高一數(shù)學(xué)必修知識點(diǎn)總結(jié)15篇
總結(jié)就是對一個(gè)時(shí)期的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的回顧和分析的書面材料,它能夠給人努力工作的動(dòng)力,讓我們好好寫一份總結(jié)吧。那么總結(jié)要注意有什么內(nèi)容呢?下面是小編幫大家整理的高一數(shù)學(xué)必修知識點(diǎn)總結(jié),僅供參考,希望能夠幫助到大家。
高一數(shù)學(xué)必修知識點(diǎn)總結(jié)1
高一數(shù)學(xué)集合有關(guān)概念
集合的含義
集合的中元素的三個(gè)特性:
元素的確定性如:世界上的山
元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合
3。集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N_N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R
列舉法:{a,b,c……}
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{x(R|x—3>2},{x|x—3>2}
語言描述法:例:{不是直角三角形的三角形}
Venn圖:
4、集合的分類:
有限集含有有限個(gè)元素的集合
無限集含有無限個(gè)元素的集合
空集不含任何元素的集合例:{x|x2=—5}
高一數(shù)學(xué)必修知識點(diǎn)總結(jié)2
集合間的基本關(guān)系
1.子集,A包含于B,記為:,有兩種可能
(1)A是B的一部分,
(2)A與B是同一集合,A=B,A、B兩集合中元素都相同。
反之:集合A不包含于集合B,記作。
如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三個(gè)集合的關(guān)系可以表示為,,B=C。A是C的子集,同時(shí)A也是C的真子集。
2.真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)
3、不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。
4、有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-2個(gè)非空真子集。如A={1,2,3,4,5},則集合A有25=32個(gè)子集,25-1=31個(gè)真子集,25-2=30個(gè)非空真子集。
例:集合共有個(gè)子集。(13年高考第4題,簡單)
練習(xí):A={1,2,3},B={1,2,3,4},請問A集合有多少個(gè)子集,并寫出子集,B集合有多少個(gè)非空真子集,并將其寫出來。
解析:
集合A有3個(gè)元素,所以有23=8個(gè)子集。分別為:①不含任何元素的子集Φ;②含有1個(gè)元素的子集{1}{2}{3};③含有兩個(gè)元素的子集{1,2}{1,3}{2,3};④含有三個(gè)元素的子集{1,2,3}。
集合B有4個(gè)元素,所以有24-2=14個(gè)非空真子集。具體的子集自己寫出來。
此處這么羅嗦主要是為了讓同學(xué)們注意寫的順序,數(shù)學(xué)就是要講究嚴(yán)謹(jǐn)性和邏輯性的。一定要養(yǎng)成自己的邏輯習(xí)慣。如果就是為了提高計(jì)算能力倒不如直接去菜場賣菜算了,絕對能飛速提高的,那學(xué)數(shù)學(xué)也沒什么必要了。
高一數(shù)學(xué)必修知識點(diǎn)總結(jié)3
知識點(diǎn)總結(jié)
本節(jié)知識包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性和函數(shù)的圖象等知識點(diǎn)。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個(gè)知識點(diǎn),函數(shù)的圖象就迎刃而解了。
一、函數(shù)的單調(diào)性
1、函數(shù)單調(diào)性的定義
2、函數(shù)單調(diào)性的判斷和證明:(1)定義法 (2)復(fù)合函數(shù)分析法 (3)導(dǎo)數(shù)證明法 (4)圖象法
二、函數(shù)的奇偶性和周期性
1、函數(shù)的奇偶性和周期性的定義
2、函數(shù)的奇偶性的判定和證明方法
3、函數(shù)的周期性的判定方法
三、函數(shù)的圖象
1、函數(shù)圖象的作法 (1)描點(diǎn)法 (2)圖象變換法
2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。
常見考法
本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。
誤區(qū)提醒
1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。
2、單調(diào)區(qū)間必須用區(qū)間來表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點(diǎn)問題。
3、在多個(gè)單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號隔開。
4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點(diǎn)對稱,則函數(shù)一定是非奇非偶函數(shù)。
5、作函數(shù)的圖象,一般是首先化簡解析式,然后確定用描點(diǎn)法或圖象變換法作函數(shù)的圖象。
高一數(shù)學(xué)必修知識點(diǎn)總結(jié)4
集合的運(yùn)算
運(yùn)算類型交 集并 集補(bǔ) 集
定義域 R定義域 R
值域>0值域>0
在R上單調(diào)遞增在R上單調(diào)遞減
非奇非偶函數(shù)非奇非偶函數(shù)
函數(shù)圖象都過定點(diǎn)(0,1)函數(shù)圖象都過定點(diǎn)(0,1)
注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:
。1)在[a,b]上, 值域是 或 ;
。2)若 ,則 ; 取遍所有正數(shù)當(dāng)且僅當(dāng) ;
。3)對于指數(shù)函數(shù) ,總有 ;
二、對數(shù)函數(shù)
(一)對數(shù)
1.對數(shù)的概念:
一般地,如果 ,那么數(shù) 叫做以 為底 的對數(shù),記作: ( — 底數(shù), — 真數(shù), — 對數(shù)式)
說明:○1 注意底數(shù)的限制 ,且 ;
○2 ;
○3 注意對數(shù)的書寫格式.
