1. <rp id="zsypk"></rp>

      2. 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

        時(shí)間:2023-07-21 15:29:05 知識(shí)點(diǎn)總結(jié) 我要投稿

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(集合20篇)

          總結(jié)就是對(duì)一個(gè)時(shí)期的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的回顧和分析的書面材料,它可以促使我們思考,讓我們來為自己寫一份總結(jié)吧。你所見過的總結(jié)應(yīng)該是什么樣的?下面是小編為大家收集的高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié),僅供參考,歡迎大家閱讀。

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(集合20篇)

          高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

          1.多面體的結(jié)構(gòu)特征

          (1)棱柱有兩個(gè)面相互平行,其余各面都是平行四邊形,每相鄰兩個(gè)四邊形的公共邊平行。

          正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形。

          (2)棱錐的底面是任意多邊形,側(cè)面是有一個(gè)公共頂點(diǎn)的三角形。

          正棱錐:底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過來,正棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的中心。

          (3)棱臺(tái)可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。

          2.旋轉(zhuǎn)體的結(jié)構(gòu)特征

          (1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到.

          (2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到.

          (3)圓臺(tái)可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到。

          (4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到。

          3.空間幾何體的三視圖

          空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖。

          三視圖的`長(zhǎng)度特征:“長(zhǎng)對(duì)正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長(zhǎng),側(cè)視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實(shí)、虛線的畫法。

          4.空間幾何體的直觀圖

          空間幾何體的直觀圖常用斜二測(cè)畫法來畫,基本步驟是:

          (1)畫幾何體的底面

          在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點(diǎn)O,畫直觀圖時(shí),把它們畫成對(duì)應(yīng)的x′軸、y′軸,兩軸相交于點(diǎn)O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸.已知圖形中平行于x軸的線段,在直觀圖中長(zhǎng)度不變,平行于y軸的線段,長(zhǎng)度變?yōu)樵瓉淼囊话搿?/p>

          (2)畫幾何體的高

          在已知圖形中過O點(diǎn)作z軸垂直于xOy平面,在直觀圖中對(duì)應(yīng)的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長(zhǎng)度不變。

          高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

          集合間的基本關(guān)系

          1。“包含”關(guān)系—子集

          注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

          反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

          2!跋嗟取标P(guān)系:A=B(5≥5,且5≤5,則5=5)

          實(shí)例:設(shè)A={x|x2—1=0}B={—1,1}“元素相同則兩集合相等”

          即:①任何一個(gè)集合是它本身的子集。AA

          ②真子集:如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)

         、廴绻鸄B,BC,那么AC

         、苋绻鸄B同時(shí)BA那么A=B

          3。不含任何元素的集合叫做空集,記為Φ

          規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

          有n個(gè)元素的集合,含有2n個(gè)子集,2n—1個(gè)真子集

          集合的運(yùn)算

          運(yùn)算類型交集并集補(bǔ)集

          定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集。記作AB(讀作‘A交B’),即AB={x|xA,且xB}。

          由所有屬于集合A或?qū)儆诩螧的元素所組成的`集合,叫做A,B的并集。記作:AB(讀作‘A并B’),即AB={x|xA,或xB})。

          設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

          高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

          集合具有某種特定性質(zhì)的事物的總體。這里的事物可以是人,物品,也可以是數(shù)學(xué)元素。

          例如:

          1、分散的人或事物聚集到一起;使聚集:緊急~。

          2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。

          3、口號(hào)等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專門研究集合的理論叫做集合論。康托(Cantor,G、F、P、,1845年1918年,德國(guó)數(shù)學(xué)家先驅(qū),是集合論的,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。

          集合,在數(shù)學(xué)上是一個(gè)基礎(chǔ)概念。

          什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下定義。

          集合是把人們的直觀的或思維中的某些確定的'能夠區(qū)分的對(duì)象匯合在一起,使之成為一個(gè)整體(或稱為單體),這一整體就是集合。組成一集合的那些對(duì)象稱為這一集合的元素(或簡(jiǎn)稱為元)。

