- 相關(guān)推薦
初一數(shù)學(xué)全部知識(shí)點(diǎn)總結(jié)
在我們平凡無(wú)奇的學(xué)生時(shí)代,大家對(duì)知識(shí)點(diǎn)應(yīng)該都不陌生吧?知識(shí)點(diǎn)在教育實(shí)踐中,是指對(duì)某一個(gè)知識(shí)的泛稱(chēng)。那么,都有哪些知識(shí)點(diǎn)呢?以下是小編為大家收集的初一數(shù)學(xué)全部知識(shí)點(diǎn)總結(jié),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
初一數(shù)學(xué)全部知識(shí)點(diǎn)總結(jié) 1
1.不等式:用符號(hào)"<",">","≤","≥"表示大小關(guān)系的式子叫做不等式。
2.不等式分類(lèi):不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。
一般地,用純粹的大于號(hào)、小于號(hào)">","<"連接的不等式稱(chēng)為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào))"≥","≤"連接的不等式稱(chēng)為非嚴(yán)格不等式,或稱(chēng)廣義不等式。
3.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。
4.不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一個(gè)含未知數(shù)的不等式有無(wú)數(shù)個(gè)解,其解集是一個(gè)范圍,這個(gè)范圍可用最簡(jiǎn)單的不等式表達(dá)出來(lái),例如:x-1≤2的解集是x≤3
(2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來(lái),形象地說(shuō)明不等式有無(wú)限多個(gè)解,用數(shù)軸表示不等式的解集要注意兩點(diǎn):一是定邊界線;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)F(x)同解。
(2)如果不等式F(x) (3)如果不等式F(x)0,那么不等式F(x) 7.不等式的性質(zhì): (1)如果x>y,那么yy;(對(duì)稱(chēng)性) (2)如果x>y,y>z;那么x>z;(傳遞性) (3)如果x>y,而z為任意實(shí)數(shù)或整式,那么x+z>y+z;(加法則) (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z (6)如果x>y,m>n,那么x+m>y+n(充分不必要條件) (7)如果x>y>0,m>n>0,那么xm>yn (8)如果x>y>0,那么x的n次冪>y的n次冪(n為正數(shù)) 8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。 9.解一元一次不等式的一般順序: (1)去分母(運(yùn)用不等式性質(zhì)2、3) (2)去括號(hào) (3)移項(xiàng)(運(yùn)用不等式性質(zhì)1) (4)合并同類(lèi)項(xiàng) (5)將未知數(shù)的系數(shù)化為1(運(yùn)用不等式性質(zhì)2、3) (6)有些時(shí)候需要在數(shù)軸上表示不等式的解集 10.一元一次不等式與一次函數(shù)的綜合運(yùn)用: 一般先求出函數(shù)表達(dá)式,再化簡(jiǎn)不等式求解。 11.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成 了一個(gè)一元一次不等式組。 12.解一元一次不等式組的步驟: (1)求出每個(gè)不等式的解集; (2)求出每個(gè)不等式的解集的公共部分;(一般利用數(shù)軸) (3)用代數(shù)符號(hào)語(yǔ)言來(lái)表示公共部分。(也可以說(shuō)成是下結(jié)論) 13.解不等式的訣竅 (1)大于大于取大的(大大大); 例如:X>-1,X>2,不等式組的解集是X>2 (2)小于小于取小的(小小小); 例如:X<-4,X<-6,不等式組的解集是X<-6 (3)大于小于交叉取中間; (4)無(wú)公共部分分開(kāi)無(wú)解了; 14.解不等式組的口訣 (1)同大取大 例如,x>2,x>3,不等式組的解集是X>3 (2)同小取小 例如,x<2,x<3,不等式組的解集是X<2 (3)大小小大中間找 例如,x<2,x>1,不等式組的解集是1 (4)大大小小不用找 例如,x<2,x>3,不等式組無(wú)解 15.應(yīng)用不等式組解決實(shí)際問(wèn)題的步驟 (1)審清題意 (2)設(shè)未知數(shù),根據(jù)所設(shè)未知數(shù)列出不等式組 (3)解不等式組 (4)由不等式組的解確立實(shí)際問(wèn)題的解 (5)作答 16.用不等式組解決實(shí)際問(wèn)題:其公共解不一定就為實(shí)際問(wèn)題的解,所以需結(jié)合生活實(shí)際具體分析,最后確定結(jié)果。 