1. <rp id="zsypk"></rp>

      2. 函數知識點總結

        時間:2024-08-25 14:12:38 知識點總結 我要投稿

        函數知識點總結(匯總15篇)

          總結是事后對某一時期、某一項目或某些工作進行回顧和分析,從而做出帶有規(guī)律性的結論,它可以促使我們思考,為此我們要做好回顧,寫好總結。那么總結有什么格式呢?下面是小編幫大家整理的函數知識點總結,僅供參考,希望能夠幫助到大家。

        函數知識點總結(匯總15篇)

        函數知識點總結1

          1.常量和變量

          在某變化過程中可以取不同數值的量,叫做變量.在某變化過程中保持同一數值的量或數,叫常量或常數.

          2.函數

          設在一個變化過程中有兩個變量x與y,如果對于x在某一范圍的每一個值,y都有唯一的值與它對應,那么就說x是自變量,y是x的函數.

          3.自變量的取值范圍

          (1)整式:自變量取一切實數.(2)分式:分母不為零.

          (3)偶次方根:被開方數為非負數.

          (4)零指數與負整數指數冪:底數不為零.

          4.函數值

          對于自變量在取值范圍內的一個確定的值,如當x=a時,函數有唯一確定的對應值,這個對應值,叫做x=a時的函數值.

          5.函數的表示法

          (1)解析法;(2)列表法;(3)圖象法.

          6.函數的圖象

          把自變量x的一個值和函數y的對應值分別作為點的橫坐標和縱坐標,可以在平面直角坐標系內描出一個點,所有這些點的集合,叫做這個函數的圖象.由函數解析式畫函數圖象的步驟:

          (1)寫出函數解析式及自變量的取值范圍;

          (2)列表:列表給出自變量與函數的一些對應值;

          (3)描點:以表中對應值為坐標,在坐標平面內描出相應的點;

          (4)連線:用平滑曲線,按照自變量由小到大的順序,把所描各點連接起來.

          7.一次函數

          (1)一次函數

          如果y=kx+b(k、b是常數,k≠0),那么y叫做x的一次函數.

          特別地,當b=0時,一次函數y=kx+b成為y=kx(k是常數,k≠0),這時,y叫做x的正比例函數.

          (2)一次函數的圖象

          一次函數y=kx+b的圖象是一條經過(0,b)點和點的直線.特別地,正比例函數圖象是一條經過原點的直線.需要說明的是,在平面直角坐標系中,“直線”并不等價于“一次函數y=kx+b(k≠0)的圖象”,因為還有直線y=m(此時k=0)和直線x=n(此時k不存在),它們不是一次函數圖象.

          (3)一次函數的性質

          當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減。本y=kx+b與y軸的交點坐標為(0,b),與x軸的交點坐標為.

          (4)用函數觀點看方程(組)與不等式

         、偃魏我辉淮畏匠潭伎梢赞D化為ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:一次函數y=kx+b(k,b為常數,k≠0),當y=0時,求相應的自變量的值,從圖象上看,相當于已知直線y=kx+b,確定它與x軸交點的橫坐標.

         、诙淮畏匠探M對應兩個一次函數,于是也對應兩條直線,從“數”的角度看,解方程組相當于考慮自變量為何值時兩個函數值相等,以及這兩個函數值是何值;從“形”的角度看,解方程組相當于確定兩條直線的.交點的坐標.

          ③任何一元一次不等式都可以轉化ax+b>0或ax+b<0(a、b為常數,a≠0)的形式,解一元一次不等式可以看做:當一次函數值大于0或小于0時,求自變量相應的取值范圍.

          8.反比例函數(1)反比例函數

          (1)如果(k是常數,k≠0),那么y叫做x的反比例函數.

          (2)反比例函數的圖象反比例函數的圖象是雙曲線.

          (3)反比例函數的性質

          ①當k>0時,圖象的兩個分支分別在第一、三象限內,在各自的象限內,y隨x的增大而減小.

         、诋攌<0時,圖象的兩個分支分別在第二、四象限內,在各自的象限內,y隨x的增大而增大.

          ③反比例函數圖象關于直線y=±x對稱,關于原點對稱.

          (4)k的兩種求法

          ①若點(x0,y0)在雙曲線上,則k=x0y0.②k的幾何意義:

          若雙曲線上任一點A(x,y),AB⊥x軸于B,則S△AOB

          (5)正比例函數和反比例函數的交點問題

          若正比例函數y=k1x(k1≠0),反比例函數,則當k1k2<0時,兩函數圖象無交點;

          當k1k2>0時,兩函數圖象有兩個交點,坐標分別為由此可知,正反比例函數的圖象若有交點,兩交點一定關于原點對稱.

          1.二次函數

          如果y=ax2+bx+c(a,b,c為常數,a≠0),那么y叫做x的二次函數.

          幾種特殊的二次函數:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h(huán))2(a≠0).

          2.二次函數的圖象

          二次函數y=ax2+bx+c的圖象是對稱軸平行于y軸的一條拋物線.由y=ax2(a≠0)的圖象,通過平移可得到y(tǒng)=a(x-h(huán))2+k(a≠0)的圖象.

          3.二次函數的性質

          二次函數y=ax2+bx+c的性質對應在它的圖象上,有如下性質:

          (1)拋物線y=ax2+bx+c的頂點是,對稱軸是直線,頂點必在對稱軸上;

          (2)若a>0,拋物線y=ax2+bx+c的開口向上,因此,對于拋物線上的任意一點(x,y),當x<時,y隨x的增大而減小;當x>時,y隨x的增大而增大;當x=,y有最小值;若a<0,拋物線y=ax2+bx+c的開口向下,因此,對于拋物線上的任意一點(x,y),當x<,y隨x的增大而增大;當時,y隨x的增大而減。划攛=時,y有最大值;

          (3)拋物線y=ax2+bx+c與y軸的交點為(0,c);

          (4)在二次函數y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點的情況:

         。0時,拋物線y=ax2+bx+c與x軸沒有公共點.=0時,拋物線y=ax2+bx+c與x軸只有一個公共點,即為此拋物線的頂點;當=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個不同的公共點,它們的坐標分別是和,這兩點的距離為;當當4.拋物線的平移

          拋物線y=a(x-h(huán))2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h(huán))2+k.平移的方向、距離要根據h、k的值來決定.

