三角形斜邊的一半,則這個(gè)三角形為直角三角形。(與判定3不同,此定理用于已知斜邊的三角形。)
初三數(shù)學(xué)上冊知識點(diǎn)總結(jié) 6
單項(xiàng)式與多項(xiàng)式
僅含有一些數(shù)和字母的乘法包括乘方運(yùn)算的式子叫做單項(xiàng)式單獨(dú)的一個(gè)數(shù)或字母也是單項(xiàng)式。
單項(xiàng)式中的數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式或字母因數(shù)的數(shù)字系數(shù),簡稱系數(shù)。
當(dāng)一個(gè)單項(xiàng)式的系數(shù)是1或—1時(shí),“1”通常省略不寫。
一個(gè)單項(xiàng)式中,所有字母的指數(shù)的和叫做這個(gè)單項(xiàng)式的次數(shù)。
如果在幾個(gè)單項(xiàng)式中,不管它們的系數(shù)是不是相同,只要他們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么,這幾個(gè)單項(xiàng)式就叫做同類單項(xiàng)式,簡稱同類項(xiàng)所有的常數(shù)都是同類項(xiàng)。
1、多項(xiàng)式
有有限個(gè)單項(xiàng)式的代數(shù)和組成的式子,叫做多項(xiàng)式。
多項(xiàng)式里每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),不含字母的項(xiàng),叫做常數(shù)項(xiàng)。
單項(xiàng)式可以看作是多項(xiàng)式的特例
把同類單項(xiàng)式的系數(shù)相加或相減,而單項(xiàng)式中的字母的乘方指數(shù)不變。
在多項(xiàng)式中,所含的不同未知數(shù)的個(gè)數(shù),稱做這個(gè)多項(xiàng)式的元數(shù)經(jīng)過合并同類項(xiàng)后,多項(xiàng)式所含單項(xiàng)式的個(gè)數(shù),稱為這個(gè)多項(xiàng)式的項(xiàng)數(shù)所含個(gè)單項(xiàng)式中次項(xiàng)的次數(shù),就稱為這個(gè)多項(xiàng)式的次數(shù)。
2、多項(xiàng)式的值
任何一個(gè)多項(xiàng)式,就是一個(gè)用加、減、乘、乘方運(yùn)算把已知數(shù)和未知數(shù)連接起來的式子。
3、多項(xiàng)式的恒等
對于兩個(gè)一元多項(xiàng)式fx、gx來說,當(dāng)未知數(shù)x同取任一個(gè)數(shù)值a時(shí),如果它們所得的值都是相等的,即fa=ga,那么,這兩個(gè)多項(xiàng)式就稱為是恒等的記為fx==gx,或簡記為fx=gx。
性質(zhì)1如果fx==gx,那么,對于任一個(gè)數(shù)值a,都有fa=ga。
性質(zhì)2如果fx==gx,那么,這兩個(gè)多項(xiàng)式的個(gè)同類項(xiàng)系數(shù)就一定對應(yīng)相等。
4、一元多項(xiàng)式的根
一般地,能夠使多項(xiàng)式fx的值等于0的未知數(shù)x的值,叫做多項(xiàng)式fx的根。
多項(xiàng)式的加、減法,乘法
1、多項(xiàng)式的加、減法
2、多項(xiàng)式的乘法
單項(xiàng)式相乘,用它們系數(shù)作為積的系數(shù),對于相同的字母因式,則連同它的指數(shù)作為積的一個(gè)因式。
3、多項(xiàng)式的乘法
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式等每一項(xiàng)乘以另一個(gè)多項(xiàng)式的各項(xiàng),再把所得的積相加。
常用乘法公式
公式I平方差公式
a+ba—b=a^2—b^2
兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積等于這兩個(gè)數(shù)的平方差。
初三數(shù)學(xué)上冊知識點(diǎn)總結(jié) 7
三角形的外心定義:
外心:是三角形三條邊的垂直平分線的交點(diǎn),即外接圓的圓心。
外心定理:三角形的三邊的垂直平分線交于一點(diǎn)。該點(diǎn)叫做三角形的外心。
三角形的外心的性質(zhì):
1、三角形三條邊的垂直平分線的交于一點(diǎn),該點(diǎn)即為三角形外接圓的圓心;
2、三角形的外接圓有且只有一個(gè),即對于給定的三角形,其外心是的,但一個(gè)圓的內(nèi)接三角形卻有無數(shù)個(gè),這些三角形的外心重合;
3、銳角三角形的外心在三角形內(nèi);
鈍角三角形的外心在三角形外;
直角三角形的外心與斜邊的中點(diǎn)重合。
在△ABC中
4、OA=OB=OC=R
5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA
6、S△ABC=abc/4R
初三數(shù)學(xué)上冊知識點(diǎn)總結(jié) 8