兩個(gè)重要對數(shù):
○1 常用對數(shù):以10為底的對數(shù) ;
○2 自然對數(shù):以無理數(shù) 為底的對數(shù)的對數(shù) .
指數(shù)式與對數(shù)式的互化
冪值 真數(shù)
。 N = b
底數(shù)
指數(shù) 對數(shù)
(二)對數(shù)的運(yùn)算性質(zhì)
如果 ,且 , , ,那么:
○1 + ;
○2 - ;
○3 .
注意:換底公式: ( ,且 ; ,且 ; ).
利用換底公式推導(dǎo)下面的結(jié)論:(1) ;(2) .
。3)、重要的公式 ①、負(fù)數(shù)與零沒有對數(shù); ②、 , ③、對數(shù)恒等式
。ǘ⿲(shù)函數(shù)
1、對數(shù)函數(shù)的概念:函數(shù) ,且 叫做對數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是(0,+∞).
注意:○1 對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如: , 都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù).
○2 對數(shù)函數(shù)對底數(shù)的限制: ,且 .
2、對數(shù)函數(shù)的性質(zhì):
a>10 定義域x>0定義域x>0 值域?yàn)镽值域?yàn)镽 在R上遞增在R上遞減 函數(shù)圖象都過定點(diǎn)(1,0)函數(shù)圖象都過定點(diǎn)(1,0) 。ㄈ﹥绾瘮(shù) 1、冪函數(shù)定義:一般地,形如 的函數(shù)稱為冪函數(shù),其中 為常數(shù). 2、冪函數(shù)性質(zhì)歸納. 。1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(diǎn)(1,1); 。2) 時(shí),冪函數(shù)的圖象通過原點(diǎn),并且在區(qū)間 上是增函數(shù).特別地,當(dāng) 時(shí),冪函數(shù)的圖象下凸;當(dāng) 時(shí),冪函數(shù)的圖象上凸; 。3) 時(shí),冪函數(shù)的圖象在區(qū)間 上是減函數(shù).在第一象限內(nèi),當(dāng) 從右邊趨向原點(diǎn)時(shí),圖象在 軸右方無限地逼近 軸正半軸,當(dāng) 趨于 時(shí),圖象在 軸上方無限地逼近 軸正半軸. 第四章 函數(shù)的應(yīng)用 一、方程的根與函數(shù)的零點(diǎn) 1、函數(shù)零點(diǎn)的概念:對于函數(shù) ,把使 成立的實(shí)數(shù) 叫做函數(shù) 的零點(diǎn)。 2、函數(shù)零點(diǎn)的意義:函數(shù) 的零點(diǎn)就是方程 實(shí)數(shù)根,亦即函數(shù) 的圖象與 軸交點(diǎn)的橫坐標(biāo)。 即:方程 有實(shí)數(shù)根 函數(shù) 的圖象與 軸有交點(diǎn) 函數(shù) 有零點(diǎn). 3、函數(shù)零點(diǎn)的求法: ○1 (代數(shù)法)求方程 的實(shí)數(shù)根; ○2 (幾何法)對于不能用求根公式的方程,可以將它與函數(shù) 的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn). 4、二次函數(shù)的零點(diǎn): 二次函數(shù) . 。1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn). (2)△=0,方程 有兩相等實(shí)根,二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn). 。3)△<0,方程 無實(shí)根,二次函數(shù)的圖象與 軸無交點(diǎn),二次函數(shù)無零點(diǎn). 5.函數(shù)的模型 【基本初等函數(shù)】 一、指數(shù)函數(shù) 。ㄒ唬┲笖(shù)與指數(shù)冪的運(yùn)算 1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈ 當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù)。此時(shí),的次方根用符號表示。式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand)。 當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù)。此時(shí),正數(shù)的正的次方根用符號表示,負(fù)的次方根用符號—表示。正的次方根與負(fù)的次方根可以合并成±(>0)。由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。 注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí), 2、分?jǐn)?shù)指數(shù)冪 正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定: 0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義 指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。 3、實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì) (二)指數(shù)函數(shù)及其性質(zhì) 1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽。 注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1。 2、指數(shù)函數(shù)的圖象和性質(zhì) 函數(shù)的性質(zhì) 1.函數(shù)的單調(diào)性(局部性質(zhì)) (1)增函數(shù) 設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1 如果對于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1f(x2),那么就說f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間. 注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì); (2)圖象的特點(diǎn) 如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的 (3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法 (A)定義法: (1)任取x1,x2∈D,且x1 (2)作差f(x1)-f(x2);或者做商 (3)變形(通常是因式分解和配方); (4)定號(即判斷差f(x1)-f(x2)的正負(fù)); (5)下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性). (B)圖象法(從圖象上看升降) (C)復(fù)合函數(shù)的單調(diào)性 復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減” 注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集. 8.函數(shù)的奇偶性(整體性質(zhì)) (1)偶函數(shù):一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù). (2)奇函數(shù):一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù). (3)具有奇偶性的函數(shù)的圖象的特征:偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱. 9.利用定義判斷函數(shù)奇偶性的步驟: 1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對稱; 2確定f(-x)與f(x)的關(guān)系; 3作出相應(yīng)結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù). 注意:函數(shù)定義域關(guān)于原點(diǎn)對稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,若不對稱則函數(shù)是非奇非偶函數(shù).