          集合與集合之間的關(guān)系

          某些指定的對(duì)象集在一起就成為一個(gè)集合集合符號(hào),含有有限個(gè)元素叫有限集,含有無限個(gè)元素叫無限集,空集是不含任何元素的集,記做。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。

         。ㄕf明一下:如果集合A的所有元素同時(shí)都是集合B的元素,則A稱作是B的子集,寫作AB。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作AB。中學(xué)教材課本里將符號(hào)下加了一個(gè)符號(hào),不要混淆,考試時(shí)還是要以課本為準(zhǔn)。所有男人的集合是所有人的集合的真子集。)

          高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

          本節(jié)內(nèi)容主要是空間點(diǎn)、直線、平面之間的位置關(guān)系,在認(rèn)識(shí)過程中,可以進(jìn)一步提高同學(xué)們的空間想象能力,發(fā)展推理能力.通過對(duì)實(shí)際模型的認(rèn)識(shí),學(xué)會(huì)將文字語言轉(zhuǎn)化為圖形語言和符號(hào)語言,以具體的長(zhǎng)方體中的點(diǎn)、線、面之間的關(guān)系作為載體,使同學(xué)們?cè)谥庇^感知的基礎(chǔ)上,認(rèn)識(shí)空間中點(diǎn)、線、面之間的位置關(guān)系,點(diǎn)、線、面的位置關(guān)系是立體幾何的主要研究對(duì)象,同時(shí)也是空間圖形最基本的幾何元素.

          重難點(diǎn)知識(shí)歸納

          1、平面

          (1)平面概念的理解

          直觀的理解:桌面、黑板面、平靜的水面等等都給人以平面的直觀的印象,但它們都不是平面,而僅僅是平面的一部分.

          抽象的理解:平面是平的,平面是無限延展的,平面沒有厚薄.

          (2)平面的表示法

         、賵D形表示法:通常用平行四邊形來表示平面,有時(shí)根據(jù)實(shí)際需要,也用其他的平面圖形來表示平面.

         、谧帜副硎荆撼S玫认ED字母表示平面.

          (3)涉及本部分內(nèi)容的符號(hào)表示有:

          ①點(diǎn)A在直線l內(nèi),記作; ②點(diǎn)A不在直線l內(nèi),記作;

         、埸c(diǎn)A在平面內(nèi),記作; ④點(diǎn)A不在平面內(nèi),記作;

         、葜本l在平面內(nèi),記作; ⑥直線l不在平面內(nèi),記作;

          注意:符號(hào)的使用與集合中這四個(gè)符號(hào)的使用的區(qū)別與聯(lián)系.

          (4)平面的基本性質(zhì)

          公理1:如果一條直線的兩個(gè)點(diǎn)在一個(gè)平面內(nèi),那么這條直線上的所有點(diǎn)都在這個(gè)平面內(nèi).

          符號(hào)表示為:.

          注意:如果直線上所有的點(diǎn)都在一個(gè)平面內(nèi),我們也說這條直線在這個(gè)平面內(nèi),或者稱平面經(jīng)過這條直線.

          公理2:過不在一條直線上的三點(diǎn),有且只有一個(gè)平面.

          符號(hào)表示為:直線AB存在唯一的平面,使得.

          注意:“有且只有”的含義是:“有”表示存在,“只有”表示唯一,不能用“只有”來代替.此公理又可表示為:不共線的三點(diǎn)確定一個(gè)平面.

          公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線.

          符號(hào)表示為:.

          注意:兩個(gè)平面有一條公共直線,我們說這兩個(gè)平面相交,這條公共直線就叫作兩個(gè)平面的交線.若平面、平面相交于直線l,記作.

          公理的推論:

          推論1:經(jīng)過一條直線和直線外的一點(diǎn)有且只有一個(gè)平面.

          推論2:經(jīng)過兩條相交直線有且只有一個(gè)平面.

          推論3:經(jīng)過兩條平行直線有且只有一個(gè)平面.