1.實(shí)數(shù)
(1)平方根、算術(shù)平方根、立方根、近似數(shù)
。2)無理數(shù)、有理數(shù)、分?jǐn)?shù)、小數(shù)
(3)無限不循環(huán)小數(shù)是無理數(shù)
。4)平方數(shù)、完全平方數(shù)、勾股數(shù)
。5)用計(jì)算器求平方根、立方根
。6)近似數(shù)、有效數(shù)字
2.代數(shù)式
。1)代數(shù)式、整式、單項(xiàng)式、多項(xiàng)式
(2)同類項(xiàng)、系數(shù)、次數(shù)、次數(shù)最高的項(xiàng)
。3)整式的加減、整式的乘法、平方差公式、完全平方公式
。4)整式的除法、整式的除法、分式的除法
。5)列代數(shù)式、正數(shù)、負(fù)數(shù)、絕對值、倒數(shù)的定義
(6)求代數(shù)式的值、化簡求值、代數(shù)式的恒等變形
3.一次函數(shù)
。1)一次函數(shù)、正比例函數(shù)、一次函數(shù)解析式
。2)函數(shù)圖像、交點(diǎn)坐標(biāo)、截距
。3)一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系
。4)函數(shù)圖像與坐標(biāo)軸的交點(diǎn)、一次函數(shù)與一元一次方程的解
。5)函數(shù)圖像與正比例函數(shù)圖像的區(qū)別
4.反比例函數(shù)
。1)反比例函數(shù)、反比例函數(shù)解析式
。2)反比例函數(shù)圖像、對稱軸、增減性
(3)反比例函數(shù)與一次函數(shù)的關(guān)系
。4)反比例函數(shù)與一元一次方程、一元一次不等式的解法
。5)反比例函數(shù)圖像與坐標(biāo)軸的交點(diǎn)
5.一元二次方程
。1)一元二次方程、一元二次方程的解法、可化為一元二次方程的方程
(2)根的判別式、判別式的應(yīng)用、求根公式
。3)根與系數(shù)的關(guān)系、二次三項(xiàng)式的因式分解
。4)一元二次方程的應(yīng)用、列方程解應(yīng)用題、一元二次方程的應(yīng)用
(5)一元二次方程的解法、配方法、因式分解法、公式法
6.圓
(1)圓、圓心、半徑、直徑、弧、弦、半圓、優(yōu)弧、劣弧
。2)圓周角、圓心角、弧、弦、關(guān)系、圓周率
。3)圓的定義、圓周率、圓的方程、直線與圓的位置關(guān)系
。4)切線、切線長、切線長定理、切線性質(zhì)定理
。5)圓中的比例線段、圓中的等腰三角形、圓中的等邊三角形
7.幾何初步
。1)線段、射線、直線、角、平角、周角、度、分、秒
。2)線段的和差、角的和差、余角、補(bǔ)角
(3)垂線、垂線段、最短距離、三角形的穩(wěn)定性
(4)平行線、平行線段、平行四邊形、梯形
(5)三角形、全等三角形、相似三角形、等腰三角形、直角三角形、銳角三角形、鈍角三角形
初三數(shù)學(xué)上冊知識點(diǎn)總結(jié) 9
鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角。
對頂角:一個(gè)角的兩邊分別是另一個(gè)叫的兩邊的反向延長線,像這樣的兩個(gè)角互為對頂角。
垂線:兩條直線相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線。
平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。
同位角、內(nèi)錯(cuò)角、同旁內(nèi)角:
同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對角叫做同位角。
內(nèi)錯(cuò)角:∠2與∠6像這樣的一對角叫做內(nèi)錯(cuò)角。
同旁內(nèi)角:∠2與∠5像這樣的一對角叫做同旁內(nèi)角。
命題:判斷一件事情的語句叫命題。
平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,圖形的這種移動(dòng)叫做平移平移變換,簡稱平移。
對應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動(dòng)后得到的,這樣的兩個(gè)點(diǎn)叫做對應(yīng)點(diǎn)。
【初三數(shù)學(xué)上冊知識點(diǎn)總結(jié)】相關(guān)文章:
初三數(shù)學(xué)上冊知識點(diǎn)總結(jié)08-07
初三數(shù)學(xué)上冊知識點(diǎn)總結(jié)03-19
初三數(shù)學(xué)上冊的知識點(diǎn)總結(jié)12-20
最新初三數(shù)學(xué)上冊的知識點(diǎn)總結(jié)12-20
初三數(shù)學(xué)上冊知識點(diǎn)總結(jié)(11篇)12-09
初三數(shù)學(xué)上冊知識點(diǎn)總結(jié)(9篇)11-18
初三數(shù)學(xué)上冊知識點(diǎn)總結(jié)10篇12-16