若對稱,(1)再根據(jù)定義判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;(3)利用定理,或借助函數(shù)的圖象判定. 10、函數(shù)的解析表達(dá)式 (1)函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域. (2)求函數(shù)的解析式的主要方法有:1.湊配法2.待定系數(shù)法3.換元法4.消參法 11.函數(shù)(小)值 1利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的(小)值 2利用圖象求函數(shù)的(小)值 3利用函數(shù)單調(diào)性的判斷函數(shù)的(小)值: 如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有值f(b); 如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b); 數(shù)學(xué)是利用符號語言研究數(shù)量、結(jié)構(gòu)、變化以及空間模型等概念的一門學(xué)科。小編準(zhǔn)備了高一數(shù)學(xué)必修1期末考知識點(diǎn),希望你喜歡。 一、集合有關(guān)概念 1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素. 2、集合的中元素的三個(gè)特性: 1.元素的確定性; 2.元素的互異性; 3.元素的無序性 說明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素. (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素. (3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣. (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性. 3、集合的表示:{ } 如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5} 2.集合的表示方法:列舉法與描述法. 注意。撼S脭(shù)集及其記法: 非負(fù)整數(shù)集(即自然數(shù)集)記作:N 正整數(shù)集 N*或N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R 關(guān)于屬于的概念 集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 a?A 列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號括上. 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法.用確定的條件表示某些對象是否屬于這個(gè)集合的方法. 、僬Z言描述法:例:{不是直角三角形的三角形} ②數(shù)學(xué)式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32} 4、集合的分類: 1.有限集 含有有限個(gè)元素的集合 2.無限集 含有無限個(gè)元素的集合 3.空集 不含任何元素的集合 例:{x|x2=-5} 二、集合間的基本關(guān)系 1.包含關(guān)系子集 注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合. 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A 2.相等關(guān)系(55,且55,則5=5) 實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} 元素相同 結(jié)論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B 、 任何一個(gè)集合是它本身的子集.AA 、谡孀蛹:如果AB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A) 、廴绻 AB, BC ,那么 AC ④ 如果AB 同時(shí) BA 那么A=B 3. 不含任何元素的集合叫做空集,記為 規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集. 三、集合的運(yùn)算 1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集. 記作AB(讀作A交B),即AB={x|xA,且xB}. 2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}. 3、交集與并集的性質(zhì):AA = A, A=, AB = BA,AA = A, A= A ,AB = BA. 4、全集與補(bǔ)集 (1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集) (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集.通常用U來表示. (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U 高一數(shù)學(xué)必修一知識點(diǎn) 指數(shù)函數(shù) (一)指數(shù)與指數(shù)冪的運(yùn)算 1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_. 當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand). 當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號表示,負(fù)的次方根用符號-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。 注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí), 2.分?jǐn)?shù)指數(shù)冪 正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定: 0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義 指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪. 3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì) (二)指數(shù)函數(shù)及其性質(zhì) 1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽. 注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1. 2、指數(shù)函數(shù)的圖象和性質(zhì) 高一上冊數(shù)學(xué)必修一知識點(diǎn)梳理 空間幾何體表面積體積公式: 1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高) 2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高, 3、a-邊長,S=6a2,V=a3 4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc 5、棱柱S-h-高V=Sh 6、棱錐S-h-高V=Sh/3 7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3 8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6 9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h 10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2) 11、r-底半徑h-高V=πr^2h/3 12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6 14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3 15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6 16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4 17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形) 人教版高一數(shù)學(xué)必修一知識點(diǎn)梳理 1、柱、錐、臺、球的結(jié)構(gòu)特征 (1)棱柱: 定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。 