          2.空間直線

          (1)空間兩條直線的'位置關(guān)系

         、傧嘟恢本:有且僅有一個(gè)公共點(diǎn),可表示為;

          ②平行直線:在同一個(gè)平面內(nèi),沒有公共點(diǎn),可表示為a//b;

         、郛惷嬷本:不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn).

          (2)平行直線

          公理4:平行于同一條直線的兩條直線互相平行.

          符號(hào)表示為:設(shè)a、b、c是三條直線,.

          定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等.

          (3)兩條異面直線所成的角

          注意:

         、賰蓷l異面直線a,b所成的角的范圍是(0°,90°].

         、趦蓷l異面直線所成的角與點(diǎn)O的選擇位置無關(guān),這可由前面所講過的“等角定理”直接得出.

         、塾蓛蓷l異面直線所成的角的定義可得出異面直線所成角的一般方法:

          (i)在空間任取一點(diǎn),這個(gè)點(diǎn)通常是線段的中點(diǎn)或端點(diǎn).

          (ii)分別作兩條異面直線的平行線,這個(gè)過程通常采用平移的方法來實(shí)現(xiàn).

          (iii)指出哪一個(gè)角為兩條異面直線所成的角,這時(shí)我們要注意兩條異面直線所成的角的范圍.

          3.空間直線與平面

          直線與平面位置關(guān)系有且只有三種:

          (1)直線在平面內(nèi):有無數(shù)個(gè)公共點(diǎn);

          (2)直線與平面相交:有且只有一個(gè)公共點(diǎn);

          (3)直線與平面平行:沒有公共點(diǎn).

          4.平面與平面

          兩個(gè)平面之間的位置關(guān)系有且只有以下兩種:

          (1)兩個(gè)平面平行:沒有公共點(diǎn);

          (2)兩個(gè)平面相交:有一條公共直線.

          高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

          1.對(duì)于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無序性”。

          中元素各表示什么?

          注重借助于數(shù)軸和文氏圖解集合問題。

          空集是一切集合的子集,是一切非空集合的真子集。

          3.注意下列性質(zhì):

          (3)德摩根定律:

          4.你會(huì)用補(bǔ)集思想解決問題嗎?(排除法、間接法)

          的取值范圍。

          6.命題的四種形式及其相互關(guān)系是什么?

          (互為逆否關(guān)系的命題是等價(jià)命題。)

          原命題與逆否命題同真、同假;逆命題與否命題同真同假。

          7.對(duì)映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對(duì)應(yīng)元素的性,哪幾種對(duì)應(yīng)能構(gòu)成映射?

          (一對(duì)一,多對(duì)一,允許B中有元素?zé)o原象。)

          8.函數(shù)的三要素是什么?如何比較兩個(gè)函數(shù)是否相同?

          (定義域、對(duì)應(yīng)法則、值域)

          9.求函數(shù)的定義域有哪些常見類型?

          10.如何求復(fù)合函數(shù)的定義域?

          義域是_____________。

          11.求一個(gè)函數(shù)的解析式或一個(gè)函數(shù)的反函數(shù)時(shí),注明函數(shù)的定義域了嗎?

          12.反函數(shù)存在的條件是什么?

          (一一對(duì)應(yīng)函數(shù))

          求反函數(shù)的步驟掌握了嗎?

          (①反解x;②互換x、y;③注明定義域)

          13.反函數(shù)的性質(zhì)有哪些?

         、倩榉春瘮(shù)的圖象關(guān)于直線y=x對(duì)稱;

          ②保存了原來函數(shù)的單調(diào)性、奇函數(shù)性;

          14.如何用定義證明函數(shù)的單調(diào)性?

          (取值、作差、判正負(fù))

          如何判斷復(fù)合函數(shù)的單調(diào)性?

          ∴……)

          15.如何利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性?

          值是()

          A.0B.1C.2D.3

          ∴a的值為3)

          16.函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?

