1. <rp id="zsypk"></rp>

      2. 高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

        時(shí)間:2024-06-15 07:01:58 知識(shí)點(diǎn)總結(jié) 我要投稿

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)實(shí)用(15篇)

          總結(jié)就是對(duì)一個(gè)時(shí)期的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的回顧和分析的書面材料,它能夠使頭腦更加清醒,目標(biāo)更加明確,是時(shí)候?qū)懸环菘偨Y(jié)了。你所見過的總結(jié)應(yīng)該是什么樣的?下面是小編精心整理的高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié),供大家參考借鑒,希望可以幫助到有需要的朋友。

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)實(shí)用(15篇)

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)1

          高一數(shù)學(xué)必修一知識(shí)點(diǎn)

          指數(shù)函數(shù)

          (一)指數(shù)與指數(shù)冪的運(yùn)算

          1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

          當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

          當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。

          注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),

          2.分?jǐn)?shù)指數(shù)冪

          正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

          0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

          指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

          3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

          (二)指數(shù)函數(shù)及其性質(zhì)

          1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.

          注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

          2、指數(shù)函數(shù)的圖象和性質(zhì)

          高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)梳理

          空間幾何體表面積體積公式:

          1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

          2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

          3、a-邊長,S=6a2,V=a3

          4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

          5、棱柱S-h-高V=Sh

          6、棱錐S-h-高V=Sh/3

          7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

          8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

          9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h

          10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)

          11、r-底半徑h-高V=πr^2h/3

          12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6

          14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

          15、球臺(tái)r1和r2-球臺(tái)上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

          16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4

          17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

          人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)梳理

          1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

          (1)棱柱:

          定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

          分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

          表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱。

          幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

          (2)棱錐

          定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。

          分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

          表示:用各頂點(diǎn)字母,如五棱錐

          幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

          (3)棱臺(tái):

          定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

          分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

          表示:用各頂點(diǎn)字母,如五棱臺(tái)

          幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

          (4)圓柱:

          定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

          幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。

          (5)圓錐:

          定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。

          幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。

          (6)圓臺(tái):

          定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

          幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。

          (7)球體:

          定義:以半圓的.直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

          幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

          2、空間幾何體的三視圖

          定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

          注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

          俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

          側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

          3、空間幾何體的直觀圖——斜二測畫法

          斜二測畫法特點(diǎn):

         、僭瓉砼cx軸平行的線段仍然與x平行且長度不變;

         、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)2

          一、集合及其表示

          1、集合的含義:

          “集合”這個(gè)詞首先讓我們想到的是上體育課或者開會(huì)時(shí)老師經(jīng)常喊的“全體集合”。數(shù)學(xué)上的“集合”和這個(gè)意思是一樣的,只不過一個(gè)是動(dòng)詞一個(gè)是名詞而已。

          所以集合的含義是:某些指定的對(duì)象集在一起就成為一個(gè)集合,簡稱集,其中每一個(gè)對(duì)象叫元素。比如高一二班集合,那么所有高一二班的同學(xué)就構(gòu)成了一個(gè)集合,每一個(gè)同學(xué)就稱為這個(gè)集合的元素。

          2、集合的表示

          通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。

          有一些特殊的集合需要記憶:

          非負(fù)整數(shù)集(即自然數(shù)集)N正整數(shù)集N_或N+

          整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

          集合的表示方法:列舉法與描述法。

         、倭信e法:{a,b,c……}

          ②描述法:將集合中的元素的公共屬性描述出來。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

          ③語言描述法:例:{不是直角三角形的三角形}

          例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

          強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素

          A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。

          3、集合的三個(gè)特性

         。1)無序性

          指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。

          例題:集合A={1,2},B={a,b},若A=B,求a、b的值。

          解:,A=B

          注意:該題有兩組解。

          (2)互異性

          指集合中的元素不能重復(fù),A={2,2}只能表示為{2}

         。3)確定性

          集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的。情況。

          集合的含義

          集合的中元素的三個(gè)特性:

          元素的確定性如:世界上的山

          元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

          元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

          3、集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

          用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

          集合的表示方法:列舉法與描述法。

          注意:常用數(shù)集及其記法:

          非負(fù)整數(shù)集(即自然數(shù)集)記作:N

          正整數(shù)集NxN+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

          列舉法:{a,b,c……}

          描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。{x(R|x—3>2},{x|x—3>2}

          語言描述法:例:{不是直角三角形的三角形}

          Venn圖:

          4、集合的分類:

          有限集含有有限個(gè)元素的集合

          無限集含有無限個(gè)元素的集合

          空集不含任何元素的集合例:{x|x2=—5}

          對(duì)數(shù)函數(shù)

          對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。

          右圖給出對(duì)于不同大小a所表示的函數(shù)圖形:

          可以看到對(duì)數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。

         。1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。

         。2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。

         。3)函數(shù)總是通過(1,0)這點(diǎn)。

          (4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。

         。5)顯然對(duì)數(shù)函數(shù)。

          1、函數(shù)零點(diǎn)的定義

         。1)對(duì)于函數(shù))(xfy,我們把方程0)(xf的實(shí)數(shù)根叫做函數(shù))(xfy)的零點(diǎn)。

         。2)方程0)(xf有實(shí)根函數(shù)(yfx)的圖像與x軸有交點(diǎn)函數(shù)(yfx)有零點(diǎn)。因此判斷一個(gè)函數(shù)是否有零點(diǎn),有幾個(gè)零點(diǎn),就是判斷方程0)(xf是否有實(shí)數(shù)根,有幾個(gè)實(shí)數(shù)根。函數(shù)零點(diǎn)的求法:解方程0)(xf,所得實(shí)數(shù)根就是(fx)的零點(diǎn)(3)變號(hào)零點(diǎn)與不變號(hào)零點(diǎn)

         、偃艉瘮(shù)(fx)在零點(diǎn)0x左右兩側(cè)的函數(shù)值異號(hào),則稱該零點(diǎn)為函數(shù)(fx)的變號(hào)零點(diǎn)。②若函數(shù)(fx)在零點(diǎn)0x左右兩側(cè)的函數(shù)值同號(hào),則稱該零點(diǎn)為函數(shù)(fx)的不變號(hào)零點(diǎn)。

         、廴艉瘮(shù)(fx)在區(qū)間,ab上的圖像是一條連續(xù)的曲線,則0

          2、函數(shù)零點(diǎn)的判定

         。1)零點(diǎn)存在性定理:如果函數(shù))(xfy在區(qū)間],[ba上的圖象是連續(xù)不斷的曲線,并且有(fa)(fb),那么,函數(shù)(xfy)在區(qū)間,ab內(nèi)有零點(diǎn),即存在,(0bax,使得0)(0xf,這個(gè)0x也就是方程0)(xf的根。

         。2)函數(shù))(xfy零點(diǎn)個(gè)數(shù)(或方程0)(xf實(shí)數(shù)根的個(gè)數(shù))確定方法

         、俅鷶(shù)法:函數(shù))(xfy的零點(diǎn)0)(xf的根;②(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù))(xfy的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn)。

         。3)零點(diǎn)個(gè)數(shù)確定

          0)(xfy有2個(gè)零點(diǎn)0)(xf有兩個(gè)不等實(shí)根;0)(xfy有1個(gè)零點(diǎn)0)(xf有兩個(gè)相等實(shí)根;0)(xfy無零點(diǎn)0)(xf無實(shí)根;對(duì)于二次函數(shù)在區(qū)間,ab上的零點(diǎn)個(gè)數(shù),要結(jié)合圖像進(jìn)行確定。

          3、二分法

         。1)二分法的定義:對(duì)于在區(qū)間[,]ab上連續(xù)不斷且(fa)(fb)的函數(shù)(yfx),通過不斷地把函數(shù)(yfx)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)的近似值的方法叫做二分法;

          (2)用二分法求方程的近似解的步驟:

         、俅_定區(qū)間[,]ab,驗(yàn)證(fa)(fb)給定精確度e;

          ②求區(qū)間(,)ab的中點(diǎn)c;③計(jì)算(fc);

          (ⅰ)若(fc),則c就是函數(shù)的零點(diǎn);