分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。 表示:用各頂點(diǎn)字母,如五棱柱或用對角線的端點(diǎn)字母,如五棱柱。 幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。 (2)棱錐 定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。 分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等 表示:用各頂點(diǎn)字母,如五棱錐 幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。 (3)棱臺: 定義:用一個(gè)平行于棱錐底面的`平面去截棱錐,截面和底面之間的部分。 分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等 表示:用各頂點(diǎn)字母,如五棱臺 幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn) (4)圓柱: 定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。 幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。 (5)圓錐: 定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。 幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。 (6)圓臺: 定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分 幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。 (7)球體: 定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體 幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。 2、空間幾何體的三視圖 定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下) 注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度; 俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度; 側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。 3、空間幾何體的直觀圖——斜二測畫法 斜二測畫法特點(diǎn): 、僭瓉砼cx軸平行的線段仍然與x平行且長度不變; ②原來與y軸平行的線段仍然與y平行,長度為原來的一半。 一、集合及其表示 1、集合的含義: “集合”這個(gè)詞首先讓我們想到的是上體育課或者開會時(shí)老師經(jīng)常喊的“全體集合”。數(shù)學(xué)上的“集合”和這個(gè)意思是一樣的,只不過一個(gè)是動(dòng)詞一個(gè)是名詞而已。 所以集合的含義是:某些指定的對象集在一起就成為一個(gè)集合,簡稱集,其中每一個(gè)對象叫元素。比如高一二班集合,那么所有高一二班的同學(xué)就構(gòu)成了一個(gè)集合,每一個(gè)同學(xué)就稱為這個(gè)集合的元素。 2、集合的表示 通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。 有一些特殊的集合需要記憶: 非負(fù)整數(shù)集(即自然數(shù)集)N正整數(shù)集N_或N+ 整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R 集合的表示方法:列舉法與描述法。 、倭信e法:{a,b,c……} ②描述法:將集合中的元素的公共屬性描述出來。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1} 、壅Z言描述法:例:{不是直角三角形的三角形} 例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2} 強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素 A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。 3、集合的三個(gè)特性 (1)無序性 指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。 例題:集合A={1,2},B={a,b},若A=B,求a、b的值。 解:,A=B 注意:該題有兩組解。 (2)互異性 指集合中的元素不能重復(fù),A={2,2}只能表示為{2} (3)確定性 集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。 1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽. 注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1. 2、指數(shù)函數(shù)的圖象和性質(zhì) 【函數(shù)的應(yīng)用】 1、函數(shù)零點(diǎn)的概念:對于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。 2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即: 方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn). 3、函數(shù)零點(diǎn)的求法: 求函數(shù)的零點(diǎn): 1(代數(shù)法)求方程的實(shí)數(shù)根; 2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn). 4、二次函數(shù)的零點(diǎn): 二次函數(shù). 1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn). 2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn). 3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn). 1.最新高一數(shù)學(xué)知識點(diǎn)5篇總結(jié) 2.最新高一數(shù)學(xué)知識點(diǎn)總結(jié)5篇 3.精選最新高一數(shù)學(xué)知識點(diǎn)總結(jié)歸納5篇 4.最全高一數(shù)學(xué)知識點(diǎn)歸納5篇 5.高一數(shù)學(xué)知識點(diǎn)大全5篇 二次函數(shù) I.定義與定義表達(dá)式 一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.) 則稱y為x的二次函數(shù)。 二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。 II.二次函數(shù)的三種表達(dá)式 一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0) 頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)] 交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線] 注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系: h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a III.二次函數(shù)的圖像 在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。 IV.