人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性結(jié)論的書面材料,它有助于我們尋找工作和事物發(fā)展的規(guī)律,從而掌握并運(yùn)用這些規(guī)律,因此我們要做好歸納,寫好總結(jié)。但是卻發(fā)現(xiàn)不知道該寫些什么,以下是小編幫大家整理的人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié),歡迎大家分享。
人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)1
函數(shù)的奇偶性
(1)偶函數(shù)
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(—x)=f(x),那么f(x)就叫做偶函數(shù)。
。2)奇函數(shù)
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(—x)=—f(x),那么f(x)就叫做奇函數(shù)。
注意:
1、函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);函數(shù)可能沒(méi)有奇偶性,也可能既是奇函數(shù)又是偶函數(shù)。
2、由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則—x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱)。
3、具有奇偶性的函數(shù)的圖象的特征
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱。
總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:
1、首先確定函數(shù)的'定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱;
2、確定f(—x)與f(x)的關(guān)系;
3、作出相應(yīng)結(jié)論:若f(—x)=f(x)或f(—x)—f(x)=0,則f(x)是偶函數(shù);若f(—x)=—f(x)或f(—x)+f(x)=0,則f(x)是奇函數(shù)。
注意。汉瘮(shù)定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要條件。首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,若不對(duì)稱則函數(shù)是非奇非偶函數(shù)。
若對(duì)稱:
。1)再根據(jù)定義判定;
。2)有時(shí)判定f(—x)=±f(x)比較困難,可考慮根據(jù)是否有f(—x)±f(x)=0或f(x)/f(—x)=±1來(lái)判定;
。3)利用定理,或借助函數(shù)的圖象判定。
人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)2
空間兩條直線只有三種位置關(guān)系:平行、相交、異面
1、按是否共面可分為兩類:
1共面:平行、相交
2異面:
異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線是異面直線。
兩異面直線所成的角:范圍為0°,90°esp.空間向量法
兩異面直線間距離:公垂線段有且只有一條esp.空間向量法
2、若從有無(wú)公共點(diǎn)的角度看可分為兩類:
1有且僅有一個(gè)公共點(diǎn)——相交直線;2沒(méi)有公共點(diǎn)——平行或異面
直線和平面的位置關(guān)系:
直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
、僦本在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn)
、谥本和平面相交——有且只有一個(gè)公共點(diǎn)
直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。
空間向量法找平面的法向量
規(guī)定:a、直線與平面垂直時(shí),所成的角為直角,b、直線與平面平行或在平面內(nèi),所成的角為0°角
由此得直線和平面所成角的取值范圍為[0°,90°]
最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角
三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直
直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說(shuō)直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。
直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。③直線和平面平行——沒(méi)有公共點(diǎn)
直線和平面平行的定義:如果一條直線和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線和這個(gè)平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。
直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。
多面體
1、棱柱
棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每?jī)蓚(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質(zhì)
1側(cè)棱都相等,側(cè)面是平行四邊形
2兩個(gè)底面與平行于底面的截面是全等的多邊形
3過(guò)不相鄰的兩條側(cè)棱的截面對(duì)角面是平行四邊形
2、棱錐
棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐
棱錐的性質(zhì):
1側(cè)棱交于一點(diǎn)。側(cè)面都是三角形
2平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方
3、正棱錐
正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
1各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
3多個(gè)特殊的直角三角形
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的'射影為底面三角形的垂心。
兩個(gè)平面的位置關(guān)系
1兩個(gè)平面互相平行的定義:空間兩平面沒(méi)有公共點(diǎn)
2兩個(gè)平面的位置關(guān)系:
兩個(gè)平面平行-----沒(méi)有公共點(diǎn);兩個(gè)平面相交-----有一條公共直線。
a、平行
兩個(gè)平面平行的判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行。
兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么交線平行。b、相交
二面角
1半平面:平面內(nèi)的一條直線把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。
2二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
3二面角的棱:這一條直線叫做二面角的棱。
4二面角的面:這兩個(gè)半平面叫做二面角的面。
5二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
6直二面角:平面角是直角的二面角叫做直二面角。
兩平面垂直
兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說(shuō)這兩個(gè)平面互相垂直。記為⊥
兩平面垂直的判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直
兩個(gè)平面垂直的性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平
二面角求法:直接法作出平面角、三垂線定理及逆定理、面積射影定理、空間向量之法向量法注意求出的角與所需要求的角之間的等補(bǔ)關(guān)系。
人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)3
集合有關(guān)概念
集合的含義
集合的中元素的三個(gè)特性:
元素的確定性如:世界上的山
元素的.互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合
3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N_N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R
列舉法:{a,b,c……}
描述法:將集合中的元素的公共屬性描述出來(lái),寫在大括號(hào)內(nèi)表示集合的方法。{x(R|x-3>2},{x|x-3>2}
語(yǔ)言描述法:例:{不是直角三角形的三角形}
Venn圖:
4、集合的分類:
有限集含有有限個(gè)元素的集合
無(wú)限集含有無(wú)限個(gè)元素的集合
空集不含任何元素的集合例:{x|x2=-5}
集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:①任何一個(gè)集合是它本身的子集。A(A
、谡孀蛹:如果A(B,且A(B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄(B,B(C,那么A(C
④如果A(B同時(shí)B(A那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集
人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)4
【集合與函數(shù)概念】
一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個(gè)特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合
3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:XKb1
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集:N_N+
整數(shù)集:Z
有理數(shù)集:Q
實(shí)數(shù)集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的'公共屬性描述出來(lái),寫在大括號(hào)內(nèi)表示集合{x?R|x-3>2},{x|x-3>2}
3)語(yǔ)言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個(gè)元素的集合
(2)無(wú)限集含有無(wú)限個(gè)元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:①任何一個(gè)集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
③如果AíB,BíC,那么AíC
、苋绻鸄íB同時(shí)BíA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集個(gè)數(shù):
有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集
三、集合的運(yùn)算
運(yùn)算類型交集并集補(bǔ)集
定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.
由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).
人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)5
一、集合及其表示
1、集合的含義:
“集合”這個(gè)詞首先讓我們想到的是上體育課或者開會(huì)時(shí)老師經(jīng)常喊的“全體集合”。數(shù)學(xué)上的“集合”和這個(gè)意思是一樣的,只不過(guò)一個(gè)是動(dòng)詞一個(gè)是名詞而已。
所以集合的含義是:某些指定的對(duì)象集在一起就成為一個(gè)集合,簡(jiǎn)稱集,其中每一個(gè)對(duì)象叫元素。比如高一二班集合,那么所有高一二班的同學(xué)就構(gòu)成了一個(gè)集合,每一個(gè)同學(xué)就稱為這個(gè)集合的元素。
2、集合的表示
通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。
有一些特殊的集合需要記憶:
非負(fù)整數(shù)集(即自然數(shù)集)N正整數(shù)集N_或N+
整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R
集合的表示方法:列舉法與描述法。
、倭信e法:{a,b,c……}
②描述法:將集合中的元素的公共屬性描述出來(lái)。如{x?R|x—3>2},{x|x—3>2},{(x,y)|y=x2+1}
③語(yǔ)言描述法:例:{不是直角三角形的三角形}
例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}