         。á)若(fa)(fc),則令bc(此時(shí)零點(diǎn)0(,)xac);(ⅲ)若(fc)(fb),則令ac(此時(shí)零點(diǎn)0(,)xcb);

         、芘袛嗍欠襁_(dá)到精確度e,即ab,則得到零點(diǎn)近似值為a(或b);否則重復(fù)②至④步。

          集合間的基本關(guān)系

          1、子集,A包含于B,記為:,有兩種可能

          (1)A是B的一部分,

          (2)A與B是同一集合,A=B,A、B兩集合中元素都相同。

          反之:集合A不包含于集合B,記作。

          如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三個(gè)集合的關(guān)系可以表示為,,B=C。A是C的子集,同時(shí)A也是C的真子集。

          2、真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

          3、不含任何元素的'集合叫做空集,記為Φ。Φ是任何集合的子集。

          4、有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-2個(gè)非空真子集。如A={1,2,3,4,5},則集合A有25=32個(gè)子集,25-1=31個(gè)真子集,25-2=30個(gè)非空真子集。

          例:集合共有個(gè)子集。(13年高考第4題,簡單)

          練習(xí):A={1,2,3},B={1,2,3,4},請(qǐng)問A集合有多少個(gè)子集,并寫出子集,B集合有多少個(gè)非空真子集,并將其寫出來。

          解析:

          集合A有3個(gè)元素,所以有23=8個(gè)子集。分別為:①不含任何元素的子集Φ;②含有1個(gè)元素的子集{1}{2}{3};③含有兩個(gè)元素的子集{1,2}{1,3}{2,3};④含有三個(gè)元素的子集{1,2,3}。

          集合B有4個(gè)元素,所以有24-2=14個(gè)非空真子集。具體的子集自己寫出來。

          此處這么羅嗦主要是為了讓同學(xué)們注意寫的順序,數(shù)學(xué)就是要講究嚴(yán)謹(jǐn)性和邏輯性的。一定要養(yǎng)成自己的邏輯習(xí)慣。如果就是為了提高計(jì)算能力倒不如直接去菜場賣菜算了,絕對(duì)能飛速提高的,那學(xué)數(shù)學(xué)也沒什么必要了。

          一、函數(shù)模型及其應(yīng)用

          本節(jié)主要包括函數(shù)的模型、函數(shù)的應(yīng)用等知識(shí)點(diǎn)。主要是理解函數(shù)解應(yīng)用題的一般步驟靈活利用函數(shù)解答實(shí)際應(yīng)用題。

          1、常見的函數(shù)模型有一次函數(shù)模型、二次函數(shù)模型、指數(shù)函數(shù)模型、對(duì)數(shù)函數(shù)模型、分段函數(shù)模型等。

          2、用函數(shù)解應(yīng)用題的基本步驟是:

         。1)閱讀并且理解題意。(關(guān)鍵是數(shù)據(jù)、字母的實(shí)際意義);

         。2)設(shè)量建模;

         。3)求解函數(shù)模型;

          (4)簡要回答實(shí)際問題。

          常見考法:

          本節(jié)知識(shí)在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數(shù)和較復(fù)雜的函數(shù)的最值等問題,屬于拔高題,難度較大。

          誤區(qū)提醒:

          1、求解應(yīng)用性問題時(shí),不僅要考慮函數(shù)本身的定義域,還要結(jié)合實(shí)際問題理解自變量的取值范圍。

          2、求解應(yīng)用性問題時(shí),首先要弄清題意,分清條件和結(jié)論,抓住關(guān)鍵詞和量,理順數(shù)量關(guān)系,然后將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,建立相應(yīng)的數(shù)學(xué)模型。

          【典型例題】

          例1:

          (1)某種儲(chǔ)蓄的月利率是0。36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數(shù)x之間的函數(shù)關(guān)系式,并計(jì)算5個(gè)月后的本息和(不計(jì)復(fù)利)。

          (2)按復(fù)利計(jì)算利息的一種儲(chǔ)蓄,本金為a元,每期利率為r,設(shè)本利和為y,存期為x,寫出本利和y隨存期x變化的函數(shù)式。如果存入本金1000元,每期利率2。25%,試計(jì)算5期后的本利和是多少?解:(1)利息=本金×月利率×月數(shù)。y=100+100×0。36%·x=100+0。36x,當(dāng)x=5時(shí),y=101。8,∴5個(gè)月后的本息和為101。8元。

          例2:

          某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤與投資單位是萬元)

          (1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式。

         。2)該企業(yè)已籌集到10萬元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能是企業(yè)獲得利潤,其利潤約為多少萬元。(精確到1萬元)。

          集合

          集合具有某種特定性質(zhì)的事物的總體。這里的“事物”可以是人,物品,也可以是數(shù)學(xué)元素。例如:

          1、分散的人或事物聚集到一起;使聚集:緊急~。

          2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。

          3、口號(hào)等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專門研究集合的理論叫做集合論?低(Cantor,G.F.P.,1845年—1918年,德國數(shù)學(xué)家先驅(qū),是集合論的,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。

          集合,在數(shù)學(xué)上是一個(gè)基礎(chǔ)概念。什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下“定義”。集合

          集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對(duì)象匯合在一起,使之成為一個(gè)整體(或稱為單體),這一整體就是集合。組成一集合的那些對(duì)象稱為這一集合的元素(或簡稱為元)。

          元素與集合的關(guān)系

          元素與集合的關(guān)系有“屬于”與“不屬于”兩種。

          集合與集合之間的關(guān)系

          某些指定的對(duì)象集在一起就成為一個(gè)集合集合符號(hào),含有有限個(gè)元素叫有限集,含有無限個(gè)元素叫無限集,空集是不含任何元素的集,記做Φ?占侨魏渭系淖蛹,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。『說明一下:如果集合A的所有元素同時(shí)都是集合B的元素,則A稱作是B的子集,寫作A?B。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作A?B。中學(xué)教材課本里將?符號(hào)下加了一個(gè)≠符號(hào)(如右圖),不要混淆,考試時(shí)還是要以課本為準(zhǔn)。所有男人的集合是所有人的集合的真子集!

          集合的幾種運(yùn)算法則

          并集:以屬于A或?qū)儆贐的元素為元素的集合稱為A與B的并(集),記作A∪B(或B∪A),讀作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以屬于A且屬于B的元差集表示

          素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那么因?yàn)锳和B中都有1,5,所以A∩B={1,5}。再來看看,他們兩個(gè)中含有1,2,3,5這些個(gè)元素,不管多少,反正不是你有,就是我有。那么說A∪B={1,2,3,5}。圖中的陰影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍數(shù)的數(shù)有多少個(gè)。結(jié)果是3,5,7每項(xiàng)減集合

          1再相乘。48個(gè)。對(duì)稱差集:設(shè)A,B為集合,A與B的對(duì)稱差集A?B定義為:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對(duì)稱差運(yùn)算的另一種定義是:A?B=(A∪B)-(A∩B)無限集:定義:集合里含有無限個(gè)元素的集合叫做無限集有限集:令N_是正整數(shù)的全體,且N_n={1,2,3,……,n},如果存在一個(gè)正整數(shù)n,使得集合A與N_n一一對(duì)應(yīng),那么A叫做有限集合。差:以屬于A而不屬于B的元素為元素的集合稱為A與B的差(集)。記作:AB={x│x∈A,x不屬于B}。注:空集包含于任何集合,但不能說“空集屬于任何集合”。補(bǔ)集:是從差集中引出的概念,指屬于全集U不屬于集合A的元素組成的集合稱為集合A的補(bǔ)集,記作CuA,即CuA={x|x∈U,且x不屬于A}空集也被認(rèn)為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中沒有的3,4就是CuA,是A的補(bǔ)集。CuA={3,4}。在信息技術(shù)當(dāng)中,常常把CuA寫成~A。

          集合元素的性質(zhì)

          1.確定性:每一個(gè)對(duì)象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如“個(gè)子高的同學(xué)”“很小的數(shù)”都不能構(gòu)成集合。這個(gè)性質(zhì)主要用于判斷一個(gè)集合是否能形成集合。

