初一數(shù)學代數(shù)式知識點總結(jié)
在年少學習的日子里,看到知識點,都是先收藏再說吧!知識點是知識中的最小單位,最具體的內(nèi)容,有時候也叫“考點”。掌握知識點是我們提高成績的關鍵!下面是小編整理的初一數(shù)學代數(shù)式知識點總結(jié),歡迎閱讀,希望大家能夠喜歡。
初一數(shù)學代數(shù)式知識點總結(jié)1
一、代數(shù)式的定義:
用運算符號把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨的一個數(shù)或字母也是代數(shù)式。
注意:(1)單個數(shù)字與字母也是代數(shù)式;(2)代數(shù)式與公式、等式的區(qū)別是代數(shù)式中不含等號,而公式和等式中都含有等號;(3)代數(shù)式可按運算關系和運算結(jié)果兩種情況理解。
三、整式:單項式與多項式統(tǒng)稱為整式。
1.單項式:數(shù)與字母的積所表示的代數(shù)式叫做單項式,單項式中的數(shù)字因數(shù)叫做單項式的系數(shù);單項式中所有字母的指數(shù)的和叫做單項式的次數(shù)。特別地,單獨一個數(shù)或者一個字母也是單項式。
2.多項式:幾個單項式的和叫做多項式,在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫做常數(shù)項;在多項式里,次數(shù)最高項的次數(shù)就是這個多項式的次數(shù)。
四、升(降)冪排列:
把一個多項式按某一個字母的指數(shù)從小到大(或從大到。┑捻樞蚺帕衅饋,叫做把多項式按這個字母升(降)冪排列。
五、代數(shù)式書寫要求:
1.代數(shù)式中出現(xiàn)的乘號通常用“·”表示或者省略不寫;數(shù)與字母相乘時,數(shù)應寫在字母前面;數(shù)與數(shù)相乘時,仍用“×”號;
2.數(shù)字與字母相乘、單項式與多項式相乘時,一般按照先寫數(shù)字,再寫單項式,最后寫多項式的書寫順序.如式子(a+b)·2·a 應寫成2a(a+b);
3.帶分數(shù)與字母相乘時,應先把帶分數(shù)化成假分數(shù)后再與字母相乘;
4.在代數(shù)式中出現(xiàn)除法運算時,按分數(shù)的寫法來寫;
5.在一些實際問題中,有時表示數(shù)量的代數(shù)式有單位名稱,如果代數(shù)式是積或商的形式,則單位直接寫在式子后面;如果代數(shù)式是和或差的形式,則必須先把代數(shù)式用括號括起來,再將單位名稱寫在式子的后面,如2a米,(2a-b)kg。
六、系數(shù)與次數(shù)
單項式的系數(shù)和次數(shù),多項式的項數(shù)和次數(shù)。
1.單項式的系數(shù):單項式中的數(shù)字因數(shù)叫做單項式的系數(shù)。
注意:(1)單項式的系數(shù)包括它前面的符號;
(2)若單項式的系數(shù)是"1”或-1“時,"1"通常省略不寫,但“-”號不能省略。
2.單項式的次數(shù):單項式中所有字母的指數(shù)和叫做單項式的次數(shù)。
注意:(1)單項式的次數(shù)是它含有的所有字母的指數(shù)和,只與字母的指數(shù)有關,與其系數(shù)無關;
(2)單項式中字母的指數(shù)為1時,1通常省略不寫,在確定單項式的次數(shù)時,一定不要忘記被省略的1。
3.多項式的次數(shù):多項式中次數(shù)最高的項的次數(shù)就是多項式的次數(shù).