          (f(x)定義域關(guān)于原點(diǎn)對(duì)稱)

          注意如下結(jié)論:

          (1)在公共定義域內(nèi):兩個(gè)奇函數(shù)的乘積是偶函數(shù);兩個(gè)偶函數(shù)的乘積是偶函數(shù);一個(gè)偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。

          17.你熟悉周期函數(shù)的定義嗎?

          函數(shù),T是一個(gè)周期。)

          如:

          18.你掌握常用的圖象變換了嗎?

          注意如下“翻折”變換:

          19.你熟練掌握常用函數(shù)的圖象和性質(zhì)了嗎?

          的雙曲線。

          應(yīng)用:①“三個(gè)二次”(二次函數(shù)、二次方程、二次不等式)的關(guān)系——二次方程

         、谇箝]區(qū)間[m,n]上的最值。

          ③求區(qū)間定(動(dòng)),對(duì)稱軸動(dòng)(定)的最值問題。

         、芤辉畏匠谈姆植紗栴}。

          由圖象記性質(zhì)!(注意底數(shù)的限定!)

          利用它的單調(diào)性求最值與利用均值不等式求最值的區(qū)別是什么?

          20.你在基本運(yùn)算上常出現(xiàn)錯(cuò)誤嗎?

          21.如何解抽象函數(shù)問題?

          (賦值法、結(jié)構(gòu)變換法)

          22.掌握求函數(shù)值域的常用方法了嗎?

          (二次函數(shù)法(配方法),反函數(shù)法,換元法,均值定理法,判別式法,利用函數(shù)單調(diào)性法,導(dǎo)數(shù)法等。)

          如求下列函數(shù)的最值:

          23.你記得弧度的定義嗎?能寫出圓心角為α,半徑為R的弧長(zhǎng)公式和扇形面積公式嗎?

          24.熟記三角函數(shù)的定義,單位圓中三角函數(shù)線的定義

          25.你能迅速畫出正弦、余弦、正切函數(shù)的圖象嗎?并由圖象寫出單調(diào)區(qū)間、對(duì)稱點(diǎn)、對(duì)稱軸嗎?

          (x,y)作圖象。

          27.在三角函數(shù)中求一個(gè)角時(shí)要注意兩個(gè)方面——先求出某一個(gè)三角函數(shù)值,再判定角的范圍。

          28.在解含有正、余弦函數(shù)的問題時(shí),你注意(到)運(yùn)用函數(shù)的有界性了嗎?

          29.熟練掌握三角函數(shù)圖象變換了嗎?

          (平移變換、伸縮變換)

          平移公式:

          圖象?

          30.熟練掌握同角三角函數(shù)關(guān)系和誘導(dǎo)公式了嗎?

          “奇”、“偶”指k取奇、偶數(shù)。

          A.正值或負(fù)值B.負(fù)值C.非負(fù)值D.正值

          31.熟練掌握兩角和、差、倍、降冪公式及其逆向應(yīng)用了嗎?

          理解公式之間的聯(lián)系:

          應(yīng)用以上公式對(duì)三角函數(shù)式化簡(jiǎn)。(化簡(jiǎn)要求:項(xiàng)數(shù)最少、函數(shù)種類最少,分母中不含三角函數(shù),能求值,盡可能求值。)

          具體方法:

          (2)名的變換:化弦或化切

          (3)次數(shù)的變換:升、降冪公式

          (4)形的變換:統(tǒng)一函數(shù)形式,注意運(yùn)用代數(shù)運(yùn)算。

          32.正、余弦定理的各種表達(dá)形式你還記得嗎?如何實(shí)現(xiàn)邊、角轉(zhuǎn)化,而解斜三角形?

          (應(yīng)用:已知兩邊一夾角求第三邊;已知三邊求角。)

          33.用反三角函數(shù)表示角時(shí)要注意角的范圍。

          34.不等式的性質(zhì)有哪些?

          答案:C

          35.利用均值不等式:

          值?(一正、二定、三相等)

          注意如下結(jié)論:

          36.不等式證明的基本方法都掌握了嗎?