強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素
A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。
3、集合的三個(gè)特性
。1)無(wú)序性
指集合中的元素排列沒(méi)有順序,如集合A={1,2},集合B={2,1},則集合A=B。
例題:集合A={1,2},B={a,b},若A=B,求a、b的`值。
解:,A=B
注意:該題有兩組解。
。2)互異性
指集合中的元素不能重復(fù),A={2,2}只能表示為{2}
。3)確定性
集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。
二、集合間的基本關(guān)系
1。子集,A包含于B,記為:,有兩種可能
。1)A是B的一部分,(2)A與B是同一集合,A=B,A、B兩集合中元素都相同。
反之:集合A不包含于集合B,記作。
如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三個(gè)集合的關(guān)系可以表示為,B=C。A是C的子集,同時(shí)A也是C的真子集。
2。真子集:如果A?B,且A?B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
3、不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。
4、有n個(gè)元素的集合,含有2n個(gè)子集,2n—1個(gè)真子集,含有2n—2個(gè)非空真子集。如A={1,2,3,4,5},則集合A有25=32個(gè)子集,25—1=31個(gè)真子集,25—2=30個(gè)非空真子集。
例:集合共有個(gè)子集。(13年高考第4題,簡(jiǎn)單)
練習(xí):A={1,2,3},B={1,2,3,4},請(qǐng)問(wèn)A集合有多少個(gè)子集,并寫出子集,B集合有多少個(gè)非空真子集,并將其寫出來(lái)。
解析:
集合A有3個(gè)元素,所以有23=8個(gè)子集。分別為:①不含任何元素的子集Φ;②含有1個(gè)元素的子集{1}{2}{3};③含有兩個(gè)元素的子集{1,2}{1,3}{2,3};④含有三個(gè)元素的子集{1,2,3}。
集合B有4個(gè)元素,所以有24—2=14個(gè)非空真子集。具體的子集自己寫出來(lái)。
此處這么羅嗦主要是為了讓同學(xué)們注意寫的順序,數(shù)學(xué)就是要講究嚴(yán)謹(jǐn)性和邏輯性的。一定要養(yǎng)成自己的邏輯習(xí)慣。如果就是為了提高計(jì)算能力倒不如直接去菜場(chǎng)賣菜算了,絕對(duì)能飛速提高的,那學(xué)數(shù)學(xué)也沒(méi)什么必要了。
三、交集、并集、補(bǔ)集
這個(gè)是高考的重點(diǎn),但是一般題目較簡(jiǎn)單。
1。交集:
由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集。記作A∩B(讀作"A交B"),即A∩B={x|x∈A,且x∈B}。
如集合A={1,2,3},集合B={2,3,4},則A∩B={2,3}。
例:已知集合則(11年高考第1題,簡(jiǎn)單)
練習(xí):
。2014北京)已知集合,則()
答案:C
解析:,所以{0,2}
2、并集
由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作"A并B"),即A∪B={x|x∈A,或x∈B}。
如集合A={1,2,3},集合B={2,3,4},則A∪B={1,2,3,4}。
例:已知集合,則。(12年高考第1題,簡(jiǎn)單)
答案:{1,2,4,6}
3、全集與補(bǔ)集
。1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)
記作:CSA即CSA={x?x?S且x?A}
(2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來(lái)表示。
人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)6
一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個(gè)特性:
(1)元素的確定性,(2)元素的互異性,(3)元素的無(wú)序性,3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
?注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N_N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來(lái),寫在大括號(hào)內(nèi)表示集合的方法。{x?R|x-3>2},{x|x-3>2}
3)語(yǔ)言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個(gè)元素的集合
(2)無(wú)限集含有無(wú)限個(gè)元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:①任何一個(gè)集合是它本身的子集。A?A
、谡孀蛹:如果A?B,且A?B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄?B,B?C,那么A?C
④如果A?B同時(shí)B?A那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集
三、集合的運(yùn)算
運(yùn)算類型交集并集補(bǔ)集
定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.
由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).
設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)
例題:
1.下列四組對(duì)象,能構(gòu)成集合的是()
A某班所有高個(gè)子的學(xué)生B的藝術(shù)家C一切很大的書D倒數(shù)等于它自身的實(shí)數(shù)
2.集合{a,b,c}的真子集共有個(gè)
3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},則M與N的關(guān)系是.
4.設(shè)集合A=,B=,若AB,則的取值范圍是
5.50名學(xué)生做的物理、化學(xué)兩種實(shí)驗(yàn),已知物理實(shí)驗(yàn)做得正確得有40人,化學(xué)實(shí)驗(yàn)做得正確得有31人,兩種實(shí)驗(yàn)都做錯(cuò)得有4人,則這兩種實(shí)驗(yàn)都做對(duì)的有人。
6.用描述法表示圖中陰影部分的點(diǎn)(含邊界上的點(diǎn))組成的集合M=.