正數(shù)和負(fù)數(shù) ⒈、正數(shù)和負(fù)數(shù)的概念 負(fù)數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負(fù)數(shù) 注意:①字母a可以表示任意數(shù),當(dāng)a表示正數(shù)時(shí),—a是負(fù)數(shù);當(dāng)a表示負(fù)數(shù)時(shí),—a是正數(shù);當(dāng)a表示0時(shí),—a仍是0。(如果出判斷題為:帶正號(hào)的數(shù)是正數(shù),帶負(fù)號(hào)的數(shù)是負(fù)數(shù),這種說(shuō)法是錯(cuò)誤的,例如+a,—a就不能做出簡(jiǎn)單判斷) 、谡龜(shù)有時(shí)也可以在前面加“+”,有時(shí)“+”省略不寫(xiě)。所以省略“+”的正數(shù)的符號(hào)是正號(hào)。 2、具有相反意義的量 若正數(shù)表示某種意義的量,則負(fù)數(shù)可以表示具有與該正數(shù)相反意義的量,比如: 零上8℃表示為:+8℃;零下8℃表示為:—8℃ 3、0表示的意義 。1)0表示“沒(méi)有”,如教室里有0個(gè)人,就是說(shuō)教室里沒(méi)有人; 。2)0是正數(shù)和負(fù)數(shù)的'分界線,0既不是正數(shù),也不是負(fù)數(shù)。如: 。3)0表示一個(gè)確切的量。如:0℃以及有些題目中的基準(zhǔn),比如以海平面為基準(zhǔn),則0米就表示海平面。 有理數(shù) 1、有理數(shù)的概念 。1)正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱(chēng)為整數(shù)(0和正整數(shù)統(tǒng)稱(chēng)為自然數(shù)) 。2)正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)為分?jǐn)?shù) 。3)正整數(shù),0,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù)都可以寫(xiě)成分?jǐn)?shù)的形式,這樣的數(shù)稱(chēng)為有理數(shù)。 理解:只有能化成分?jǐn)?shù)的數(shù)才是有理數(shù)。①π是無(wú)限不循環(huán)小數(shù),不能寫(xiě)成分?jǐn)?shù)形式,不是有理數(shù)。 、谟邢扌(shù)和無(wú)限循環(huán)小數(shù)都可化成分?jǐn)?shù),都是有理數(shù)。③整數(shù)也能化成分?jǐn)?shù),也是有理數(shù) 注意:引入負(fù)數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴(kuò)大了,像—2,—4,—6,—8也是偶數(shù),—1,—3,—5也是奇數(shù)。 平面直角坐標(biāo)系 1.定義:平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。水平的數(shù)軸稱(chēng)為x軸或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸稱(chēng)為y軸或縱軸,取向上方向?yàn)檎较;兩坐?biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。 2.平面上的任意一點(diǎn)都可以用一個(gè)有序數(shù)對(duì)來(lái)表示,記為(a,b),a是橫坐標(biāo),b是縱坐標(biāo)。 3.原點(diǎn)的坐標(biāo)是(0,0); 縱坐標(biāo)相同的點(diǎn)的連線平行于x軸; 橫坐標(biāo)相同的點(diǎn)的連線平行于y軸; x軸上的點(diǎn)的縱坐標(biāo)為0,表示為(x,0); y軸上的點(diǎn)的橫坐標(biāo)為0,表示為(0,y)。 4.建立了平面直角坐標(biāo)系以后,坐標(biāo)平面就被兩條坐標(biāo)軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個(gè)部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標(biāo)軸上的點(diǎn)不屬于任何象限。 5.幾個(gè)象限內(nèi)點(diǎn)的特點(diǎn): 第一象限(+,+);第二象限(—,+); 第三象限(—,—);第四象限(+,—)。 6.(x,y)關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)是(—x,—y); (x,y)關(guān)于x軸對(duì)稱(chēng)的點(diǎn)是(x,—y); (x,y)關(guān)于y軸對(duì)稱(chēng)的點(diǎn)是(—x,y)。 7.點(diǎn)到兩軸的距離:點(diǎn)P(x,y)到x軸的距離是︱y︳; 點(diǎn)P(x,y)到y(tǒng)軸的距離是︱x︳。 8.在第一、三象限角平分線上的點(diǎn)的坐標(biāo)是(m,m); 在第二、四象限叫平分線上的點(diǎn)的坐標(biāo)是(m,—m)。 不等式與不等式組 (1)不等式 用不等號(hào)(<,>,≥,≤,≠)連接的式子叫做不等式。 (2)不等式的性質(zhì) 、賹(duì)稱(chēng)性; 、趥鬟f性; 、奂臃▎握{(diào)性,即同向不等式可加性; ④乘法單調(diào)性; 、萃蛘挡坏仁娇沙诵; 、拚挡坏仁娇沙朔剑 、哒挡坏仁娇砷_(kāi)方; (3)一元一次不等式 用不等號(hào)連接的,含有一個(gè)未知數(shù),并且未知數(shù)的.次數(shù)都是1,未知數(shù)的系數(shù)不為0,左右兩邊為整式的式子叫做一元一次不等式。 (4)一元一次不等式組 一元一次不等式組是由幾個(gè)含有同一個(gè)未知數(shù)的一元一次不等式組成的不等式組。 點(diǎn)、線、面、體知識(shí)點(diǎn) 1.幾何圖形的組成 點(diǎn):線和線相交的地方是點(diǎn),它是幾何圖形中最基本的圖形。 線:面和面相交的地方是線,分為直線和曲線。 面:包圍著體的是面,分為平面和曲面。 體:幾何體也簡(jiǎn)稱(chēng)體。 2.點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。 點(diǎn)、直線、射線和線段的表示 在幾何里,我們常用字母表示圖形。 一個(gè)點(diǎn)可以用一個(gè)大寫(xiě)字母表示。 一條直線可以用一個(gè)小寫(xiě)字母表示。 一條射線可以用端點(diǎn)和射線上另一點(diǎn)來(lái)表示。 一條線段可用它的端點(diǎn)的兩個(gè)大寫(xiě)字母來(lái)表示。 注意: (1)表示點(diǎn)、直線、射線、線段時(shí),都要在字母前面注明點(diǎn)、直線、射線、線段。 (2)直線和射線無(wú)長(zhǎng)度,線段有長(zhǎng)度。 (3)直線無(wú)端點(diǎn),射線有一個(gè)端點(diǎn),線段有兩個(gè)端點(diǎn)。 (4)點(diǎn)和直線的位置關(guān)系有線面兩種: 、冱c(diǎn)在直線上,或者說(shuō)直線經(jīng)過(guò)這個(gè)點(diǎn)。 ②點(diǎn)在直線外,或者說(shuō)直線不經(jīng)過(guò)這個(gè)點(diǎn)。 角的種類(lèi) 銳角:大于0°,小于90°的角叫做銳角。 直角:等于90°的角叫做直角。 鈍角:大于90°而小于180°的角叫做鈍角。 平角:等于180°的角叫做平角。 優(yōu)角:大于180°小于360°叫優(yōu)角。 劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。 周角:等于360°的角叫做周角。 負(fù)角:按照順時(shí)針?lè)较蛐D(zhuǎn)而成的角叫做負(fù)角。 正角:逆時(shí)針旋轉(zhuǎn)的角為正角。 0角:等于零度的角。 余角和補(bǔ)角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補(bǔ)角。等角的余角相等,等角的補(bǔ)角相等。 對(duì)頂角:兩條直線相交后所得的只有一個(gè)公共頂點(diǎn)且兩個(gè)角的兩邊互為反向延長(zhǎng)線,這樣的兩個(gè)角叫做互為對(duì)頂角。兩條直線相交,構(gòu)成兩對(duì)對(duì)頂角;閷(duì)頂角的兩個(gè)角相等。 還有許多種角的關(guān)系,如內(nèi)錯(cuò)角,同位角,同旁?xún)?nèi)角(三線八角中,主要用來(lái)判斷平行)。 一、方程的有關(guān)概念 1.方程:含有未知數(shù)的等式就叫做方程。 2.一元一次方程:只含有一個(gè)未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程。例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。 3.方程的解:使方程中等號(hào)左右兩邊相等的未知數(shù)的值,叫做方程的解。 注:⑴方程的解和解方程是不同的概念,方程的解實(shí)質(zhì)上是求得的結(jié)果,它是一個(gè)數(shù)值(或幾個(gè)數(shù)值),而解方程的含義是指求出方程的解或判斷方程無(wú)解的`過(guò)程。⑵方程的解的檢驗(yàn)方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計(jì)算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論。 二、等式的性質(zhì) 。1)等式兩邊都加上(或減去)同個(gè)數(shù)(或式子),結(jié)果仍相等。用式子形式表示為:如果a=b,那么ac=bc 。2)等式兩邊乘同一個(gè)數(shù),或除以同一個(gè)不為0的數(shù),結(jié)果仍相等,用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c0),那么ac=bc 三、移項(xiàng)法則: 把等式一邊的某項(xiàng)變號(hào)后移到另一邊,叫做移項(xiàng)。 四、去括號(hào)法則 1.括號(hào)外的因數(shù)是正數(shù),去括號(hào)后各項(xiàng)的符號(hào)與原括號(hào)內(nèi)相應(yīng)各項(xiàng)的符號(hào)相同. 2.括號(hào)外的因數(shù)是負(fù)數(shù),去括號(hào)后各項(xiàng)的符號(hào)與原括號(hào)內(nèi)相應(yīng)各項(xiàng)的符號(hào)改變. 五、解方程的一般步驟 1.去分母(方程兩邊同乘各分母的最小公倍數(shù)) 2.