        函數知識點總結2

          課題

          3.5正比例函數、反比例函數、一次函數和二次函數

          教學目標

          1、掌握正(反)比例函數、一次函數和二次函數的概念及其圖形和性質2、會用待定系數法確定函數的解析式

          教學重點

          掌握正(反)比例函數、一次函數和二次函數的概念及其圖形和性質

          教學難點

          掌握正(反)比例函數、一次函數和二次函數的概念及其圖形和性質

          教學方法

          講練結合法

          教學過程

          (I)知識要點(見下表:)

          第三章第29頁函數名稱解析式圖像正比例函數ykx(k0)0x反比例函數一次函數ykxb(k0)0x二次函數yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過點(0,0)及(1,k)的直線雙曲線,x軸、y軸是它的漸近線與直線ykx平行且過點(0,b)的直線拋物線定義域RxxR且xoyyR且yoRR4acb2a0時,y,4aR值域R4acb2a0時,y,4aba0時,在-,上為增2a函數,在,-單調性k0時,在,0,k0時為增函數0,上為減函數k0時,為增函數b上為減函數2ak0時為減函數k0時,在,0,k0時,為減函數0,上為增函數ba0時,在-,上為減2a函數,在,-b上為增函數2a奇偶性奇函數奇函數b=0時奇函數b=0時偶函數a0且x-ymin最值無無無b時,2a24acb4ab時,2a24acb4aa0且x-ymax

          第三章第30頁b24acb2注:二次函數yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對稱軸x,頂點(,)

          2a2a4a2拋物線與x軸交點坐標(m,0),(n,0)(II)例題講解

          例1、求滿足下列條件的二次函數的解析式:(1)拋物線過點A(1,1),B(2,2),C(4,2)(2)拋物線的頂點為P(1,5)且過點Q(3,3)

         。3)拋物線對稱軸是x2,它在x軸上截出的線段AB長為2且拋物線過點(1,7)。2,

          解:(1)設yax2bxc(a0),將A、B、C三點坐標分別代入,可得方程組為

          abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設二次函數為ya(x1)25,將Q點坐標代入,即a(31)253,得

          a2,故y2(x1)252x24x3

         。3)∵拋物線對稱軸為x2;

          ∴拋物線與x軸的'兩個交點A、B應關于x2對稱;∴由題設條件可得兩個交點坐標分別為A(2∴可設函數解析式為:ya(x2代入方程可得a1

          ∴所求二次函數為yx24x2,

          2,0)、B(222,0)

          2)(x22)a(x2)22a,將(1,7)

          5),例2:二次函數的圖像過點(0,8),(1,(4,0)

         。1)求函數圖像的頂點坐標、對稱軸、最值及單調區(qū)間(2)當x取何值時,①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4

          例3:求函數f(x)x2x1,x[1,1]的最值及相應的x值

          113x1(x)2,知函數的圖像開口向上,對稱軸為x

          224111]上是增函數!嘁李}設條件可得f(x)在[1,]上是減函數,在[,22131]時,函數取得最小值,且ymin∴當x[1,24131又∵11

        函數知識點總結3

          一、函數的定義域的常用求法:

          1、分式的分母不等于零;

          2、偶次方根的被開方數大于等于零;

          3、對數的真數大于零;

          4、指數函數和對數函數的.底數大于零且不等于1;

          5、三角函數正切函數y=tanx中x≠kπ+π/2;

          6、如果函數是由實際意義確定的解析式,應依據自變量的實際意義確定其取值范圍。

          二、函數的解析式的常用求法:

          1、定義法;2、換元法;3、待定系數法;4、函數方程法;5、參數法;6、配方法

          三、函數的值域的常用求法:

          1、換元法;2、配方法;3、判別式法;4、幾何法;5、不等式法;6、單調性法;7、直接法

          四、函數的最值的常用求法:

          1、配方法;2、換元法;3、不等式法;4、幾何法;5、單調性法

          五、函數單調性的常用結論:

          1、若f(x),g(x)均為某區(qū)間上的增(減)函數,則f(x)+g(x)在這個區(qū)間上也為增(減)函數

          2、若f(x)為增(減)函數,則-f(x)為減(增)函數

          3、若f(x)與g(x)的單調性相同,則f[g(x)]是增函數;若f(x)與g(x)的單調性不同,則f[g(x)]是減函數。

          4、奇函數在對稱區(qū)間上的單調性相同,偶函數在對稱區(qū)間上的單調性相反。

          5、常用函數的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數圖象。

          六、函數奇偶性的常用結論:

          1、如果一個奇函數在x=0處有定義,則f(0)=0,如果一個函數y=f(x)既是奇函數又是偶函數,則f(x)=0(反之不成立)

          2、兩個奇(偶)函數之和(差)為奇(偶)函數;之積(商)為偶函數。

          3、一個奇函數與一個偶函數的積(商)為奇函數。

          4、兩個函數y=f(u)和u=g(x)復合而成的函數,只要其中有一個是偶函數,那么該復合函數就是偶函數;當兩個函數都是奇函數時,該復合函數是奇函數。

          5、若函數f(x)的定義域關于原點對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點是:右端為一個奇函數和一個偶函數的和。

        函數知識點總結4

          奇函數和偶函數的定義

          奇函數:如果函數f(x)的`定義域中任意x有f(—x)=—f(x),則函數f(x)稱為奇函數。

          偶數函數:如果函數f(x)的定義域中任意x有f(—x)=f(x),則函數f(x)稱為偶數函數。

          性質

          奇函數性質:

          1、圖象關于原點對稱

          2、滿足f(—x)= — f(x)

          3、關于原點對稱的區(qū)間上單調性一致

          4、如果奇函數在x=0上有定義,那么有f(0)=0

          5、定義域關于原點對稱(奇偶函數共有的)

          偶函數性質:

          1、圖象關于y軸對稱

          2、滿足f(—x)= f(x)

          3、關于原點對稱的區(qū)間上單調性相反

          4、如果一個函數既是奇函數有是偶函數,那么有f(x)=0

          5、定義域關于原點對稱(奇偶函數共有的)

          常用運算方法

          奇函數±奇函數=奇函數

          偶函數±偶函數=偶函數

          奇函數×奇函數=偶函數

          偶函數×偶函數=偶函數

          奇函數×偶函數=奇函數

          證明方法

          設f(x),g(x)為奇函數,t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=—f(x)+(—g(x))=—t(x),所以奇函數加奇函數還是奇函數;

          若f(x),g(x)為偶函數,t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=f(x)+g(x)=t(x),所以偶函數加偶函數還是偶函數。

        函數知識點總結5

          總體上必須清楚的:

          1)程序結構是三種:順序結構、選擇結構(分支結構)、循環(huán)結構。

          2)讀程序都要從main()入口,然后從最上面順序往下讀(碰到循環(huán)做循環(huán),碰到選擇做選擇),有且只有一個main函數。

          3)計算機的數據在電腦中保存是以二進制的形式.數據存放的位置就是他的地址.