          2.獨(dú)立性:集合中的元素的個(gè)數(shù)、集合本身的個(gè)數(shù)必須為自然數(shù)。

          3.互異性:集合中任意兩個(gè)元素都是不同的對(duì)象。如寫成{1,1,2},等同于{1,2};ギ愋允辜现械脑厥菦]有重復(fù),兩個(gè)相同的對(duì)象在同一個(gè)集合中時(shí),只能算作這個(gè)集合的一個(gè)元素。

          4.無序性:{a,b,c}{c,b,a}是同一個(gè)集合。

          5.純粹性:所謂集合的純粹性,用個(gè)例子來表示。集合A={x|x

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)3

          空間兩條直線只有三種位置關(guān)系:平行、相交、異面

          1、按是否共面可分為兩類:

          1共面:平行、相交

          2異面:

          異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。

          異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。

          兩異面直線所成的角:范圍為0°,90°esp.空間向量法

          兩異面直線間距離:公垂線段有且只有一條esp.空間向量法

          2、若從有無公共點(diǎn)的角度看可分為兩類:

          1有且僅有一個(gè)公共點(diǎn)——相交直線;2沒有公共點(diǎn)——平行或異面

          直線和平面的位置關(guān)系:

          直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

          ①直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)

         、谥本和平面相交——有且只有一個(gè)公共點(diǎn)

          直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。

          空間向量法找平面的法向量

          規(guī)定:a、直線與平面垂直時(shí),所成的角為直角,b、直線與平面平行或在平面內(nèi),所成的角為0°角

          由此得直線和平面所成角的取值范圍為[0°,90°]

          最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角

          三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直

          直線和平面垂直

          直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

          直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。

          直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。③直線和平面平行——沒有公共點(diǎn)

          直線和平面平行的定義:如果一條直線和一個(gè)平面沒有公共點(diǎn),那么我們就說這條直線和這個(gè)平面平行。

          直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。

          直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。

          多面體

          1、棱柱

          棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每兩個(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。

          棱柱的性質(zhì)

          1側(cè)棱都相等,側(cè)面是平行四邊形

          2兩個(gè)底面與平行于底面的截面是全等的多邊形

          3過不相鄰的兩條側(cè)棱的截面對(duì)角面是平行四邊形

          2、棱錐

          棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐

          棱錐的性質(zhì):

          1側(cè)棱交于一點(diǎn)。側(cè)面都是三角形

          2平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方

          3、正棱錐

          正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的`棱錐叫做正棱錐。

          正棱錐的性質(zhì):

          1各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

          3多個(gè)特殊的直角三角形

          a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

          b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。

          兩個(gè)平面的位置關(guān)系

          1兩個(gè)平面互相平行的定義:空間兩平面沒有公共點(diǎn)

          2兩個(gè)平面的位置關(guān)系:

          兩個(gè)平面平行-----沒有公共點(diǎn);兩個(gè)平面相交-----有一條公共直線。

          a、平行

          兩個(gè)平面平行的判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行。

          兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么交線平行。b、相交

          二面角

          1半平面:平面內(nèi)的一條直線把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。

          2二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

          3二面角的棱:這一條直線叫做二面角的棱。

          4二面角的面:這兩個(gè)半平面叫做二面角的面。

          5二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

          6直二面角:平面角是直角的二面角叫做直二面角。

          兩平面垂直

          兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個(gè)平面互相垂直。記為⊥

          兩平面垂直的判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直

          兩個(gè)平面垂直的性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平

          二面角求法:直接法作出平面角、三垂線定理及逆定理、面積射影定理、空間向量之法向量法注意求出的角與所需要求的角之間的等補(bǔ)關(guān)系。

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)4

          【基本初等函數(shù)】

          一、指數(shù)函數(shù)

         。ㄒ唬┲笖(shù)與指數(shù)冪的運(yùn)算

          1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

          當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù)。此時(shí),的次方根用符號(hào)表示。式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand)。

          當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù)。此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)—表示。正的次方根與負(fù)的次方根可以合并成±(>0)。由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。

          注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),

          2、分?jǐn)?shù)指數(shù)冪

          正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

          0的正分?jǐn)?shù)指數(shù)冪等于0,0的`負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

          指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。

          3、實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

         。ǘ┲笖(shù)函數(shù)及其性質(zhì)

          1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽。

          注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1。

          2、指數(shù)函數(shù)的圖象和性質(zhì)

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)5

          1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸如下表:

          解析式

          頂點(diǎn)坐標(biāo)

          對(duì)稱軸

          y=ax^2

          (0,0)

          x=0

          y=a(x-h)^2

          (h,0)

          x=h

          y=a(x-h)^2+k

          (h,k)

          x=h

          y=ax^2+bx+c

          (-b/2a,[4ac-b^2]/4a)

          x=-b/2a

          當(dāng)h>0時(shí),y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,

          當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.

          當(dāng)h>0,k>0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;

          當(dāng)h>0,k<0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

          當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

          當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

          因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

          2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

          3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減小;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小.

          4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

          (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

          (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

          (a≠0)的兩根.這兩點(diǎn)間的距離AB=|x?-x?|

          當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);

          當(dāng)△<0.圖象與x軸沒有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0.

          5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.

          頂點(diǎn)的'橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.

          6.用待定系數(shù)法求二次函數(shù)的解析式

          (1)當(dāng)題給條件為已知圖象經(jīng)過三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:

          y=ax^2+bx+c(a≠0).

          (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).

          (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

          7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)6

          【公式一】

          設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

          sin(2kπ+α)=sinα(k∈Z)

          cos(2kπ+α)=cosα(k∈Z)

          tan(2kπ+α)=tanα(k∈Z)

          cot(2kπ+α)=cotα(k∈Z)

          【公式二】

          設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

          sin(π+α)=-sinα

          cos(π+α)=-cosα

          tan(π+α)=tanα

          cot(π+α)=cotα

          【公式三】

          任意角α與-α的三角函數(shù)值之間的關(guān)系:

          sin(-α)=-sinα

          cos(-α)=cosα

          tan(-α)=-tanα

          cot(-α)=-cotα

          【公式四】

          利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

          sin(π-α)=sinα

          cos(π-α)=-cosα

          tan(π-α)=-tanα

          cot(π-α)=-cotα

          【公式五】

          利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

          sin(2π-α)=-sinα

          cos(2π-α)=cosα

          tan(2π-α)=-tanα

          cot(2π-α)=-cotα

          【公式六】

          π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:

          sin(π/2+α)=cosα

          cos(π/2+α)=-sinα

          tan(π/2+α)=-cotα

          cot(π/2+α)=-tanα

          sin(π/2-α)=cosα

          cos(π/2-α)=sinα

          tan(π/2-α)=cotα

          cot(π/2-α)=tanα

          sin(3π/2+α)=-cosα

          cos(3π/2+α)=sinα

          tan(3π/2+α)=-cotα

          cot(3π/2+α)=-tanα

          sin(3π/2-α)=-cosα

          cos(3π/2-α)=-sinα

          tan(3π/2-α)=cotα

          cot(3π/2-α)=tanα

          (以上k∈Z)

          【高一數(shù)學(xué)函數(shù)復(fù)習(xí)資料】

          一、定義與定義式:

          自變量x和因變量y有如下關(guān)系:

          y=kx+b

          則此時(shí)稱y是x的一次函數(shù)。

          特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。

          即:y=kx(k為常數(shù),k≠0)

          二、一次函數(shù)的性質(zhì):

          的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k

          即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))

          當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。

          三、一次函數(shù)的圖像及性質(zhì):

          作法與圖形:通過如下3個(gè)步驟

          (1)列表;

          (2)描點(diǎn);

          (3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))

          性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。

          ,b與函數(shù)圖像所在象限:

          當(dāng)k>0時(shí),直線必通過一、三象限,y隨x的.增大而增大;

          當(dāng)k

          當(dāng)b>0時(shí),直線必通過一、二象限;

          當(dāng)b=0時(shí),直線通過原點(diǎn)

          當(dāng)b

          特別地,當(dāng)b=O時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

          這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k

          四、確定一次函數(shù)的表達(dá)式:

          已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過點(diǎn)A、B的一次函數(shù)的表達(dá)式。

          (1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。

          (2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②

          (3)解這個(gè)二元一次方程,得到k,b的值。

          (4)最后得到一次函數(shù)的表達(dá)式。

          五、一次函數(shù)在生活中的應(yīng)用:

          當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt。

          當(dāng)水池抽水速度f一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。

          六、常用公式:(不全,希望有人補(bǔ)充)

          求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

          求與x軸平行線段的中點(diǎn):|x1-x2|/2

          求與y軸平行線段的中點(diǎn):|y1-y2|/2

          求任意線段的長:√(x1-x2)^2+(y1-y2)^2(注:根號(hào)下(x1-x2)與(y1-y2)的平方和)

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)7

          知識(shí)點(diǎn)總結(jié)

          本節(jié)知識(shí)包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱性和函數(shù)的圖象等知識(shí)點(diǎn)。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱性是學(xué)習(xí)函數(shù)的圖象的'基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個(gè)知識(shí)點(diǎn),函數(shù)的圖象就迎刃而解了。

          一、函數(shù)的單調(diào)性

          1、函數(shù)單調(diào)性的定義

          2、函數(shù)單調(diào)性的判斷和證明:(1)定義法 (2)復(fù)合函數(shù)分析法 (3)導(dǎo)數(shù)證明法 (4)圖象法

          二、函數(shù)的奇偶性和周期性

          1、函數(shù)的奇偶性和周期性的定義

          2、函數(shù)的奇偶性的判定和證明方法

          3、函數(shù)的周期性的判定方法

          三、函數(shù)的圖象

          1、函數(shù)圖象的作法 (1)描點(diǎn)法 (2)圖象變換法

          2、圖象變換包括圖象:平移變換、伸縮變換、對(duì)稱變換、翻折變換。

          常見考法

          本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。

          誤區(qū)提醒

          1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。

          2、單調(diào)區(qū)間必須用區(qū)間來表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點(diǎn)問題。

          3、在多個(gè)單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號(hào)隔開。

          4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱,則函數(shù)一定是非奇非偶函數(shù)。

          5、作函數(shù)的圖象,一般是首先化簡解析式,然后確定用描點(diǎn)法或圖象變換法作函數(shù)的圖象。

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)8

          解三角形

          (1)正弦定理和余弦定理

          掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題.

          (2)應(yīng)用

          能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測量和幾何計(jì)算有關(guān)的實(shí)際問題.

          數(shù)列

          (1)數(shù)列的概念和簡單表示法

         、倭私鈹(shù)列的.概念和幾種簡單的表示方法(列表、圖象、通項(xiàng)公式).

         、诹私鈹(shù)列是自變量為正整數(shù)的一類函數(shù).

          (2)等差數(shù)列、等比數(shù)列

         、倮斫獾炔顢(shù)列、等比數(shù)列的概念.

         、谡莆盏炔顢(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式.

         、勰茉诰唧w的問題情境中,識(shí)別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問題.

          ④了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)9

          第一章:解三角形

          1、正弦定理:在C中,a、b、c分別為角、、C的對(duì)邊,R為C的外接圓的半徑,則有asinbsina2RcsinC2R.

          2、正弦定理的變形公式:①a2Rsin,b2Rsin,c2RsinC;②sin,sinb2R,sinCc2R;(正弦定理的變形經(jīng)常用在有三角函數(shù)的等式中)③a:b:csin:sin:sinC;④abcsinsinsinCsinsinsinC111bcsinabsinCacsin.222abc.

          3、三角形面積公式:SC

          4、余定理:在C中,有a2b2c22bccos,b2a2c22accos,cab2abcosC.222

          5、余弦定理的推論:cosbca2bc222,cosacb2ac222,cosCabc2ab222.

          6、設(shè)a、b、c是C的角、、C的對(duì)邊,則:①若a2b2c2,則C90為直角三角形;②若a2b2c2,則C90為銳角三角形;③若a2b2c2,則C90為鈍角三角形.

          第二章:數(shù)列

          1、數(shù)列:按照一定順序排列著的一列數(shù).

          2、數(shù)列的項(xiàng):數(shù)列中的每一個(gè)數(shù).

          3、有窮數(shù)列:項(xiàng)數(shù)有限的數(shù)列.

          4、無窮數(shù)列:項(xiàng)數(shù)無限的數(shù)列.

          5、遞增數(shù)列:從第2項(xiàng)起,每一項(xiàng)都不小于它的前一項(xiàng)的數(shù)列.

          6、遞減數(shù)列:從第2項(xiàng)起,每一項(xiàng)都不大于它的前一項(xiàng)的數(shù)列.

          7、常數(shù)列:各項(xiàng)相等的數(shù)列.

          8、擺動(dòng)數(shù)列:從第2項(xiàng)起,有些項(xiàng)大于它的前一項(xiàng),有些項(xiàng)小于它的前一項(xiàng)的數(shù)列.

          9、數(shù)列的通項(xiàng)公式:表示數(shù)列an的第n項(xiàng)與序號(hào)n之間的關(guān)系的公式.

          10、數(shù)列的遞推公式:表示任一項(xiàng)an與它的前一項(xiàng)an1(或前幾項(xiàng))間的關(guān)系的公式.

          11、如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),則這個(gè)數(shù)列稱為等差數(shù)列,這個(gè)常數(shù)稱為等差數(shù)列的公差.

          12、由三個(gè)數(shù)a,,b組成的等差數(shù)列可以看成最簡單的等差數(shù)列,則稱為a與b的等差中項(xiàng).若bac2,則稱b為a與c的等差中項(xiàng).

          13、若等差數(shù)列an的首項(xiàng)是a1,公差是d,則ana1n1d.通項(xiàng)公式的變形:①anamnmd;②a1ann1d;③d⑤danamnmana1n1;④nana1d1;

          14、若an是等差數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等差數(shù)列,且2npq(n、p、q),則2anapaq;下角標(biāo)成等差數(shù)列的項(xiàng)仍是等差數(shù)列;連續(xù)m項(xiàng)和構(gòu)成的數(shù)列成等差數(shù)列。

          15、等差數(shù)列的前n項(xiàng)和的公式:①Snna1an2;②Snna1nn12d.

          16、等差數(shù)列的前n項(xiàng)和的性質(zhì):①若項(xiàng)數(shù)為2nn,則S2nnanan1,且S偶S奇nd,S奇S偶anan1.②若項(xiàng)數(shù)為2n1n,則S2n12n1an,且S奇S偶an,S奇S偶nn1(其中S奇nan,S偶n1an).

          17、如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),則這個(gè)數(shù)列稱為等比數(shù)列,這個(gè)常數(shù)稱為等比數(shù)列的公比.

          18、在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,則G稱為a與b的等比中項(xiàng).若G2ab,則稱G為a與b的等比中項(xiàng).

          19、若等比數(shù)列an的首項(xiàng)是a1,公比是q,則ana1q.

          20、通項(xiàng)公式的'變形:①anamq;②a1anqn1;③qn1ana1;④qnmanam.

          21、若an是等比數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等比數(shù)列,且2npq(n、p、q),則anapaq;下角標(biāo)成等差數(shù)列的項(xiàng)仍是等比數(shù)列;連續(xù)m2項(xiàng)和構(gòu)成的數(shù)列成等比數(shù)列。

          22、等比數(shù)列an的前n項(xiàng)和的公式:Sna11qnaaq.1nq11q1qq1時(shí),Sna11qa11qq,即常數(shù)項(xiàng)與q項(xiàng)系數(shù)互為相反數(shù)。

          23、等比數(shù)列的前n項(xiàng)和的性質(zhì):①若項(xiàng)數(shù)為2nn,則SS偶奇q.n②SnmSnqSm.③Sn,S2nSn,S3nS2n成等比數(shù)列.