4.多項式的項數(shù):在多項式中,每個單項式都叫做多項式的項,其中不含字母的項稱為常數(shù)項。一個多項式有幾項,就叫幾項式,它的項數(shù)就是幾。多項式的項數(shù)實質(zhì)是“和” 中單項式的個數(shù)。
七、列代數(shù)式:
用含有數(shù)、字母和運算符號的式子把問題中的.數(shù)量表示出來就是列代數(shù)式。
正確列出代數(shù)式,要掌握以下幾點:
。1)列代數(shù)式的關鍵是理解和找出問題中的數(shù)量關系;
。2)要掌握一些常見的數(shù)量關系如行程問題、工程問題、濃度問題、數(shù)字問題等;
(3)要善于抓住問題中的關鍵詞語,如和、差、積、商、大、小、幾倍、平方、多、少等。
八、代數(shù)式求值:
一般地,用數(shù)值代替代數(shù)式中的字母,按照代數(shù)式中指明的運算計算的結(jié)果叫做代數(shù)式求值。
代數(shù)式求值的三種方法:1.直接代入求值;2.化簡代入求值;3.整體代入求值。
常見考法
列代數(shù)式與代數(shù)式求值是中考的必考知識點,它涉及的知識范圍廣,可與實際問題(如乘車,購物、儲蓄、稅收等)相結(jié)合,特別的探索規(guī)律列代數(shù)式這類考題為中考命題者提供了廣泛的空間,是近幾年的熱點,這類題通常是從一列數(shù)、一個數(shù)陣、一個等式、一組圖形中,觀察出規(guī)律,并嘗試歸納出代數(shù)式或公式,再加以驗證。
誤區(qū)提醒
。1)列代數(shù)式時,由于審題不清,對條件理解不透,很容易搞錯運算順序而列錯代數(shù)式;(2)求代數(shù)式的值,將代數(shù)式中字母用相應的數(shù)值后,代數(shù)式就變成了實數(shù)的混合運算。如果沒有對實數(shù)運算掌握好,就會出現(xiàn)運算順序搞錯的現(xiàn)象。(3)在進行規(guī)律探索中,由于在審題中沒有抓住問題的性質(zhì),常常得出不能完全反映全部規(guī)律的錯誤規(guī)律,出現(xiàn)以點概面,以偏概全的現(xiàn)象。
初一數(shù)學代數(shù)式知識點總結(jié)2
1、用加、減、乘(乘方)、除等運算符號把數(shù)或表示數(shù)的字母連接而成的式子,叫做代數(shù)式。(注:單獨一個數(shù)字或字母也是代數(shù)式)
2、代數(shù)式的寫法:數(shù)學與字母相乘時,“×”號省略,數(shù)字寫在字母前;字母與字母相乘時,相同字母寫成冪的形式;數(shù)字與數(shù)字相乘時,“×”號不能省略;式中出現(xiàn)除法時,一般寫成分數(shù)形式。式中出現(xiàn)帶分數(shù)時,一般寫成假分數(shù)形式。
3、分段問題書寫代數(shù)式時要分段考慮,有單位時要考慮是否要();如:電費、水費、出租車、商店優(yōu)惠-------。
4、單項式:由數(shù)字和字母乘積組成的式子。單獨一個數(shù)或一個字母也是單項式.因此,判斷代數(shù)式是否是單項式,關鍵要看代數(shù)式中數(shù)與字母是否是乘積關系,若①分母中不含有字母,②式子中含有加、減運算關系,也不是單項式.
單項式的系數(shù):是指單項式中的數(shù)字因數(shù);(不要漏負號和分母)
單項數(shù)的次數(shù):是指單項式中所有字母的指數(shù)的和.(注意指數(shù)1)
5、多項式:幾個單項式的和。判斷代數(shù)式是否是多項式,關鍵要看代數(shù)式中的每一項是否是單項式.每個單項式稱項,(其中不含字母的項叫常數(shù)項)多項式的次數(shù)是指多項式里次數(shù)最高項的次數(shù)(選代表);多項式的項是指在多項式中每一個單項式.特別注意多項式的項包括它前面的性質(zhì)符號.它們都是用字母表示數(shù)或列式表示數(shù)量關系。注意單項式和多項式的每一項都包括它前面的符號。
6、代數(shù)式分為整式和分式(分母里含有字母);整式分為單項式和多項式。
初一數(shù)學代數(shù)式知識點總結(jié)3
1、代數(shù)式:
用運算符號"+-×÷……"連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式(字母所取得數(shù)應保證它所在的式子有意義,其次字母所取得數(shù)還應使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式)
2、列代數(shù)式的幾個注意事項:
。1)數(shù)與字母相乘,或字母與字母相乘通常使用"?"乘,或省略不寫;
。2)數(shù)與數(shù)相乘,仍應使用"×"乘,不用"?"乘,也不能省略乘號;
(3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a×5應寫成5a;
。4)帶分數(shù)與字母相乘時,要把帶分數(shù)改成假分數(shù)形式,如a×應寫成a;
。5)在代數(shù)式中出現(xiàn)除法運算時,一般用分數(shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;
。6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當分別設兩數(shù)為a、b時,則應分類,寫做a-b和b-a。
3、幾個重要的代數(shù)式:(m、n表示整數(shù))