7.已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值
二、函數(shù)的有關(guān)概念
1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.
注意:
1.定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域。
求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:
(1)分式的分母不等于零;
(2)偶次方根的被開方數(shù)不小于零;
(3)對(duì)數(shù)式的`真數(shù)必須大于零;
(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.
(5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數(shù)為零底不可以等于零,(7)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義.
相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無(wú)關(guān));②定義域一致(兩點(diǎn)必須同時(shí)具備)
(見課本21頁(yè)相關(guān)例2)
2.值域:先考慮其定義域
(1)觀察法
(2)配方法
(3)代換法
3.函數(shù)圖象知識(shí)歸納
(1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.
(2)畫法
A、描點(diǎn)法:
B、圖象變換法
常用變換方法有三種
1)平移變換
2)伸縮變換
3)對(duì)稱變換
4.區(qū)間的概念
(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間
(2)無(wú)窮區(qū)間
(3)區(qū)間的數(shù)軸表示.
5.映射
一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:AB為從集合A到集合B的一個(gè)映射。記作f:A→B
6.分段函數(shù)
(1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。
(2)各部分的自變量的取值情況.
(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.
補(bǔ)充:復(fù)合函數(shù)
如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復(fù)合函數(shù)。
二.函數(shù)的性質(zhì)
1.函數(shù)的單調(diào)性(局部性質(zhì))
(1)增函數(shù)
設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1
如果對(duì)于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1f(x2),那么就說(shuō)f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.
注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);
(2)圖象的特點(diǎn)
如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說(shuō)函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的
(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法
(A)定義法:
○1任取x1,x2∈D,且x1
○2作差f(x1)-f(x2);
○3變形(通常是因式分解和配方);
○4定號(hào)(即判斷差f(x1)-f(x2)的正負(fù));
○5下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).
(B)圖象法(從圖象上看升降)
(C)復(fù)合函數(shù)的單調(diào)性
復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”
注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.
8.函數(shù)的奇偶性(整體性質(zhì))
(1)偶函數(shù)
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
(2).奇函數(shù)
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).
(3)具有奇偶性的函數(shù)的圖象的特征
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
利用定義判斷函數(shù)奇偶性的步驟:
○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱;
○2確定f(-x)與f(x)的關(guān)系;
○3作出相應(yīng)結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).
(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來(lái)判定;
(3)利用定理,或借助函數(shù)的圖象判定.
9、函數(shù)的解析表達(dá)式
(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.
(2)求函數(shù)的解析式的主要方法有:
1)湊配法
2)待定系數(shù)法
3)換元法
4)消參法
10.函數(shù)(小)值(定義見課本p36頁(yè))
○1利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的(小)值
○2利用圖象求函數(shù)的(小)值
○3利用函數(shù)單調(diào)性的判斷函數(shù)的(小)值:
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有值f(b);
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);
例題:
1.求下列函數(shù)的定義域:
、泞
2.設(shè)函數(shù)的定義域?yàn)椋瑒t函數(shù)的定義域?yàn)開_
3.若函數(shù)的定義域?yàn),則函數(shù)的定義域是
4.函數(shù),若,則=
6.已知函數(shù),求函數(shù),的解析式
7.已知函數(shù)滿足,則=。
8.設(shè)是R上的奇函數(shù),且當(dāng)時(shí),,則當(dāng)時(shí)=
在R上的解析式為
9.求下列函數(shù)的單調(diào)區(qū)間:
10.判斷函數(shù)的單調(diào)性并證明你的結(jié)論.