          24、an與Sn的關(guān)系:anSnSn1S1n2n1

          一些方法:

          一、求通項(xiàng)公式的方法:

          1、由數(shù)列的前幾項(xiàng)求通項(xiàng)公式:待定系數(shù)法

          ①若相鄰兩項(xiàng)相減后為同一個(gè)常數(shù)設(shè)為anknb,列兩個(gè)方程求解;

         、谌粝噜弮身(xiàng)相減兩次后為同一個(gè)常數(shù)設(shè)為anan2bnc,列三個(gè)方程求解;③若相鄰兩項(xiàng)相減后相除后為同一個(gè)常數(shù)設(shè)為anaq

          2、由遞推公式求通項(xiàng)公式:

          ①若化簡后為an1and形式,可用等差數(shù)列的通項(xiàng)公式代入求解;②若化簡后為an1anf(n),形式,可用疊加法求解;

         、廴艋喓鬄閍n1anq形式,可用等比數(shù)列的通項(xiàng)公式代入求解;

         、苋艋喓鬄閍n1kanb形式,則可化為(an1x)k(anx),從而新數(shù)列{anx}是等比數(shù)列,用等比數(shù)列求解{anx}的通項(xiàng)公式,再反過來求原來那個(gè)。(其中x是用待定系數(shù)法來求得)3、由求和公式求通項(xiàng)公式:

         、賏1S1②anSnSn1③檢驗(yàn)a1是否滿足an,若滿足則為an,不滿足用分段函數(shù)寫。

          4、其他

         。1)anan1fn形式,fn便于求和,方法:迭加;

          例如:anan1n1有:anan1n1a2a13a3a24anan1n1各式相加得ana134n1a1nb,q為相除后的常數(shù),列兩個(gè)方程求解;

          n4n1(2)anan12anan1形式,同除以anan1,構(gòu)造倒數(shù)為等差數(shù)列;

          anan1anan121an1例如:anan12anan1,則1,即為以-2為公差的等差數(shù)列。anan1(3)anqan1m形式,q1,方法:構(gòu)造:anxqan1x為等比數(shù)列;

          例如:an2an12,通過待定系數(shù)法求得:an22an12,即an2等比,公比為2。(4)anqan1pnr形式:構(gòu)造:anxnyqan1xn1y為等比數(shù)列;(5)anqan1p形式,同除p,轉(zhuǎn)化為上面的幾種情況進(jìn)行構(gòu)造;因?yàn)閍nqan1pn,則anpnqan1ppn11,若qp1轉(zhuǎn)化為(1)的方法,若不為1,轉(zhuǎn)化為(3)的方法

          二、等差數(shù)列的求和最值問題:(二次函數(shù)的配方法;通項(xiàng)公式求臨界項(xiàng)法)

         、偃簪谌鬭k0,則Sn有最大值,當(dāng)n=k時(shí)取到的最大值k滿足d0a0k1a10a10ak0,則Sn有最小值,當(dāng)n=k時(shí)取到的最大值k滿足d0a0k1

          三、數(shù)列求和的方法:

          ①疊加法:倒序相加,具備等差數(shù)列的相關(guān)特點(diǎn)的,倒序之后和為定值;

         、阱e(cuò)位相減法:適用于通項(xiàng)公式為等差的一次函數(shù)乘以等比的數(shù)列形式,如:an2n13;n③分式時(shí)拆項(xiàng)累加相約法:適用于分式形式的通項(xiàng)公式,把一項(xiàng)拆成兩個(gè)或多個(gè)的差的形式。如:an1nn11n1n1,an12n12n1111等;22n12n1④一項(xiàng)內(nèi)含有多部分的拆開分別求和法:適用于通項(xiàng)中能分成兩個(gè)或幾個(gè)可以方便求和的部分,如:an2n1等;

          四、綜合性問題中

         、俚炔顢(shù)列中一些在加法和乘法中設(shè)一些數(shù)為ad和ad類型,這樣可以相加約掉,相乘為平方差;②等比數(shù)列中一些在加法和乘法中設(shè)一些數(shù)為aq和aq類型,這樣可以相乘約掉。

          第三章:不等式

          1、ab0ab;ab0ab;ab0ab.比較兩個(gè)數(shù)的大小可以用相減法;相除法;平方法;開方法;倒數(shù)法等等。

          2、不等式的性質(zhì):①abba;②ab,bcac;③abacbc;④ab,c0acbc,ab,c0acbc;⑤ab,cdacbd;⑥ab0,cd0acbd;⑦ab0ab⑧ab0nnnn,n1;anbn,n1.

          3、一元二次不等式:只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式.

          4、二次函數(shù)的圖象、一元二次方程的根、一元二次不等式的解集間的關(guān)系:判別式b4ac201二次函數(shù)yaxbxc2a0的圖象有兩個(gè)相異實(shí)數(shù)根一元二次方程axbxc02有兩個(gè)相等實(shí)數(shù)根a0的根axbxc0一元二次不等式的解集2x1,2b2ax1x2b2a沒有實(shí)數(shù)根x1x2a0axbxc02xxx1或xx2bxx2aRa0xx1xx2

          5、二元一次不等式:含有兩個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1的不等式.

          6、二元一次不等式組:由幾個(gè)二元一次不等式組成的不等式組.

          7、二元一次不等式(組)的解集:滿足二元一次不等式組的x和y的取值構(gòu)成有序數(shù)對(duì)x,y,所有這樣的有序數(shù)對(duì)x,y構(gòu)成的集合.

          8、在平面直角坐標(biāo)系中,已知直線xyC0,坐標(biāo)平面內(nèi)的點(diǎn)x0,y0.①若0,x0y0C0,則點(diǎn)x0,y0在直線xyC0的上方.②若0,x0y0C0,則點(diǎn)x0,y0在直線xyC0的下方.

          9、在平面直角坐標(biāo)系中,已知直線xyC0.①若0,則xyC0表示直線xyC0上方的區(qū)域;xyC0表示直線xyC0下方的區(qū)域.②若0,則xyC0表示直線xyC0下方的區(qū)域;xyC0表示直線xyC0上方的區(qū)域.

          10、線性約束條件:由x,y的不等式(或方程)組成的不等式組,是x,y的線性約束條件.目標(biāo)函數(shù):欲達(dá)到最大值或最小值所涉及的變量x,y的解析式.線性目標(biāo)函數(shù):目標(biāo)函數(shù)為x,y的一次解析式.線性規(guī)劃問題:求線性目標(biāo)函數(shù)在線性約束條件下的最大值或最小值問題.可行解:滿足線性約束條件的解x,y.可行域:所有可行解組成的集合.最優(yōu)解:使目標(biāo)函數(shù)取得最大值或最小值的可行解.

          11、設(shè)a、b是兩個(gè)正數(shù),則ab稱為正數(shù)a、b的算術(shù)平均數(shù),ab稱為正數(shù)a、b的幾何平均數(shù).

          12、均值不等式定理:若a0,b0,則ab2ab,即ab2ab.

          13、常用的基本不等式:①a2b22aba,bR;22②abab2a,bR;③abab2a2b2ab22a0,b0;④22a,bR.

          14、極值定理:設(shè)x、y都為正數(shù),則有s(和為定值),則當(dāng)xy時(shí),積xy取得最大值s2⑴若xy.4⑵若xyp(積為定值),則當(dāng)xy時(shí),和xy取得最小值2p.

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)10

          棱錐

          棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐

          棱錐的的性質(zhì):

          (1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形

          (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方

          正棱錐

          正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

          正棱錐的性質(zhì):

          (1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的`等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

          (3)多個(gè)特殊的直角三角形

          esp:

          a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

          b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)11

          1、正弦定理:在C中,a、b、c分別為角、、C的對(duì)邊,R為C的外接圓的半徑,則有asinbsincsinC2R.