去括號(hào)(按去括號(hào)法則和分配律) 3.移項(xiàng)(把含有未知數(shù)的項(xiàng)移到方程一邊,其他項(xiàng)都移到方程的另一邊,移項(xiàng)要變號(hào)) 4.合并(把方程化成ax=b(a0)形式) 5.系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=ba)。 六、用方程思想解決實(shí)際問(wèn)題的一般步驟 1.審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系。 2.設(shè):設(shè)未知數(shù)(可分直接設(shè)法,間接設(shè)法)。 3.列:根據(jù)題意列方程。 4.解:解出所列方程。 5.檢:檢驗(yàn)所求的解是否符合題意。 6.答:寫(xiě)出答案(有單位要注明答案)。 七、有關(guān)常用應(yīng)用類(lèi)型題及各量之間的關(guān)系 1、和、差、倍、分問(wèn)題: 。1)倍數(shù)關(guān)系:通過(guò)關(guān)鍵詞語(yǔ)“是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長(zhǎng)率……”來(lái)體現(xiàn)。 。2)多少關(guān)系:通過(guò)關(guān)鍵詞語(yǔ)“多、少、和、差、不足、剩余……”來(lái)體現(xiàn)。 2、等積變形問(wèn)題: “等積變形”是以形狀改變而體積不變?yōu)榍疤帷3S玫攘筷P(guān)系為: 、傩螤蠲娣e變了,周長(zhǎng)沒(méi)變; 、谠象w積=成品體積。 3、勞力調(diào)配問(wèn)題: 這類(lèi)問(wèn)題要搞清人數(shù)的變化,常見(jiàn)題型有: 。1)既有調(diào)入又有調(diào)出。 (2)只有調(diào)入沒(méi)有調(diào)出,調(diào)入部分變化,其余不變。 。3)只有調(diào)出沒(méi)有調(diào)入,調(diào)出部分變化,其余不變。 4、數(shù)字問(wèn)題 。1)要搞清楚數(shù)的表示方法:一個(gè)三位數(shù)的百位數(shù)字為a,十位數(shù)字是b,個(gè)位數(shù)字為c(其中a、b、c均為整數(shù),且19,09,09)則這個(gè)三位數(shù)表示為:100a+10b+c 。2)數(shù)字問(wèn)題中一些表示:兩個(gè)連續(xù)整數(shù)之間的關(guān)系,較大的比較小的大1;偶數(shù)用2n表示,連續(xù)的偶數(shù)用2n+2或2n2表示;奇數(shù)用2n+1或2n1表示。 5、工程問(wèn)題: 工程問(wèn)題中的三個(gè)量及其關(guān)系為:工作總量=工作效率工作時(shí)間 6、行程問(wèn)題: 。1)行程問(wèn)題中的三個(gè)基本量及其關(guān)系:路程=速度時(shí)間。 。2)基本類(lèi)型有 ①相遇問(wèn)題; 、谧芳皢(wèn)題;常見(jiàn)的還有:相背而行;行船問(wèn)題;環(huán)形跑道問(wèn)題。 7、商品銷(xiāo)售問(wèn)題 有關(guān)關(guān)系式: 商品利潤(rùn)=商品售價(jià)商品進(jìn)價(jià)=商品標(biāo)價(jià)折扣率商品進(jìn)價(jià) 商品利潤(rùn)率=商品利潤(rùn)/商品進(jìn)價(jià) 商品售價(jià)=商品標(biāo)價(jià)折扣率 8、儲(chǔ)蓄問(wèn)題 。1)顧客存入銀行的錢(qián)叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱(chēng)本息和,存入銀行的時(shí)間叫做期數(shù),利息與本金的比叫做利率。利息的20%付利息稅 (2)利息=本金利率期數(shù) 本息和=本金+利息 利息稅=利息稅率(20%) 今天的內(nèi)容就介紹這里了。 一、事件: 1、事件分為必然事件、不可能事件、不確定事件。 2、必然事件:事先就能肯定一定會(huì)發(fā)生的事件。也就是指該事件每次一定發(fā)生,不可能不發(fā)生,即發(fā)生的可能是100%(或1)。 3、不可能事件:事先就能肯定一定不會(huì)發(fā)生的事件。也就是指該事件每次都完全沒(méi)有機(jī)會(huì)發(fā)生,即發(fā)生的可能性為零。 4、不確定事件:事先無(wú)法肯定會(huì)不會(huì)發(fā)生的事件,也就是說(shuō)該事件可能發(fā)生,也可能不發(fā)生,即發(fā)生的`可能性在0和1之間。 二、等可能性:是指幾種事件發(fā)生的可能性相等。 1、概率:是反映事件發(fā)生的可能性的大小的量,它是一個(gè)比例數(shù),一般用P來(lái)表示,P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)/所有可能出現(xiàn)的結(jié)果數(shù)。 2、必然事件發(fā)生的概率為1,記作P(必然事件)=1; 3、不可能事件發(fā)生的概率為0,記作P(不可能事件)=0; 4、不確定事件發(fā)生的概率在0—1之間,記作0 三、幾何概率 1、事件A發(fā)生的概率等于此事件A發(fā)生的可能結(jié)果所組成的面積(用SA表示)除以所有可能結(jié)果組成圖形的面積(用S全表示),所以幾何概率公式可表示為P(A)=SA/S全,這是因?yàn)槭录l(fā)生在每個(gè)單位面積上的概率是相同的。 