          4)bit是位是指為0或者1。 byte是指字節(jié),一個字節(jié)=八個位.

          概念?嫉降模

          1、編譯預處理不是C語言的一部分,不占運行時間,不要加分號。C語言編譯的程序稱為源程序,它以ASCII數值存放在文本文件中。

          2、define PI 3.1415926;這個寫法是錯誤的,一定不能出現(xiàn)分號。 -

          3、每個C語言程序中main函數是有且只有一個。

          4、在函數中不可以再定義函數。

          5、算法:可以沒有輸入,但是一定要有輸出。

          6、break可用于循環(huán)結構和switch語句。

          7、逗號運算符的級別最低,賦值的級別倒數第二。

          第一章C語言的基礎知識

          第一節(jié)、對C語言的基礎認識

          1、C語言編寫的程序稱為源程序,又稱為編譯單位。

          2、C語言書寫格式是自由的,每行可以寫多個語句,可以寫多行。

          3、一個C語言程序有且只有一個main函數,是程序運行的起點。

          第二節(jié)、熟悉vc++

          1、VC是軟件,用來運行寫的C語言程序。

          2、每個C語言程序寫完后,都是先編譯,后鏈接,最后運行。(.c—.obj—.exe)這個過程中注意.c和.obj文件時無法運行的,只有.exe文件才可以運行。(常考。

          第三節(jié)、標識符

          1、標識符(必考內容):

          合法的要求是由字母,數字,下劃線組成。有其它元素就錯了。

          并且第一個必須為字母或則是下劃線。第一個為數字就錯了

          2、標識符分為關鍵字、預定義標識符、用戶標識符。

          關鍵字:不可以作為用戶標識符號。main define scanf printf都不是關鍵字。迷惑你的地方If是可以做為用戶標識符。因為If中的第一個字母大寫了,所以不是關鍵字。

          預定義標識符:背誦define scanf printf include。記住預定義標識符可以做為用戶標識符。

          用戶標識符:基本上每年都考,詳細請見書上習題。

          第四節(jié):進制的轉換

          十進制轉換成二進制、八進制、十六進制。

          二進制、八進制、十六進制轉換成十進制。

          第五節(jié):整數與實數

          1)C語言只有八、十、十六進制,沒有二進制。但是運行時候,所有的進制都要轉換成二進制來進行處理。(考過兩次)

          a、C語言中的八進制規(guī)定要以0開頭。018的數值是非法的,八進制是沒有8的,逢8進1。

          b、C語言中的十六進制規(guī)定要以0x開頭。

          2)小數的合法寫法:C語言小數點兩邊有一個是零的話,可以不用寫。

          1.0在C語言中可寫成1.

          0.1在C語言中可以寫成.1。

          3)實型數據的合法形式:

          a、2.333e-1就是合法的,且數據是2.333×10-1。

          b、考試口訣:e前e后必有數,e后必為整數。請結合書上的例子。

          4)整型一般是4個字節(jié),字符型是1個字節(jié),雙精度一般是8個字節(jié):

          long int x;表示x是長整型。

          unsigned int x;表示x是無符號整型。

          第六、七節(jié):算術表達式和賦值表達式

          核心:表達式一定有數值!

          1、算術表達式:+,-,*,/,%

          考試一定要注意:“/”兩邊都是整型的話,結果就是一個整型。 3/2的結果就是1.

          “/”如果有一邊是小數,那么結果就是小數。 3/2.0的結果就是0.5

          “%”符號請一定要注意是余數,考試最容易算成了除號。)%符號兩邊要求是整數。不是整數就錯了。[注意!!!]

          2、賦值表達式:表達式數值是最左邊的數值,a=b=5;該表達式為5,常量不可以賦值。

          1、int x=y=10:錯啦,定義時,不可以連續(xù)賦值。

          2、int x,y;

          x=y=10;對滴,定義完成后,可以連續(xù)賦值。

          3、賦值的左邊只能是一個變量。

          4、int x=7.7;對滴,x就是7

          5、float y=7;對滴,x就是7.0

          3、復合的賦值表達式:

          int a=2;

          a*=2+3;運行完成后,a的值是12。

          一定要注意,首先要在2+3的上面打上括號。變成(2+3)再運算。

          4、自加表達式:

          自加、自減表達式:假設a=5,++a(是為6),a++(為5);

          運行的機理:++a是先把變量的數值加上1,然后把得到的數值放到變量a中,然后再用這個++a表達式的數值為6,而a++是先用該表達式的數值為5,然后再把a的數值加上1為6,

          再放到變量a中。進行了++a和a++后在下面的程序中再用到a的話都是變量a中的6了。

          考試口訣:++在前先加后用,++在后先用后加。

          5、逗號表達式:

          優(yōu)先級別最低。表達式的數值逗號最右邊的那個表達式的數值。

          (2,3,4)的表達式的數值就是4。

          z=(2,3,4)(整個是賦值表達式)這個時候z的值為4。(有點難度哦!)

          z= 2,3,4(整個是逗號表達式)這個時候z的.值為2。

          補充:

          1、空語句不可以隨意執(zhí)行,會導致邏輯錯誤。

          2、注釋是最近幾年考試的重點,注釋不是C語言,不占運行時間,沒有分號。不可以嵌套!