11.設(shè)函數(shù)判斷它的奇偶性并且求證
人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)7
1.函數(shù)知識(shí):基本初等函數(shù)性質(zhì)的考查,以導(dǎo)數(shù)知識(shí)為背景的函數(shù)問(wèn)題;以向量知識(shí)為背景的函數(shù)問(wèn)題;從具體函數(shù)的考查轉(zhuǎn)向抽象函數(shù)考查;從重結(jié)果考查轉(zhuǎn)向重過(guò)程考查;從熟悉情景的考查轉(zhuǎn)向新穎情景的考查。
2.向量知識(shí):向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運(yùn)算律;考查平面向量的坐標(biāo)運(yùn)算;考查平面向量與幾何、三角、代數(shù)等學(xué)科的'綜合性問(wèn)題。
3.不等式知識(shí):突出工具性,淡化獨(dú)立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規(guī)劃問(wèn)題為必考內(nèi)容,不等式的性質(zhì)與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結(jié)合起來(lái),考查不等式的性質(zhì)、最值、函數(shù)的單調(diào)性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識(shí)為背景,在知識(shí)網(wǎng)絡(luò)的交匯處命題,綜合性強(qiáng),能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起。考查學(xué)生的等價(jià)轉(zhuǎn)化能力和分類討論能力;以當(dāng)前經(jīng)濟(jì)、社會(huì)生產(chǎn)、生活為背景與不等式綜合的應(yīng)用題仍將是高考的熱點(diǎn),主要考查學(xué)生閱讀理解能力以及分析問(wèn)題、解決問(wèn)題的能力。
4.立體幾何知識(shí):2016年已經(jīng)變得簡(jiǎn)單,2017年難度依然不大,基本的三視圖的考查難點(diǎn)不大,以及球與幾何體的組合體,涉及切,接的問(wèn)題,線面垂直、平行位置關(guān)系的考查,已經(jīng)線面角,面面角和幾何體的體積計(jì)算等問(wèn)題,都是重點(diǎn)考查內(nèi)容。
5.解析幾何知識(shí):小題主要涉及圓錐曲線方程,和直線與圓的位置關(guān)系,以及圓錐曲線幾何性質(zhì)的考查,極坐標(biāo)下的解析幾何知識(shí),解答題主要考查直線和圓的知識(shí),直線與圓錐曲線的知識(shí),涉及圓錐曲線方程,直線與圓錐曲線方程聯(lián)立,定點(diǎn),定值,范圍的考查,考試的難度降低。
6.導(dǎo)數(shù)知識(shí):導(dǎo)數(shù)的考查還是以理科19題,文科20題的形式給出,從常見函數(shù)入手,導(dǎo)數(shù)工具作用(切線和單調(diào)性)的考查,綜合性強(qiáng),能力要求高;往往與公式、導(dǎo)數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉(zhuǎn)化與化歸能力,但今年的難點(diǎn)整體偏低。
7.開放型創(chuàng)新題:答案不,或是邏輯推理題,以及解答題中的開放型試題的考查,都是重點(diǎn),理科13,文科14題。
人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)8
一、集合
一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個(gè)特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合
3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
?注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N_N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來(lái),寫在大括號(hào)內(nèi)表示集合的方法。{x?R|x-3>2},{x|x-3>2}
3)語(yǔ)言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個(gè)元素的集合
(2)無(wú)限集含有無(wú)限個(gè)元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:①任何一個(gè)集合是它本身的子集。A?A
、谡孀蛹:如果A?B,且A?B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄?B,B?C,那么A?C
、苋绻鸄?B同時(shí)B?A那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
?有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集
二、函數(shù)
1、函數(shù)定義域、值域求法綜合
2.、函數(shù)奇偶性與單調(diào)性問(wèn)題的解題策略
3、恒成立問(wèn)題的求解策略
4、反函數(shù)的幾種題型及方法
5、二次函數(shù)根的問(wèn)題——一題多解
&指數(shù)函數(shù)y=a^x
a^a_^b=a^a+b(a>0,a、b屬于Q)
(a^a)^b=a^ab(a>0,a、b屬于Q)
(ab)^a=a^a_^a(a>0,a、b屬于Q)
指數(shù)函數(shù)對(duì)稱規(guī)律:
1、函數(shù)y=a^x與y=a^-x關(guān)于y軸對(duì)稱
2、函數(shù)y=a^x與y=-a^x關(guān)于x軸對(duì)稱
3、函數(shù)y=a^x與y=-a^-x關(guān)于坐標(biāo)原點(diǎn)對(duì)稱
&對(duì)數(shù)函數(shù)y=loga^x
如果,且,那么:
○1?+;
○2-;
○3.