          2、正弦定理的變形公式:①a2Rsin,b2Rsin,c2RsinC;②sin④a2R,sinb2R,sinCabsinc2R;③a:b:csin:sin:sinC;csinCabcsinsinsinCsin.(正弦定理主要用來解決兩類問題:1、已知兩邊和其中一邊所對(duì)的角,求其余的量。2、已知兩角和一邊,求其余的量。)⑤對(duì)于已知兩邊和其中一邊所對(duì)的角的題型要注意解的情況。(一解、兩解、無解三中情況)如:在三角形ABC中,已知a、b、A(A為銳角)求B。具體的做法是:數(shù)形結(jié)合思想畫出圖:法一:把a(bǔ)擾著C點(diǎn)旋轉(zhuǎn),看所得軌跡以AD有無交點(diǎn):當(dāng)無交點(diǎn)則B無解、當(dāng)有一個(gè)交點(diǎn)則B有一解、當(dāng)有兩個(gè)交點(diǎn)則B有兩個(gè)解。法二:是算出CD=bsinA,看a的情況:當(dāng)a但不能到達(dá),在岸邊選取相距3千米的C、D兩點(diǎn),并測得∠ACB=75O,∠BCD=45O,∠ADC=30O,∠ADB=45(A、B、C、D在同一平面內(nèi)),求兩目標(biāo)A、B之間的距離。本題解答過程略附:三角形的五個(gè)“心”;重心:三角形三條中線交點(diǎn).外心:三角形三邊垂直平分線相交于一點(diǎn).內(nèi)心:三角形三內(nèi)角的平分線相交于一點(diǎn).垂心:三角形三邊上的高相交于一點(diǎn).

          7、數(shù)列:按照一定順序排列著的一列數(shù).

          8、數(shù)列的項(xiàng):數(shù)列中的每一個(gè)數(shù).

          9、有窮數(shù)列:項(xiàng)數(shù)有限的數(shù)列.

          10、無窮數(shù)列:項(xiàng)數(shù)無限的數(shù)列.

          11、遞增數(shù)列:從第2項(xiàng)起,每一項(xiàng)都不小于它的前一項(xiàng)的數(shù)列(即:an+1>an).

          12、遞減數(shù)列:從第2項(xiàng)起,每一項(xiàng)都不大于它的前一項(xiàng)的數(shù)列(即:an+1④nana1d1;⑤danamnm.

          21、若an是等差數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等差數(shù)列,且2npq(n、p、q),則2anapaq.

          22、等差數(shù)列的前n項(xiàng)和的公式:①Snna1an2;②Snna1nn12d.③sna1a2an

          23、等差數(shù)列的前n項(xiàng)和的性質(zhì):①若項(xiàng)數(shù)為2nn,則S2nnanan1,且S偶S奇nd,S奇S偶anan1.S奇S偶nn1②若項(xiàng)數(shù)為2n1n,則S2n12n1an,且S奇S偶an,S偶n1an)(其中S奇nan,

          24、如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),則這個(gè)數(shù)列稱為等比數(shù)列,這個(gè)常數(shù)稱為等比數(shù)列的公比.符號(hào)表示:an1anq(注:①等比數(shù)列中不會(huì)出現(xiàn)值為0的項(xiàng);②同號(hào)位上的值同號(hào))注:看數(shù)列是不是等比數(shù)列有以下四種方法: 2①anan1q(n2,q為常數(shù),且0)②anan1an1(n2,anan1an10)③ancqn(c,q為非零常數(shù)).④正數(shù)列{an}成等比的充要條件是數(shù)列{logxan}(x1)成等比數(shù)列.

          25、在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,則G稱為a與b的等比中項(xiàng).若Gab,22則稱G為a與b的等比中項(xiàng).(注:由Gab不能得出a,G,b成等比,由a,G,bGab)2n1

          26、若等比數(shù)列an的首項(xiàng)是a1,公比是q,則ana1q.

          27、通項(xiàng)公式的變形:①anamqnm;②a1anqn1;③qn1ana1;④qnmanam.

          28、若an是等比數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等比數(shù)列,且2npq(n、p、q),則anapaq.na1q1

          29、等比數(shù)列an的前n項(xiàng)和的公式:①Sna1qnaaq.②sn1n1q11q1q2a1a2an

          30、對(duì)任意的數(shù)列{an}的前n項(xiàng)和Sn與通項(xiàng)an的關(guān)系:ans1a1(n1)snsn1(n2)

          [注]:①ana1n1dnda1d(d可為零也可不為零→為等差數(shù)列充要條件(即常數(shù)列也是等差數(shù)列)→若d不為0,則是等差數(shù)列充分條件).②等差{an}前n項(xiàng)和Sndddd22AnBnna1n→222可以為零也可不為零→為等差的充要條件→若為零,則是等差數(shù)列的充分條件;若d不為零,則是等差數(shù)列的充分條件.

         、鄯橇愠(shù)列既可為等比數(shù)列,也可為等差數(shù)列.(不是非零,即不可能有等比數(shù)列)..附:幾種常見的數(shù)列的思想方法:⑴等差數(shù)列的前n項(xiàng)和為Sn,在d0時(shí),有最大值.如何確定使Sn取最大值時(shí)的n值,有兩種方法:

          d2n2一是求使an0,an10,成立的n值;二是由Sn數(shù)列通項(xiàng)公式、求和公式與函數(shù)對(duì)應(yīng)關(guān)系如下:數(shù)列等差數(shù)列等比數(shù)列數(shù)列等差數(shù)列前n項(xiàng)和公式通項(xiàng)公式(a1d2)n利用二次函數(shù)的性質(zhì)求n的值.

          對(duì)應(yīng)函數(shù)(時(shí)為一次函數(shù))(指數(shù)型函數(shù))對(duì)應(yīng)函數(shù)(時(shí)為二次函數(shù))等比數(shù)列(指數(shù)型函數(shù))我們用函數(shù)的觀點(diǎn)揭開了數(shù)列神秘的“面紗”,將數(shù)列的通項(xiàng)公式以及前n項(xiàng)和看成是關(guān)于n的函數(shù),為我們解決數(shù)列有關(guān)問題提供了非常有益的啟示。

          例題:1、等差數(shù)列分析:因?yàn)橹校,則.是等差數(shù)列,所以是關(guān)于n的一次函數(shù),一次函數(shù)圖像是一條直線,則(n,m),(m,n),(m+n,)三點(diǎn)共線,所以利用每兩點(diǎn)形成直線斜率相等,即,得=0(圖像如上),這里利用等差數(shù)列通項(xiàng)公式與一次函數(shù)的對(duì)應(yīng)關(guān)系,并結(jié)合圖像,直觀、簡潔。

          例題:2、等差數(shù)列中,,前n項(xiàng)和為,若,n為何值時(shí)最大?

          分析:等差數(shù)列前n項(xiàng)和可以看成關(guān)于n的二次函數(shù)=,是拋物線=上的離散點(diǎn),根據(jù)題意,,則因?yàn)橛笞畲蟆W畲笾,故其?duì)應(yīng)二次函數(shù)圖像開口向下,并且對(duì)稱軸為,即當(dāng)時(shí),

          例題:3遞增數(shù)列,對(duì)任意正整數(shù)n,遞增得到:恒成立,設(shè)恒成立,求恒成立,即,則只需求出。,因?yàn)槭沁f的最大值即

          分析:構(gòu)造一次函數(shù),由數(shù)列恒成立,所以可,顯然有最大值對(duì)一切對(duì)于一切,所以看成函數(shù)的取值范圍是:構(gòu)造二次函數(shù),,它的定義域是增數(shù)列,即函數(shù)為遞增函數(shù),單調(diào)增區(qū)間為,拋物線對(duì)稱軸,因?yàn)楹瘮?shù)f(x)為離散函數(shù),要函數(shù)單調(diào)遞增,就看動(dòng)軸與已知區(qū)間的位置。從對(duì)應(yīng)圖像上看,對(duì)稱軸的左側(cè)在也可以(如圖),因?yàn)榇藭r(shí)B點(diǎn)比A點(diǎn)高。于是,,得⑵如果數(shù)列可以看作是一個(gè)等差數(shù)列與一個(gè)等比數(shù)列的對(duì)應(yīng)項(xiàng)乘積,求此數(shù)列前n項(xiàng)和可依照等比數(shù)列前n項(xiàng)和的推倒導(dǎo)方法:錯(cuò)位相減求和.例如:112,314,...(2n1)12n,...⑶兩個(gè)等差數(shù)列的相同項(xiàng)亦組成一個(gè)新的等差數(shù)列,此等差數(shù)列的首項(xiàng)就是原兩個(gè)數(shù)列的第一個(gè)相同項(xiàng),公差是兩個(gè)數(shù)列公差d1,d2的最小公倍數(shù).