          3、強制類型轉換:

          一定是(int)a不是int(a),注意類型上一定有括號的。

          注意(int)(a+b)和(int)a+b的區(qū)別。前是把a+b轉型,后是把a轉型再加b。

          4、三種取整丟小數的情況:

         。、int a =1.6;

          2、(int)a;

          3、1/2;3/2;

          第八節(jié)、字符

          1)字符數據的合法形式::

          ‘1’是字符占一個字節(jié),”1”是字符串占兩個字節(jié)(含有一個結束符號)。

          ‘0’的ASCII數值表示為48,’a’的ASCII數值是97,’A’的ASCII數值是65。

          一般考試表示單個字符錯誤的形式:’65’ “1”

          字符是可以進行算術運算的,記。骸0’-0=48

          大寫字母和小寫字母轉換的方法:‘A’+32=’a’相互之間一般是相差32。

          2)轉義字符:

          轉義字符分為一般轉義字符、八進制轉義字符、十六進制轉義字符。

          一般轉義字符:背誦/0、、 ’、 ”、 。

          八進制轉義字符:‘141’是合法的,前導的0是不能寫的。

          十六進制轉義字符:’x6d’才是合法的,前導的0不能寫,并且x是小寫。

          3、字符型和整數是近親:兩個具有很大的相似之處

          char a = 65 ;

          printf(“%c”, a);得到的輸出結果:a

          printf(“%d”, a);得到的輸出結果:65

          第九節(jié)、位運算

          1)位運算的考查:會有一到二題考試題目。

          總的處理方法:幾乎所有的位運算的題目都要按這個流程來處理(先把十進制變成二進制再變成十進制)。

          例1:char a = 6, b;

          b = a<<2;這種題目的計算是先要把a的十進制6化成二進制,再做位運算。

          例2:一定要記住,異或的位運算符號” ^ ”。0異或1得到1。

          0異或0得到0。兩個女的生不出來。

          考試記憶方法:一男(1)一女(0)才可以生個小孩(1)。

          例3:在沒有舍去數據的時候,<<左移一位表示乘以2;>>右移一位表示除以2。

        函數知識點總結6

          首先,把主要精力放在基礎知識、基本技能、基本方法這三個方面上、因為每次考試占絕大部分的是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納,調整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁情緒、特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能把我打垮的自豪感、

          在考試前要做好準備,練練常規(guī)題,把自己的'思路展開,切忌考前在保證正確率的前提下提高解題速度、對于一些容易的基礎題,要有十二分的把握拿滿分;對于一些難題,也要盡量拿分,考試中要嘗試得分,使自己的水平正常甚至超常發(fā)揮、

          要想學好初中數學,多做題目是難免的,熟悉掌握各種題型的解題思路、剛開始要以基礎題目入手,以課上的題目為準,提高自己的分析解決能力,掌握一般的解題思路、對于一些易錯題,可備有錯題集,寫出自己的解題思路、正確的解題過程,兩者一起比較找出自己的錯誤所在,以便及時更正、在平時養(yǎng)成良好的解題習慣、讓自己的精力高度集中,使大腦興奮思維敏捷,能夠進入最佳狀態(tài),在考試中能運用自如、實踐證明:越到關鍵的時候,你所表現(xiàn)的解題習慣與平時解題無異、如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習慣是非常重要的、

          初中數學解題方法

          第一點:卓絕點:熟悉數學習題中常設計的內容,定義、公式、原理等等

          第二點:做題有步驟,先易后難

          初中數學做題技巧有一點,那就是先易后難、正所謂“一屋不掃何以掃天下?”,如果同學們連那些簡單容易的數學題目都解答不出來又怎么能夠解答那些疑難的數學題目呢?先易后難的做數學題目不僅能夠增加同學們做數學題的信心,還能夠讓同學享受解答數學題的那個過程、

          第三點:認真做好歸納總結

        函數知識點總結7

          1.函數的定義

          函數是高考數學中的重點內容,學習函數需要首先掌握函數的各個知識點,然后運用函數的各種性質來解決具體的問題。

          設A、B是非空的數集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A-B為從集合A到集合B的一個函數,記作y=f(x),xA

          2.函數的定義域

          函數的定義域分為自然定義域和實際定義域兩種,如果給定的函數的解析式(不注明定義域),其定義域應指的是使該解析式有意義的自變量的取值范圍(稱為自然定義域),如果函數是有實際問題確定的,這時應根據自變量的實際意義來確定,函數的值域是由全體函數值組成的集合。

          3.求解析式

          求函數的解析式一般有三種種情況:

         。1)根據實際問題建立函數關系式,這種情況需引入合適的變量,根據數學的'有關知識找出函數關系式。

         。2)有時體中給出函數特征,求函數的解析式,可用待定系數法。

          (3)換元法求解析式,f[h(x)]=g(x)求f(x)的問題,往往可設h(x)=t,從中解出x,代入g(x)進行換元來解。掌握求函數解析式的前提是,需要對各種函數的性質了解且熟悉。

          目前我們已經學習了常數函數、指數與指數函數、對數與對數函數、冪函數、三角函數、反比例函數、二次函數以及由以上幾種函數加減乘除,或者復合的一些相對較復雜的函數,但是這種函數也是初等函數。

        函數知識點總結8

          一次函數y=kx+b的性質:(一次函數的圖像是一條直線)

          1、一次函數ykxb(k0)經過(0,與y軸)點,(,0)點.與x軸交點坐標是(,0)交點坐標是(0,)。

          2、k的正、負決定直線的.傾斜方向

          當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。

          3、|k|的大小決定直線的傾斜程度

          |k|越大,直線與x軸相交的銳角度數越大(直線陡);|k|越小,直線與x軸相交的銳角度數越。ㄖ本緩);

          4、b的正負決定直線與y軸交點的位置當b>0時,直線與y軸交于y軸正半軸上;當b<0時,直線與y軸交于y軸負半軸上;當b=0時,直線經過原點。

          5、k、b的符號不同,直線經過的象限也不同。

          當k>0時,直線經過一、三象限;當k<0時,圖像經過二、四象限。進一步:

          當k>0,b>0時,直線經過一、二、三象限(不經過第四象限)當k>0,b<0時,直線經過一、三、四象限(不經過第二象限)當k>0,b=0時,直線經過一、三、象限和原點

          當k<0,b>0時,直線經過一、二、四象限(不經過第三象限)當k<0,b<0時,直線經過二、三、四象限(不經過第一象限)當k<0,b=0時,直線經過二、四、象限和原點

          反過來:不經過第一象限指:經過二、三、四象限或經過二四象限和原點。其它類似。

        函數知識點總結9

          一次函數的圖象與性質的口訣:

          一次函數是直線,圖象經過三象限;

          正比例函數更簡單,經過原點一直線;

          兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與y軸來相見,k為正來右上斜,x增減y增減;

          k為負來左下展,變化規(guī)律正相反;

          k的絕對值越大,線離橫軸就越遠。

          拓展閱讀:一次函數的解題方法

          理解一次函數和其它知識的聯(lián)系

          一次函數和代數式以及方程有著密不可分的聯(lián)系。如一次函數和正比例函數仍然是函數,同時,等號的兩邊又都是代數式。需要注意的是,與一般代數式有很大區(qū)別。首先,一次函數和正比例函數都只能存在兩個變量,而代數式可以是多個變量;其次,一次函數中的變量指數只能是1,而代數式中變量指數還可以是1以外的數。另外,一次函數解析式也可以理解為二元一次方程。