2、求幾何概率: 。1)首先分析事件所占的面積與總面積的關(guān)系; (2)然后計(jì)算出各部分的面積; 。3)最后代入公式求出幾何概率。 1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。 2.三角形的分類(lèi) 3.三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。 4.高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。 5.中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段叫做三角形的中線。 6.角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。 7.高線、中線、角平分線的意義和做法 8.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。 9.三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180° 推論1直角三角形的兩個(gè)銳角互余; 推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角和; 推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角; 三角形的內(nèi)角和是外角和的一半。 10.三角形的外角:三角形的一條邊與另一條邊延長(zhǎng)線的夾角,叫做三角形的外角。 11.三角形外角的性質(zhì) (1)頂點(diǎn)是三角形的一個(gè)頂點(diǎn),一邊是三角形的一邊,另一邊是三角形的一邊的延長(zhǎng)線; (2)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角和; (3)三角形的一個(gè)外角大于與它不相鄰的任一內(nèi)角; (4)三角形的外角和是360°。 12.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。 13.多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。 14.多邊形的外角:多邊形的.一邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。 15.多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。 16.多邊形的分類(lèi):分為凸多邊形及凹多邊形,凸多邊形又可稱(chēng)為平面多邊形,凹多邊形又稱(chēng)空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。 17.正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。 18.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。 19.公式與性質(zhì) 多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180° 20.多邊形外角和定理: (1)n邊形外角和等于n·180°-(n-2)·180°=360° (2)多邊形的每個(gè)內(nèi)角與它相鄰的外角是鄰補(bǔ)角,所以n邊形內(nèi)角和加外角和等于n·180° 21.多邊形對(duì)角線的條數(shù): (1)從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引(n-3)條對(duì)角線,把多邊形分詞(n-2)個(gè)三角形。 (2)n邊形共有n(n-3)/2條對(duì)角線。 【初一數(shù)學(xué)全部知識(shí)點(diǎn)總結(jié)】相關(guān)文章: 數(shù)學(xué)初一知識(shí)點(diǎn)總結(jié)07-03 初一的數(shù)學(xué)知識(shí)點(diǎn)總結(jié)03-19 小學(xué)五年級(jí)數(shù)學(xué)全部知識(shí)點(diǎn)總結(jié)08-28 初一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)11-22 初一數(shù)學(xué)下冊(cè)的知識(shí)點(diǎn)總結(jié)07-25 初一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)07-11 初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-29 初一數(shù)學(xué)全部知識(shí)點(diǎn)總結(jié) 2
初一數(shù)學(xué)全部知識(shí)點(diǎn)總結(jié) 3
初一數(shù)學(xué)全部知識(shí)點(diǎn)總結(jié) 4
初一數(shù)學(xué)全部知識(shí)點(diǎn)總結(jié) 5
初一數(shù)學(xué)全部知識(shí)點(diǎn)總結(jié) 6