          2.判斷和證明數(shù)列是等差(等比)數(shù)列常有三種方法:(1)定義法:對(duì)于n≥2的任意自然數(shù),驗(yàn)證anan1(anan1)為同一常數(shù)。(2)通項(xiàng)公式法。(3)中項(xiàng)公式法:驗(yàn)證

          2an1anan2(an1anan2)nN都成立。2am03.在等差數(shù)列{an}中,有關(guān)Sn的最值問題:(1)當(dāng)a1>0,d把①式兩邊同乘2后得2sn=122232n2234n1②

          用①-②,即:123nsn=122232n2①2sn=122232n2234n1②得sn12222n22(12)12n1n23nn1n2n122n2n1n1(1n)22∴sn(n1)2n12

          4.倒序相加法:類似于等差數(shù)列前n項(xiàng)和公式的推導(dǎo)方法.5.常用結(jié)論1):1+2+3+...+n=n(n1)2212)1+3+5+...+(2n-1)=n3)12nn(n1)2223334)123n22216n(n1)(2n1)5)

          1n(n1)1n1n11n(n2)1pq111()2nn21qp1p1q6)()(pq)

          31、ab0ab;ab0ab;ab0ab.

          32、不等式的性質(zhì):①abba;②ab,bcac;③abacbc;④ab,c0acbc,ab,c0acbc;⑤ab,cdacbd;nd0acabdb0a⑥;⑦⑧ab0nnbn,n1;anbn,n1.

          33、一元二次不等式:只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式.

          34、含絕對(duì)值不等式、一元二次不等式的解法及延伸1.整式不等式(高次不等式)的解法

          穿根法(零點(diǎn)分段法)求解不等式:a0xa1xnn1a2xn2an0(0)(a00)

          解法:①將不等式化為a0(x-x1)(x-x2)(x-xm)>0(0”,則找“線”在x軸上方的區(qū)間;若不等式是“

          由圖可看出不等式x23x26x80的解集為:

          x|2x1,或x4

          (x1)(x2)(x5)(x6)(x4)0的解集。

          例題:求解不等式

          解:略

          一元二次不等式的求解:

          特例①一元一次不等式ax>b解的討論;

          ②一元二次不等式ax+bx+c>0(a>0)解的討論.

          二次函數(shù)yax22

          000bxc有兩相異實(shí)根x1,x2(x1x2)(a0)的'圖象一元二次方程ax2有兩相等實(shí)根x1x2b2abxc0a0的根2無實(shí)根Raxbxc0(a0)的解集axbxc0(a0)的解集2xxx或xx12bxx2axx1xx2對(duì)于a0(或

          f(x)g(x)(2)轉(zhuǎn)化為整式不等式(組)

          1xf(x)g(x)0f(x)g(x)0;f(x)g(x)00g(x)0g(x)

          f(x)例題:求解不等式:解:略例題:求不等式

          xx11

          1的解集。

          3.含絕對(duì)值不等式的解法:基本形式:

          ①型如:|x|<a(a>0)的不等式的解集為:x|axa②型如:|x|>a(a>0)的不等式的解集為:x|xa,或xa變型:

          其中-c3x23x23x2(x2)(x3)10xR③當(dāng)x2時(shí),(去絕對(duì)值符號(hào))原不等式化為:x2x292x9(x2)(x3)102x2由①②③得原不等式的解集為:x|112x9(注:是把①②③的解集并在一起)2y函數(shù)圖像法:

          令f(x)|x2||x3|

          2x1(x3)則有:f(x)5(3x2)

          2x1(x2)f(x)=1051123o292x在直角坐標(biāo)系中作出此分段函數(shù)及f(x)10的圖像如圖11292由圖像可知原不等式的解集為:x|x4.一元二次方程ax2+bx+c=0(a>0)的實(shí)根的分布常借助二次函數(shù)圖像來分析:y設(shè)ax2+bx+c=0的兩根為、,f(x)=ax2+bx+c,那么:0①若兩根都大于0,即0,0,則有0

          0o對(duì)稱軸x=b2ax

          0b0②若兩根都小于0,即0,0,則有2af(0)0y

          11

          對(duì)稱軸x=b2aox

          ③若兩根有一根小于0一根大于0,即0,則有f(0)0

         、苋魞筛趦蓪(shí)數(shù)m,n之間,即mn,

          0bnm則有2af(m)0of(n)0yoxymX=b2anx⑤若兩個(gè)根在三個(gè)實(shí)數(shù)之間,即mtn,

          yf(m)0則有f(t)0

          f(n)0

          常由根的分布情況來求解出現(xiàn)在a、b、c位置上的參數(shù)

          例如:若方程x2(m1)xm2m30有兩個(gè)正實(shí)數(shù)根,求m的取值范圍。

          4(m1)24(m22m3)00m1m1m3解:由①型得02(m1)00m1,或m32m2m3022omX=tb2anx所以方程有兩個(gè)正實(shí)數(shù)根時(shí),m3。

          又如:方程xxm10的一根大于1,另一根小于1,求m的范圍。

          55220m(1)4(m1)02解:因?yàn)橛袃蓚(gè)不同的根,所以由21m122f(1)011m101m122

          35、二元一次不等式:含有兩個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1的不等式.

          36、二元一次不等式組:由幾個(gè)二元一次不等式組成的不等式組.

          37、二元一次不等式(組)的解集:滿足二元一次不等式組的x和y的取值構(gòu)成有序數(shù)對(duì)x,y,所有這樣的有序數(shù)對(duì)x,y構(gòu)成的集合.

          38、在平面直角坐標(biāo)系中,已知直線xyC0,坐標(biāo)平面內(nèi)的點(diǎn)x0,y0.①若0,x0y0C0,則點(diǎn)x0,y0在直線xyC0的上方.②若0,x0y0C0,則點(diǎn)x0,y0在直線xyC0的下方.

          39、在平面直角坐標(biāo)系中,已知直線xyC0.(一)由B確定:①若0,則xyC0表示直線xyC0上方的區(qū)域;xyC0表示直線xyC0下方的區(qū)域.

         、谌0,則xyC0表示直線xyC0下方的區(qū)域;xyC0表示直線 xyC0上方的區(qū)域.

         。ǘ┯葾的符號(hào)來確定:先把x的系數(shù)A化為正后,看不等號(hào)方向:①若是“>”號(hào),則xyC0所表示的區(qū)域?yàn)橹本l:xyC0的右邊部分。②若是“線性規(guī)劃問題:求線性目標(biāo)函數(shù)在線性約束條件下的最大值或最小值問題.可行解:滿足線性約束條件的解x,y.可行域:所有可行解組成的集合.最優(yōu)解:使目標(biāo)函數(shù)取得最大值或最小值的可行解.

          41、設(shè)a、b是兩個(gè)正數(shù),則ab2稱為正數(shù)a、b的算術(shù)平均數(shù),ab稱為正數(shù)a、b的幾何平均數(shù).a(chǎn)b2ab.

          42、均值不等式定理:若a0,b0,則ab2ab,即

          43、常用的基本不等式:①ab2aba,bR;②ab222ab222a,bR;③abab2a0,b0;2④ab222ab2a,bR.

          44、極值定理:設(shè)x、y都為正數(shù),則有:

          ⑴若xys(和為定值),則當(dāng)xy時(shí),積xy取得最大值s42.⑵若xyp(積為定值),則當(dāng)xy時(shí),和xy取得最小值2例題:已知x解:∵x5454p.14x5,求函數(shù)f(x)4x2的最大值。

          ,∴4x50由原式可以化為:f(x)4x55214x5(54x)154x3[(54x)154x]3(54x)154x3132當(dāng)54x154x2,即(54x)1x1,或x32(舍去)時(shí)取到“=”號(hào)也就是說當(dāng)x1時(shí)有f(x)max2

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)12

          數(shù)學(xué)是利用符號(hào)語言研究數(shù)量、結(jié)構(gòu)、變化以及空間模型等概念的一門學(xué)科。小編準(zhǔn)備了高一數(shù)學(xué)必修1期末考知識(shí)點(diǎn),希望你喜歡。

          一、集合有關(guān)概念

          1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素.