          掌握一次函數的解析式的特征

          一次函數解析式的結構特征:kx+b是關于x的一次二項式,其中常數b可以是任意實數,一次項系數k必須是非零數,k≠0,因為當k = 0時,y = b(b是常數),由于沒有一次項,這樣的函數不是一次函數;而當b = 0,k≠0,y = kx既是正比例函數,也是一次函數。

          應用一次函數解決實際問題

          1、分清哪些是已知量,哪些是未知量,尤其要弄清哪兩種量是相關聯(lián)的量,且其中一種量因另一種量的變化而變化;

          2、找出具有相關聯(lián)的兩種量的等量關系之后,明確哪種量是另一種量的函數;

          3、在實際問題中,一般存在著三種量,如距離、時間、速度等等,在這三種量中,當且僅當其中一種量時間(或速度)不變時,距離與速度(或時間)才成正比例,也就是說,距離(s)是時間(t)或速度( )的正比例函數;

          4、求一次函數與正比例函數的關系式,一般采取待定系數法。

          數形結合

          方程,不等式,不等式組,方程組我們都可以用一次函數的觀點來理解。一元一次不等式實際上就看兩條直線上下方的關系,求出端點后可以很容易把握解集,至于一元一次方程可以把左右兩邊看為兩條直線來認識,直線交點的橫坐標就是方程的解,至于二元一次方程組就是對應2條直線,方程組的解就是直線的.交點,結合圖形可以認識兩直線的位置關系也可以把握交點個數。

          如果一個交點時候兩條直線的k不同,如果無窮個交點就是k,b都一樣,如果平行無交點就是k相同,b不一樣。至于函數平移的問題可以化歸為對應點平移。k反正不變然后用待定系數法得到平移后的方程。這就是化一般為特殊的解題方法。

          數學解題方法分別有哪些

          1、配方法

          所謂的公式是使用變換解析方程的同構方法,并將其中的一些分配給一個或多個多項式正整數冪的和形式。通過配方解決數學問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數學中不斷變形的重要方法,其應用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數的極值和解析表達式。

          2、因式分解法

          因式分解是將多項式轉換為幾個積分產品的乘積。分解是恒定變形的基礎。除了引入中學教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數等等。

          3、換元法

          替代方法是數學中一個非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變元。用新的參數替換原始公式的一部分或重新構建原始公式可以更簡單,更容易解決。

          4、判別式法與韋達定理

          一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來確定根的性質,還作為一個問題解決方法,代數變形,求解方程(組),求解不等式,研究函數,甚至幾何以及三角函數都有非常廣泛的應用。

          韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個數的和和乘積的簡單應用并尋找這兩個數,也可以找到根的對稱函數并量化二次方程根的符號。求解對稱方程并解決一些與二次曲線有關的問題等,具有非常廣泛的應用。

          5、待定系數法

          在解決數學問題時,如果我們首先判斷我們所尋找的結果具有一定的形式,其中包含某些未決的系數,然后根據問題的條件列出未確定系數的方程,最后找到未確定系數的值或這些待定系數之間的關系。為了解決數學問題,這種問題解決方法被稱為待定系數法。它是中學數學中常用的方法之一。

          6、構造法

          在解決問題時,我們通常通過分析條件和結論來使用這些方法來構建輔助元素。它可以是一個圖表,一個方程(組),一個方程,一個函數,一個等價的命題等,架起連接條件和結論的橋梁。為了解決這個問題,這種解決問題的數學方法,我們稱之為構造方法。運用結構方法解決問題可以使代數,三角形,幾何等數學知識相互滲透,有助于解決問題。

          數學經常遇到的問題解答

          1、要提高數學成績首先要做什么?

          這一點,是很多學生所關注的,要提高數學成績,首先就應該從基礎知識學起。不少同學覺得基礎知識過于簡單,看兩遍基本上就都會了。這種“自我感覺良好”其實是一種錯覺,而真正考試時又覺得無從下手,這還是基礎不牢的表現(xiàn),因此要提高數學成績先要把基礎夯實。

          2、基礎不好怎么學好數學?

          對于基礎差的同學來說,課本是就是學好數學的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學活用,把課本的知識學透有兩個好處,第一,強化基礎;第二,提高得分能力。

          3、是否要采用題海戰(zhàn)術?

          方法君曾不止一次提到了“題海戰(zhàn)術”,題海戰(zhàn)術究竟可不可取呢?“題海戰(zhàn)術”其實也是一種學習方法,但很多學生只知道做題,不懂得總結,體現(xiàn)不出任何的學習效果。因此在做題后要總結至關重要,只有認真總結才能不斷積累做題經驗,這樣才能取得理想成績。

          4、做題總是粗心怎么辦?

          很多學生成績不好,會說自己是因為粗心導致的,其實“粗心”只是借口,真正的原因就是題做得少、基礎知識不牢、沒有清晰的解題思路、計算能力不強。因此在平時的學習中,一定要注重熟練度和精準度的練習。如果總是給自己找“粗心”的借口,也就變相否定了自己的學習弱點,所以,要告訴自己,高中數學沒有“粗心”只有“不用心”。

          為什么要學習數學

          作為一門普及度極廣的學科,數學在人類文明的發(fā)展史上一直占據著重要的地位。雖然很多人可能會對數學產生排斥,認為它枯燥無味,但事實上,數學是所有學科的基石之一,對我們日常生活以及未來的職業(yè)發(fā)展有著重大影響。下面我將詳細闡述學習數學的重要性。

          首先,數學可以幫助我們提高邏輯思維能力。數學的學科性質使我們在學習的過程中時時刻刻面臨著思考、推理、證明等諸多問題,而這些問題正是鍛煉我們邏輯思維的好機會。通過長期的學習和練習,我們的思維能力得到提升,可以更加清晰地分析問題,更快速地找到正確的答案。這對我們在工作和生活中都非常有幫助,尤其是在解決復雜問題時更能得心應手。

          其次,數學在現(xiàn)代科技中起著至關重要的作用。在計算機科學、物理學、經濟學、工程學等領域,數學可以幫助我們建立模型、分析數據、預測趨勢,并且可以在實際應用中優(yōu)化和改進。例如,在人工智能領域,深度學習技術所涉及的數學概念包括線性代數、微積分和概率論等,如果沒有深厚的數學基礎,很難理解和應用這些技術。同時,在工程學領域,許多機械、電子、化工等產品的設計和制造過程,也需要運用到數學知識,因此學習數學可以使我們更好地參與到現(xiàn)代科技的發(fā)展中。