注意:換底公式
(,且;,且;).
冪函數(shù)y=x^a(a屬于R)
1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù).
2、冪函數(shù)性質(zhì)歸納.
(1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過(guò)點(diǎn)(1,1);
(2)時(shí),冪函數(shù)的圖象通過(guò)原點(diǎn),并且在區(qū)間上是增函數(shù).特別地,當(dāng)時(shí),冪函數(shù)的圖象下凸;當(dāng)時(shí),冪函數(shù)的圖象上凸;
(3)時(shí),冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當(dāng)從右邊趨向原點(diǎn)時(shí),圖象在軸右方無(wú)限地逼近軸正半軸,當(dāng)趨于時(shí),圖象在軸上方無(wú)限地逼近軸正半軸.
方程的.根與函數(shù)的零點(diǎn)
1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。
即:方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).
3、函數(shù)零點(diǎn)的求法:
○1(代數(shù)法)求方程的實(shí)數(shù)根;
○2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn).
4、二次函數(shù)的零點(diǎn):
二次函數(shù).
(1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).
(2)△=0,方程有兩相等實(shí)根,二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).
(3)△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).
三、平面向量
向量:既有大小,又有方向的量.
數(shù)量:只有大小,沒(méi)有方向的量.
有向線段的三要素:起點(diǎn)、方向、長(zhǎng)度.
零向量:長(zhǎng)度為的向量.
單位向量:長(zhǎng)度等于個(gè)單位的向量.
相等向量:長(zhǎng)度相等且方向相同的向量
&向量的運(yùn)算
加法運(yùn)算
AB+BC=AC,這種計(jì)算法則叫做向量加法的三角形法則。
已知兩個(gè)從同一點(diǎn)O出發(fā)的兩個(gè)向量OA、OB,以O(shè)A、OB為鄰邊作平行四邊形OACB,則以O(shè)為起點(diǎn)的對(duì)角線OC就是向量OA、OB的和,這種計(jì)算法則叫做向量加法的平行四邊形法則。
對(duì)于零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法滿足所有的加法運(yùn)算定律。
減法運(yùn)算
與a長(zhǎng)度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
數(shù)乘運(yùn)算
實(shí)數(shù)λ與向量a的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘,記作λa|λa|=|λ||a|,當(dāng)λ>0時(shí),λa的方向和a的方向相同,當(dāng)λ<0時(shí),λa的方向和a的方向相反,當(dāng)λ=0時(shí),λa=0。
設(shè)λ、μ是實(shí)數(shù),那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。
向量的加法運(yùn)算、減法運(yùn)算、數(shù)乘運(yùn)算統(tǒng)稱線性運(yùn)算。
向量的數(shù)量積
已知兩個(gè)非零向量a、b,那么|a||b|cosθ叫做a與b的數(shù)量積或內(nèi)積,記作a?b,θ是a與b的夾角|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數(shù)量積為0。
a?b的幾何意義:數(shù)量積a?b等于a的長(zhǎng)度|a|與b在a的方向上的投影|b|cosθ的乘積。
兩個(gè)向量的數(shù)量積等于它們對(duì)應(yīng)坐標(biāo)的乘積的和。
四、三角函數(shù)
1、善于用“1“巧解題
2、三角問(wèn)題的非三角化解題策略
3、三角函數(shù)有界性求最值解題方法
4、三角函數(shù)向量綜合題例析
5、三角函數(shù)中的數(shù)學(xué)思想方法
【高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)12-15
高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)08-30
高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)08-01
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)07-18
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)05-17
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)01-03
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)01-12
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)03-08