          2、集合的中元素的三個(gè)特性:

          1.元素的確定性; 2.元素的互異性; 3.元素的無序性

          說明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素.

          (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素.

          (3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.

          (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性.

          3、集合的表示:{ } 如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

          1. 用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

          2.集合的表示方法:列舉法與描述法.

          注意。撼S脭(shù)集及其記法:

          非負(fù)整數(shù)集(即自然數(shù)集)記作:N

          正整數(shù)集 N*或N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R

          關(guān)于屬于的概念

          集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 a?A

          列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號(hào)括上.

          描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法.用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法.

         、僬Z言描述法:例:{不是直角三角形的三角形}

         、跀(shù)學(xué)式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}

          4、集合的分類:

          1.有限集 含有有限個(gè)元素的集合

          2.無限集 含有無限個(gè)元素的集合

          3.空集 不含任何元素的集合 例:{x|x2=-5}

          二、集合間的基本關(guān)系

          1.包含關(guān)系子集

          注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.

          反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

          2.相等關(guān)系(55,且55,則5=5)

          實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} 元素相同

          結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

         、 任何一個(gè)集合是它本身的子集.AA

          ②真子集:如果AB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A)

         、廴绻 AB, BC ,那么 AC

         、 如果AB 同時(shí) BA 那么A=B

          3. 不含任何元素的集合叫做空集,記為

          規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集.

          三、集合的.運(yùn)算

          1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

          記作AB(讀作A交B),即AB={x|xA,且xB}.

          2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}.

          3、交集與并集的性質(zhì):AA = A, A=, AB = BA,AA = A,

          A= A ,AB = BA.

          4、全集與補(bǔ)集

          (1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

          (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集.通常用U來表示.

          (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)13

          不等式

          不等關(guān)系

          了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.

          (2)一元二次不等式

         、贂(huì)從實(shí)際情境中抽象出一元二次不等式模型.

          ②通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.

         、蹠(huì)解一元二次不等式,對(duì)給定的一元二次不等式,會(huì)設(shè)計(jì)求解的`程序框圖.

          (3)二元一次不等式組與簡單線性規(guī)劃問題

          ①會(huì)從實(shí)際情境中抽象出二元一次不等式組.

         、诹私舛淮尾坏仁降膸缀我饬x,能用平面區(qū)域表示二元一次不等式組.

         、蹠(huì)從實(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.

          (4)基本不等式:

          ①了解基本不等式的證明過程.

         、跁(huì)用基本不等式解決簡單的(小)值問題圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)14

          集合的運(yùn)算

          運(yùn)算類型交 集并 集補(bǔ) 集

          定義域 R定義域 R

          值域>0值域>0

          在R上單調(diào)遞增在R上單調(diào)遞減

          非奇非偶函數(shù)非奇非偶函數(shù)

          函數(shù)圖象都過定點(diǎn)(0,1)函數(shù)圖象都過定點(diǎn)(0,1)

          注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:

         。1)在[a,b]上, 值域是 或 ;

         。2)若 ,則 ; 取遍所有正數(shù)當(dāng)且僅當(dāng) ;

         。3)對(duì)于指數(shù)函數(shù) ,總有 ;

          二、對(duì)數(shù)函數(shù)

          (一)對(duì)數(shù)

          1.對(duì)數(shù)的概念:

          一般地,如果 ,那么數(shù) 叫做以 為底 的對(duì)數(shù),記作: ( — 底數(shù), — 真數(shù), — 對(duì)數(shù)式)

          說明:○1 注意底數(shù)的限制 ,且 ;

          ○2 ;

          ○3 注意對(duì)數(shù)的書寫格式.

          兩個(gè)重要對(duì)數(shù):

          ○1 常用對(duì)數(shù):以10為底的對(duì)數(shù) ;

          ○2 自然對(duì)數(shù):以無理數(shù) 為底的對(duì)數(shù)的對(duì)數(shù) .

          指數(shù)式與對(duì)數(shù)式的互化

          冪值 真數(shù)

         。 N = b

          底數(shù)

          指數(shù) 對(duì)數(shù)

         。ǘ⿲(duì)數(shù)的運(yùn)算性質(zhì)

          如果 ,且 , , ,那么:

          ○1 + ;

          ○2 - ;

          ○3 .

          注意:換底公式: ( ,且 ; ,且 ; ).

          利用換底公式推導(dǎo)下面的結(jié)論:(1) ;(2) .

          (3)、重要的公式 ①、負(fù)數(shù)與零沒有對(duì)數(shù); ②、 , ③、對(duì)數(shù)恒等式

         。ǘ⿲(duì)數(shù)函數(shù)

          1、對(duì)數(shù)函數(shù)的概念:函數(shù) ,且 叫做對(duì)數(shù)函數(shù),其中 是自變量,函數(shù)的'定義域是(0,+∞).

          注意:○1 對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如: , 都不是對(duì)數(shù)函數(shù),而只能稱其為對(duì)數(shù)型函數(shù).

          ○2 對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制: ,且 .

          2、對(duì)數(shù)函數(shù)的性質(zhì):

          a>10

          定義域x>0定義域x>0

          值域?yàn)镽值域?yàn)镽

          在R上遞增在R上遞減

          函數(shù)圖象都過定點(diǎn)(1,0)函數(shù)圖象都過定點(diǎn)(1,0)

         。ㄈ﹥绾瘮(shù)

          1、冪函數(shù)定義:一般地,形如 的函數(shù)稱為冪函數(shù),其中 為常數(shù).

          2、冪函數(shù)性質(zhì)歸納.

         。1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(diǎn)(1,1);

         。2) 時(shí),冪函數(shù)的圖象通過原點(diǎn),并且在區(qū)間 上是增函數(shù).特別地,當(dāng) 時(shí),冪函數(shù)的圖象下凸;當(dāng) 時(shí),冪函數(shù)的圖象上凸;

         。3) 時(shí),冪函數(shù)的圖象在區(qū)間 上是減函數(shù).在第一象限內(nèi),當(dāng) 從右邊趨向原點(diǎn)時(shí),圖象在 軸右方無限地逼近 軸正半軸,當(dāng) 趨于 時(shí),圖象在 軸上方無限地逼近 軸正半軸.

          第四章 函數(shù)的應(yīng)用

          一、方程的根與函數(shù)的零點(diǎn)

          1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù) ,把使 成立的實(shí)數(shù) 叫做函數(shù) 的零點(diǎn)。

          2、函數(shù)零點(diǎn)的意義:函數(shù) 的零點(diǎn)就是方程 實(shí)數(shù)根,亦即函數(shù) 的圖象與 軸交點(diǎn)的橫坐標(biāo)。

          即:方程 有實(shí)數(shù)根 函數(shù) 的圖象與 軸有交點(diǎn) 函數(shù) 有零點(diǎn).

          3、函數(shù)零點(diǎn)的求法:

          ○1 (代數(shù)法)求方程 的實(shí)數(shù)根;

          ○2 (幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù) 的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).

          4、二次函數(shù)的零點(diǎn):

          二次函數(shù) .

         。1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

         。2)△=0,方程 有兩相等實(shí)根,二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

         。3)△<0,方程 無實(shí)根,二次函數(shù)的圖象與 軸無交點(diǎn),二次函數(shù)無零點(diǎn).

          5.函數(shù)的模型

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)15

          二次函數(shù)

          I.定義與定義表達(dá)式

          一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

          (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

          則稱y為x的二次函數(shù)。

          二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

          II.二次函數(shù)的三種表達(dá)式

          一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

          頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]

          交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

          注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

          h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

          III.二次函數(shù)的圖像

          在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

          IV.拋物線的`性質(zhì)

          1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x=-b/2a。對(duì)稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

          特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

          2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

          P(-b/2a,(4ac-b^2)/4a)

          當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。

          3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

          當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。

          |a|越大,則拋物線的開口越小。

        【高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

        高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)12-15

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)01-03

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)01-12

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)07-18

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)05-17

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)03-08

        高一數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)11-08

        (精品)高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)06-14

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納04-20

        高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)15篇12-15

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>