          除此之外,數學也是一種普遍使用的語言,許多學科和領域都使用數學語言進行表達和交流。例如,在自然科學領域,生物學、化學、物理學等學科都使用數學語言來描述自然世界的規(guī)律和現(xiàn)象。在社會科學和商科領域,經濟學和金融學運用的數學概念,如微積分、線性代數和統(tǒng)計學等,使得我們能夠更好地理解經濟和財務數據,并進行決策。因此,學習數學可以讓我們更好地理解、溝通和交流各個領域的知識。

          最后,學習數學也可以為我們的職業(yè)發(fā)展帶來廣泛的機遇和發(fā)展空間。在許多領域,數學專業(yè)的畢業(yè)生都有很廣泛的就業(yè)機會,如金融界、數據科學、研究機構、教育等。數學專業(yè)的人才,不只會提供理論支持,同時也能夠解決現(xiàn)實中具體的問題,使其在各自領域脫穎而出。

        函數知識點總結10

          一次函數知識點總結基本概念

          1、變量:在一個變化過程中可以取不同數值的量。常量:在一個變化過程中只能取同一數值的量。

          例題:在勻速運動公式svt中,v表示速度,t表示時間,s表示在時間t內所走的路程,則變量是________,常量是_______。在圓的周長公式C=2πr中,變量是________,常量是_________.

          2、函數:一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應,那么我們就把x稱為自變量,把y稱為因變量,y是x的函數。

          *判斷Y是否為X的函數,只要看X取值確定的時候,Y是否有唯一確定的值與之對應

          1-12

          例題:下列函數(1)y=πx(2)y=2x-1(3)y=(4)y=2-3x(5)y=x-1中,是一次函數的有()

          x(A)4個(B)3個(C)2個(D)1個

          3、定義域:一般的,一個函數的自變量允許取值的范圍,叫做這個函數的定義域。(x的取值范圍)一次函數

          1..自變量x和因變量y有如下關系:

          y=kx+b(k為任意不為零實數,b為任意實數)則此時稱y是x的一次函數。特別的,當b=0時,y是x的正比例函數。即:y=kx(k為任意不為零實數)

          定義域:自變量的取值范圍,自變量的取值應使函數有意義;要與實際有意義。

          2.當x=0時,b為函數在y軸上的截距。

          一次函數性質:

          1在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。

          2一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。3.函數不是數,它是指某一變量過程中兩個變量之間的關系。

          特別地,當b=0時,直線通過原點O(0,0)表示的是正比例函數的圖像。

          這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。4、特殊位置關系

          當平面直角坐標系中兩直線平行時,其函數解析式中K值(即一次項系數)相等

          當平面直角坐標系中兩直線垂直時,其函數解析式中K值互為負倒數(即兩個K值的乘積為-1)

          應用

          一次函數y=kx+b的性質是:(1)當k>0時,y隨x的增大而增大;(2)當kx2B.x10,且y1>y2。根據一次函數的性質“當k>0時,y隨x的增大而增大”,得x1>x2。故選A。

          判斷函數圖象的位置

          例3.一次函數y=kx+b滿足kb>0,且y隨x的增大而減小,則此函數的圖象不經過()A.第一象限B.第二象限

          C.第三象限D.第四象限

          解:由kb>0,知k、b同號。因為y隨x的增大而減小,所以k

          解析式:y=kx(k是常數,k≠0)必過點:(0,0)、(1,k)

          走向:k>0時,圖像經過一、三象限;k0,y隨x的增大而增大;k0時,向上平移;當b0,圖象經過第一、三象限;k0,圖象經過第一、二象限;b0,y隨x的增大而增大;k0時,將直線y=kx的圖象向上平移b個單位;當b

          若直線yxa和直線yxb的交點坐標為(m,8),則ab____________.已知函數y=3x+1,當自變量增加m時,相應的函數值增加()A.3m+1B.3mC.mD.3m-1

          11、一次函數y=kx+b的.圖象的畫法.

          根據幾何知識:經過兩點能畫出一條直線,并且只能畫出一條直線,即兩點確定一條直線,所以畫一次函數的圖

          象時,只要先描出兩點,再連成直線即可.一般情況下:是先選取它與兩坐標軸的交點:(0,b),坐標或縱坐標為0的點.

          b>0經過第一、二、三象限b0圖象從左到右上升,y隨x的增大而增大經過第一、二、四象限經過第二、三、四象限經過第二、四象限k0時,向上平移;當b

          某個一次函數的值為0時,求相應的自變量的值.從圖象上看,相當于已知直線y=ax+b確定它與x軸的交點的橫坐標的值.

        函數知識點總結11

          第一、求函數定義域題忽視細節(jié)函數的定義域是使函數有意義的自變量的取值范圍,考生想要在考場上準確求出定義域,就要根據函數解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數的定義域。

          在求一般函數定義域時,要注意以下幾點:分母不為0;偶次被開放式非負;真數大于0以及0的0次冪無意義。函數的定義域是非空的數集,在解答函數定義域類的題時千萬別忘了這一點。復合函數要注意外層函數的定義域由內層函數的值域決定。

          第二、帶絕對值的函數單調性判斷錯誤帶絕對值的函數實質上就是分段函數,判斷分段函數的單調性有兩種方法:第一,在各個段上根據函數的解析式所表示的函數的單調性求出單調區(qū)間,然后對各個段上的單調區(qū)間進行整合;第二,畫出這個分段函數的圖象,結合函數圖象、性質能夠進行直觀的判斷。函數題離不開函數圖象,而函數圖象反應了函數的所有性質,考生在解答函數題時,要第一時間在腦海中畫出函數圖象,從圖象上分析問題,解決問題。

          對于函數不同的單調遞增(減)區(qū)間,千萬記住,不要使用并集,指明這幾個區(qū)間是該函數的單調遞增(減)區(qū)間即可。

          第三、求函數奇偶性的常見錯誤求函數奇偶性類的題最常見的錯誤有求錯函數定義域或忽視函數定義域,對函數具有奇偶性的前提條件不清,對分段函數奇偶性判斷方法不當等等。判斷函數的奇偶性,首先要考慮函數的定義域,一個函數具備奇偶性的必要條件是這個函數的定義域區(qū)間關于原點對稱,如果不具備這個條件,函數一定是非奇非偶的函數。在定義域區(qū)間關于原點對稱的前提下,再根據奇偶函數的定義進行判斷。