拋物線的性質(zhì) 1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。 特別地,當(dāng)b=0時(shí),拋物線的對稱軸是y軸(即直線x=0) 2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為 P(-b/2a,(4ac-b^2)/4a) 當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。 3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。 當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。 |a|越大,則拋物線的開口越小。 棱錐 棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐 棱錐的的性質(zhì): (1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形 (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方 正棱錐 正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。 正棱錐的性質(zhì): (1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。 (3)多個(gè)特殊的直角三角形 esp: a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。 b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。 一、集合有關(guān)概念 1.集合的含義 2.集合的中元素的三個(gè)特性: (1)元素的確定性如:世界上的山 (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y} (3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合 3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5} (2)集合的表示方法:列舉法與描述法。 注意:常用數(shù)集及其記法: 非負(fù)整數(shù)集(即自然數(shù)集)記作:N 正整數(shù)集:N_或N+ 整數(shù)集:Z 有理數(shù)集:Q 實(shí)數(shù)集:R 1)列舉法:{a,b,c……} 2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合{xR|x-3>2},{x|x-3>2} 3)語言描述法:例:{不是直角三角形的三角形} 4)Venn圖: 4、集合的分類: (1)有限集含有有限個(gè)元素的集合 (2)無限集含有無限個(gè)元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合間的基本關(guān)系 1.“包含”關(guān)系—子集 注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA 2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5) 實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等” 即:①任何一個(gè)集合是它本身的子集。AíA 、谡孀蛹喝绻鸄íB,且A1B那就說集合A是集合B的真子集,記作AB(或BA) 、廴绻鸄íB,BíC,那么AíC ④如果AíB同時(shí)BíA那么A=B 3.不含任何元素的集合叫做空集,記為Φ 規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。 4.子集個(gè)數(shù): 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集 三、集合的運(yùn)算 運(yùn)算類型交集并集補(bǔ)集 定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}。 由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:AB(讀作‘A并B’),即AB={x|xA,或xB})。 集合間的基本關(guān)系 1.“包含”關(guān)系—子集 注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A 2.“相等”關(guān)系(5≥5,且5≤5,則5=5) 實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同” 結(jié)論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B A?① 任何一個(gè)集合是它本身的子集。A B那就說集合A是集合B的真子集,記作A B(或B A)?B,且A?②真子集:如果A C?C ,那么 A?B, B?③如果 A A 那么A=B?B 同時(shí) B?④ 如果A 3. 不含任何元素的集合叫做空集,記為Φ 規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 集合的運(yùn)算 1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集. 記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}. 3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A. 4、全集與補(bǔ)集 (1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集) A}?S且 x? x?記作: CSA 即 CSA ={x (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來表示。 (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U 1.“包含”關(guān)系—子集 注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA 2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5) 實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等” 即:①任何一個(gè)集合是它本身的子集。AA 、谡孀蛹喝绻鸄B,且AB那就說集合A是集合B的真子集,記作AB(或BA) 、廴绻鸄B,BC,那么AC 、苋绻鸄B同時(shí)BA那么A=B 3.不含任何元素的集合叫做空集,記為Φ 規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集 【高一數(shù)學(xué)必修知識點(diǎn)總結(jié)】相關(guān)文章: 高一數(shù)學(xué)必修知識點(diǎn)總結(jié)12-15 高一數(shù)學(xué)必修五的知識點(diǎn)總結(jié)03-30 高一數(shù)學(xué)必修1知識點(diǎn)總結(jié)09-08 高一數(shù)學(xué)必修一知識點(diǎn)總結(jié)12-07 高一數(shù)學(xué)必修3知識點(diǎn)總結(jié)04-11 高一數(shù)學(xué)必修二知識點(diǎn)總結(jié)11-08 高一數(shù)學(xué)必修一知識點(diǎn)總結(jié)08-09 有關(guān)高一數(shù)學(xué)必修1知識點(diǎn)總結(jié)04-11高一數(shù)學(xué)必修知識點(diǎn)總結(jié)5
高一數(shù)學(xué)必修知識點(diǎn)總結(jié)6
高一數(shù)學(xué)必修知識點(diǎn)總結(jié)7
高一數(shù)學(xué)必修知識點(diǎn)總結(jié)8
高一數(shù)學(xué)必修知識點(diǎn)總結(jié)9
高一數(shù)學(xué)必修知識點(diǎn)總結(jié)10
高一數(shù)學(xué)必修知識點(diǎn)總結(jié)11
高一數(shù)學(xué)必修知識點(diǎn)總結(jié)12
高一數(shù)學(xué)必修知識點(diǎn)總結(jié)13
高一數(shù)學(xué)必修知識點(diǎn)總結(jié)14
高一數(shù)學(xué)必修知識點(diǎn)總結(jié)15