。1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;
。2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;
。3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是:n-1、n、n+1;
。4)若b>0,則正數(shù)是:a2+b,負數(shù)是:-a2-b,非負數(shù)是:a2,非正數(shù)是:-a2。
初一數(shù)學代數(shù)式知識點總結(jié)4
第一章行列式
知識點1:行列式、逆序數(shù)
知識點2:余子式、代數(shù)余子式
知識點3:行列式的性質(zhì)
知識點4:行列式按一行(列)展開公式
知識點5:計算行列式的方法
知識點6:克拉默法則
第二章矩陣
知識點7:矩陣的概念、線性運算及運算律
知識點8:矩陣的乘法運算及運算律
知識點9:計算方陣的冪
知識點10:轉(zhuǎn)置矩陣及運算律
知識點11:伴隨矩陣及其性質(zhì)
知識點12:逆矩陣及運算律
知識點13:矩陣可逆的判斷
知識點14:方陣的行列式運算及特殊類型的矩陣的運算
知識點15:矩陣方程的求解
知識點16:初等變換的概念及其應用
知識點17:初等方陣的概念
知識點18:初等變換與初等方陣的關系
知識點19:等價矩陣的概念與判斷
知識點20:矩陣的子式與最高階非零子式
知識點21:矩陣的秩的概念與判斷
知識點22:矩陣的秩的性質(zhì)與定理
知識點23:分塊矩陣的概念與運算、特殊分塊陣的運算
知識點24:矩陣分塊在解題中的技巧舉例
第三章向量
知識點25:向量的概念及運算
知識點26:向量的線性組合與線性表示
知識點27:向量組之間的線性表示及等價
知識點28:向量組線性相關與線性無關的概念
知識點29:線性表示與線性相關性的關系
知識點30:線性相關性的判別法
知識點31:向量組的最大線性無關組和向量組的秩的概念
知識點32:矩陣的秩與向量組的秩的關系
知識點33:求向量組的最大無關組
知識點34:有關向量組的定理的綜合運用
知識點35:內(nèi)積的概念及性質(zhì)
知識點36:正交向量組、正交陣及其性質(zhì)
知識點37:向量組的正交規(guī)范化、施密特正交化方法
知識點38:向量空間(數(shù)一)
知識點39:基變換與過渡矩陣(數(shù)一)
知識點40:基變換下的坐標變換(數(shù)一)
第四章 線性方程組
知識點41:齊次線性方程組解的性質(zhì)與結(jié)構
知識點42:非齊次方程組解的性質(zhì)及結(jié)構
知識點43:非齊次線性線性方程組解的各種情形
知識點44:用初等行變換求解線性方程組
知識點45:線性方程組的公共解、同解
知識點46:方程組、矩陣方程與矩陣的乘法運算的關系
知識點47:方程組、矩陣與向量之間的聯(lián)系及其解題技巧舉例
第五章矩陣的特征值與特征向量
知識點48:特征值與特征向量的概念與性質(zhì)
知識點49:特征值和特征向量的求解
知識點50:相似矩陣的概念及性質(zhì)
知識點51:矩陣的相似對角化
知識點52:實對稱矩陣的相似對角化.
知識點53:利用相似對角化求矩陣和矩陣的冪
第六章二次型
知識點54:二次型及其矩陣表示
知識點55:矩陣的合同
知識點56 : 矩陣的等價、相似與合同的關系
知識點57:二次型的標準形
知識點58:用正交變換化二次型為標準形
知識點59:用配方法化二次型為標準形
知識點60:正定二次型的概念及判斷
初一數(shù)學代數(shù)式知識點總結(jié)5
一、數(shù)的分類
其中:有理數(shù)(即可比數(shù))即有限小數(shù)或無限循環(huán)小數(shù);無理數(shù)即無限不循環(huán)小數(shù)。
二、 數(shù)軸
(1)三要素:原點、正方向、單位長度。
(2)實數(shù) 數(shù)軸上的點。
(3)利用數(shù)軸可比較數(shù)的大小,理解實數(shù)及其相反數(shù)、絕對值等概念。
三、 絕對值
(1)幾何定義:數(shù)軸上,表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記做 。
(2)代數(shù)定義: =
四、 相反數(shù)、倒數(shù)
(1)a、b互為相反數(shù) a+b=0(或a=-b);
(2)a、b互為倒數(shù) ab=1(或a= )。
五、幾個非負數(shù)
(1)
(2)a
(3) 0)。
(4)若幾個非負數(shù)之和為0,則這幾個非負數(shù)也分別為0.
六、
(1)a n叫做a的n 次冪,其中,a叫底數(shù),n叫指數(shù)。
(2)若x =a(a0),則x叫做a的平方根,記做算術平方根記做 。
(3)若x =a,則x叫做a的立方根,記做 。因此 =a
(4)算術平方根性質(zhì):
、( ) =a (a
② = ;
、 (a0,b
、 (a0,b0)。
七、運算順序:
1. 同 級:左右
2. 不同級:高低(先乘方和開方,再乘除,最后加減)
3. 有括號:里外(先去小括號、再去中括號、最后去大括號)
【初一數(shù)學代數(shù)式知識點總結(jié)】相關文章:
初一數(shù)學知識點總結(jié)04-24
初一的數(shù)學知識點總結(jié)04-24
數(shù)學高二知識點總結(jié)04-22
高考數(shù)學知識點總結(jié)09-03