          在用定義進行判斷時,要注意自變量在定義域區(qū)間內的任意性。

          第四、抽象函數推理不嚴謹很多抽象函數問題都是以抽象出某一類函數的共同“特征”而設計的,在解答此類問題時,考生可以通過類比這類函數中一些具體函數的性質去解決抽象函數。多用特殊賦值法,通過特殊賦可以找到函數的不變性質,這往往是問題的突破口。

          抽象函數性質的證明屬于代數推理,和幾何推理證明一樣,考生在作答時要注意推理的嚴謹性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過程層次分明,還要注意書寫規(guī)范。

          第五、函數零點定理使用不當若函數y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,且有f(a)f(b)<0。那么函數y=f(x)在區(qū)間(a,b)內有零點,即存在c∈(a,b),使得f(c)=0。這個c也可以是方程f(c)=0的根,稱之為函數的零點定理,分為“變號零點”和“不變號零點”,而對于“不變號零點”,函數的零點定理是“無能為力”的,在解決函數的零點時,考生需格外注意這類問題。

          第六、混淆兩類切線曲線上一點處的切線是指以該點為切點的曲線的`切線,這樣的切線只有一條;曲線的過一個點的切線是指過這個點的曲線的所有切線,這個點如果在曲線上當然包括曲線在該點處的切線,曲線的過一個點的切線可能不止一條。

          因此,考生在求解曲線的切線問題時,首先要區(qū)分是什么類型的切線。

          第七、混淆導數與單調性的關系一個函數在某個區(qū)間上是增函數的這類題型,如果考生認為函數的導函數在此區(qū)間上恒大于0,很容易就會出錯。

          解答函數的單調性與其導函數的關系時一定要注意,一個函數的導函數在某個區(qū)間上單調遞增(減)的充要條件是這個函數的導函數在此區(qū)間上恒大(小)于等于0,且導函數在此區(qū)間的任意子區(qū)間上都不恒為零。

          第八、導數與極值關系不清考生在使用導數求函數極值類問題時,容易出現(xiàn)的錯誤就是求出使導函數等于0的點,卻沒有對這些點左右兩側導函數的符號進行判斷,誤以為使導函數等于0的點就是函數的極值點,往往就會出錯,出錯原因就是考生對導數與極值關系沒搞清楚。可導函數在一個點處的導函數值為零只是這個函數在此點處取到極值的必要條件,小編在此提醒廣大考生,在使用導數求函數極值時,一定要對極值點進行仔細檢查。

        函數知識點總結12

          余割函數

          對于任意一個實數x,都對應著唯一的角(弧度制中等于這個實數),而這個角又對應著唯一確定的`余割值cscx與它對應,按照這個對應法則建立的函數稱為余割函數。

          記作f(x)=cscx

          f(x)=cscx=1/sinx

          1、定義域:{x|x≠kπ,k∈Z}

          2、值域:{y|y≤-1或y≥1}

          3、奇偶性:奇函數

          4、周期性:最小正周期為2π

          5、圖像:

          圖像漸近線為:x=kπ ,k∈Z

          其實有一點需要注意,就是余割函數與正弦函數互為倒數。

        函數知識點總結13

          一次函數的定義

          一般地,形如y=kx+b(k,b是常數,且k≠0)的函數,叫做一次函數,其中x是自變量。當b=0時,一次函數y=kx,又叫做正比例函數。

          1、一次函數的解析式的形式是y=kx+b,要判斷一個函數是否是一次函數,就是判斷是否能化成以上形式。

          2、當b=0,k≠0時,y=kx仍是一次函數。

          3、當k=0,b≠0時,它不是一次函數。

          4、正比例函數是一次函數的特例,一次函數包括正比例函數。

          一次函數的圖像及性質

          1、在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。

          2、一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(—b/k,0)。

          3、正比例函數的圖像總是過原點。

          4、k,b與函數圖像所在象限的關系:

          當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。

          當k>0,b>0時,直線通過一、二、三象限;

          當k>0,b<0時,直線通過一、三、四象限;

          當k<0,b>0時,直線通過一、二、四象限;

          當k<0,b<0時,直線通過二、三、四象限;

          當b=0時,直線通過原點O(0,0)表示的是正比例函數的圖像。

          這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

          一次函數的圖象與性質的口訣

          一次函數是直線,圖象經過三象限;

          正比例函數更簡單,經過原點一直線;

          兩個系數k與b,作用之大莫小看,

          k是斜率定夾角,b與y軸來相見,

          k為正來右上斜,x增減y增減;

          k為負來左下展,變化規(guī)律正相反;

          k的絕對值越大,線離橫軸就越遠。

          拓展閱讀:一次函數的解題方法

          理解一次函數和其它知識的聯(lián)系

          一次函數和代數式以及方程有著密不可分的聯(lián)系。如一次函數和正比例函數仍然是函數,同時,等號的兩邊又都是代數式。需要注意的是,與一般代數式有很大區(qū)別。首先,一次函數和正比例函數都只能存在兩個變量,而代數式可以是多個變量;其次,一次函數中的變量指數只能是1,而代數式中變量指數還可以是1以外的數。另外,一次函數解析式也可以理解為二元一次方程。

          掌握一次函數的解析式的.特征

          一次函數解析式的結構特征:kx+b是關于x的一次二項式,其中常數b可以是任意實數,一次項系數k必須是非零數,k≠0,因為當k = 0時,y = b(b是常數),由于沒有一次項,這樣的函數不是一次函數;而當b = 0,k≠0,y = kx既是正比例函數,也是一次函數。

          應用一次函數解決實際問題

          1、分清哪些是已知量,哪些是未知量,尤其要弄清哪兩種量是相關聯(lián)的量,且其中一種量因另一種量的變化而變化;

          2、找出具有相關聯(lián)的兩種量的等量關系之后,明確哪種量是另一種量的函數;

          3、在實際問題中,一般存在著三種量,如距離、時間、速度等等,在這三種量中,當且僅當其中一種量時間(或速度)不變時,距離與速度(或時間)才成正比例,也就是說,距離(s)是時間(t)或速度( )的正比例函數;

          4、求一次函數與正比例函數的關系式,一般采取待定系數法。

          數形結合

          方程,不等式,不等式組,方程組我們都可以用一次函數的觀點來理解。一元一次不等式實際上就看兩條直線上下方的關系,求出端點后可以很容易把握解集,至于一元一次方程可以把左右兩邊看為兩條直線來認識,直線交點的橫坐標就是方程的解,至于二元一次方程組就是對應2條直線,方程組的解就是直線的交點,結合圖形可以認識兩直線的位置關系也可以把握交點個數。

          如果一個交點時候兩條直線的k不同,如果無窮個交點就是k,b都一樣,如果平行無交點就是k相同,b不一樣。至于函數平移的問題可以化歸為對應點平移。k反正不變然后用待定系數法得到平移后的方程。這就是化一般為特殊的解題方法。

        函數知識點總結14

          ∴當x1時函數取得最大值,且ymax(1)2(1)13例4、已知函數f(x)x22(a1)x2

          4],求實數a的取值(1)若函數f(x)的遞減區(qū)間是(,4]上是減函數,求實數a的取值范圍(2)若函數f(x)在區(qū)間(,分析:二次函數的單調區(qū)間是由其開口方向及對稱軸決定的,要分清函數在區(qū)間A上是單調函數及單調區(qū)間是A的區(qū)別與聯(lián)系

          解:(1)f(x)的`對稱軸是x可得函數圖像開口向上

          2(a1)21a,且二次項系數為1>0

          1a]∴f(x)的單調減區(qū)間為(,∴依題設條件可得1a4,解得a3

          4]上是減函數(2)∵f(x)在區(qū)間(,4]是遞減區(qū)間(,1a]的子區(qū)間∴(,∴1a4,解得a3

          例5、函數f(x)x2bx2,滿足:f(3x)f(3x)

         。1)求方程f(x)0的兩根x1,x2的和(2)比較f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函數圖像的對稱軸為x(3x)(3x)23

          b3可得b62f(x)x26x2(x3)211

          而f(x)的圖像與x軸交點(x1,0)、(x2,0)關于對稱軸x3對稱

          x1x223,可得x1x26

          第三章第32頁由二次項系數為1>0,可知拋物線開口向上又134,132,431

          ∴依二次函數的對稱性及單調性可f(4)f(1)f(1)(III)課后作業(yè)練習六

          (Ⅳ)教學后記:

          第三章第33頁

          擴展閱讀:初中數學函數知識點歸納

          學大教育

          初中數學函數板塊的知識點總結與歸類學習方法

          初中數學知識大綱中,函數知識占了很大的知識體系比例,學好了函數,掌握了函數的基本性質及其應用,真正精通了函數的每一個模塊知識,會做每一類函數題型,就讀于中考中數學成功了一大半,數學成績自然上高峰,同時,函數的思想是學好其他理科類學科的基礎。初中數學從性質上分,可以分為:一次函數、反比例函數、二次函數和銳角三角函數,下面介紹各類函數的定義、基本性質、函數圖象及函數應用思維方式方法。

          一、一次函數

          1.定義:在定義中應注意的問題y=kx+b中,k、b為常數,且k≠0,x的指數一定為1。2.圖象及其性質(1)形狀、直線

        函數知識點總結15

          1、變量與常量

          在某一變化過程中,可以取不同數值的量叫做變量,數值保持不變的量叫做常量。

          一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應,那么就說x是自變量,y是x的函數。

          2、函數解析式

          用來表示函數關系的數學式子叫做函數解析式或函數關系式。

          使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。

          3、函數的三種表示法及其優(yōu)缺點

          (1)解析法

          兩個變量間的函數關系,有時可以用一個含有這兩個變量及數字運算符號的等式表示,這種表示法叫做解析法。

          (2)列表法

          把自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。

          (3)圖像法

          用圖像表示函數關系的方法叫做圖像法。

          4、由函數解析式畫其圖像的一般步驟

          (1)列表:列表給出自變量與函數的一些對應值

          (2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點

          (3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。

          初中怎樣學好數學

          學好初中數學培養(yǎng)運算能力

          初中數學涉及到大量的運算內容,比如有理數的運算、因式分解、根式的運算和解方程,這些都是初中數學涉及到的知識內容,如果初中生數學運算能力不過關,那么成績怎么能提高呢?所以運算是學好初中數學的基本功,這個基本功一定要扎實,不然以后的初中數學就可以不用學習了。

          初中生在解答運算題的時候,不要急躁,靜下心來。初中數學運算的過程是很重要的,這也是初中生對于數學邏輯和思維的培養(yǎng)過程,結果要準確;同時初中生還有要絕對的自信,不要求速度可以慢一點的',盡量一次做對。

          學好初中數學做題的數量不能少

          不可否認,想要學好初中數學,就要做一定量的數學題。不贊同大量的刷題,那樣沒有什么意義。初中生做數學題主要是以基礎題的練習為主,將初中數學的基礎題弄懂的同時,反復的做一些比較典型的題,這樣才是初中生正確的學習數學方式。

          在初中階段,學生要鍛煉自己數學的抽象思維能力,最好的結果是在不用書寫的情況下,就能夠得到正確的答案,這也就是我們常說的熟能生巧。同時也是初中生數學基礎知識牢固的體現(xiàn)。相反的,有的初中生在做練習題的時候,比較盲目和急躁,這樣的結果就是粗心大意,馬虎出錯。

          課上重視聽講課下及時復習

          初中生數學能力的培養(yǎng)一部分在于平時做題的過程中,另一部分就在課堂上。所以初中生想要學好數學,就要重視課內的學習效率,在課上的時候要跟緊老師的思路,大膽的推測老師下一步講課的知識,尤其是基礎知識的學習。在課后初中生還要對學習的數學知識點及時復習。對于每個階段初中數學的學習要進行知識點歸納和整理。

          初中數學多項式知識點

          1、幾個單項式的和叫做多項式。

          2、多項式中的每一個單項式叫做多項式的項。

          3、多項式中不含字母的項叫做常數項。

          4、一個多項式有幾項,就叫做幾項式。

          5、多項式的每一項都包括項前面的符號。

          6、多項式沒有系數的概念,但有次數的概念。

          7、多項式中次數的項的次數,叫做這個多項式的次數。

        【函數知識點總結】相關文章:

        函數知識點總結02-10

        函數知識點總結06-23

        函數知識點總結【熱門】08-21

        (精)函數知識點總結08-25

        (精品)函數知識點總結08-22

        函數知識點總結(精)08-21

        函數知識點03-01

        [精選]函數知識點03-01

        初二函數知識點總結01-13

        初中數學函數知識點總結04-08

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>