          (比較法、分析法、綜合法、數(shù)學(xué)歸納法等)

          并注意簡(jiǎn)單放縮法的應(yīng)用。

          (移項(xiàng)通分,分子分母因式分解,x的'系數(shù)變?yōu)?,穿軸法解得結(jié)果。)

          38.用“穿軸法”解高次不等式——“奇穿,偶切”,從根的右上方開始

          39.解含有參數(shù)的不等式要注意對(duì)字母參數(shù)的討論

          40.對(duì)含有兩個(gè)絕對(duì)值的不等式如何去解?

          (找零點(diǎn),分段討論,去掉絕對(duì)值符號(hào),最后取各段的并集。)

          證明:

          (按不等號(hào)方向放縮)

          42.不等式恒成立問題,常用的處理方式是什么?(可轉(zhuǎn)化為最值問題,或“△”問題)

          43.等差數(shù)列的定義與性質(zhì)

          0的二次函數(shù))

          項(xiàng),即:

          44.等比數(shù)列的定義與性質(zhì)

          46.你熟悉求數(shù)列通項(xiàng)公式的常用方法嗎?

          例如:(1)求差(商)法

          解:

          [練習(xí)]

          (2)疊乘法

          解:

          (3)等差型遞推公式

          [練習(xí)]

          (4)等比型遞推公式

          [練習(xí)]

          (5)倒數(shù)法

          47.你熟悉求數(shù)列前n項(xiàng)和的常用方法嗎?

          例如:(1)裂項(xiàng)法:把數(shù)列各項(xiàng)拆成兩項(xiàng)或多項(xiàng)之和,使之出現(xiàn)成對(duì)互為相反數(shù)的項(xiàng)。

          解:

          [練習(xí)]

          (2)錯(cuò)位相減法:

          (3)倒序相加法:把數(shù)列的各項(xiàng)順序倒寫,再與原來順序的數(shù)列相加。

          [練習(xí)]

          48.你知道儲(chǔ)蓄、貸款問題嗎?

          △零存整取儲(chǔ)蓄(單利)本利和計(jì)算模型:

          若每期存入本金p元,每期利率為r,n期后,本利和為:

          △若按復(fù)利,如貸款問題——按揭貸款的每期還款計(jì)算模型(按揭貸款——分期等額歸還本息的借款種類)

          若貸款(向銀行借款)p元,采用分期等額還款方式,從借款日算起,一期(如一年)后為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復(fù)利),那么每期應(yīng)還x元,滿足

          p——貸款數(shù),r——利率,n——還款期數(shù)

          49.解排列、組合問題的依據(jù)是:分類相加,分步相乘,有序排列,無序組合。

          (2)排列:從n個(gè)不同元素中,任取m(m≤n)個(gè)元素,按照一定的順序排成一

          (3)組合:從n個(gè)不同元素中任取m(m≤n)個(gè)元素并組成一組,叫做從n個(gè)不

          50.解排列與組合問題的規(guī)律是:

          相鄰問題_法;相間隔問題插空法;定位問題優(yōu)先法;多元問題分類法;至多至少問題間接法;相同元素分組可采用隔板法,數(shù)量不大時(shí)可以逐一排出結(jié)果。

          如:學(xué)號(hào)為1,2,3,4的四名學(xué)生的考試成績(jī)

          則這四位同學(xué)考試成績(jī)的所有可能情況是()

          A.24B.15C.12D.10

          解析:可分成兩類:

          (2)中間兩個(gè)分?jǐn)?shù)相等

          相同兩數(shù)分別取90,91,92,對(duì)應(yīng)的排列可以數(shù)出來,分別有3,4,3種,∴有10種。

          ∴共有5+10=15(種)情況

          51.二項(xiàng)式定理

          性質(zhì):

          (3)最值:n為偶數(shù)時(shí),n+1為奇數(shù),中間一項(xiàng)的二項(xiàng)式系數(shù)且為第

          表示)

          52.你對(duì)隨機(jī)事件之間的關(guān)系熟悉嗎?

          的和(并)。

          (5)互斥事件(互不相容事件):“A與B不能同時(shí)發(fā)生”叫做A、B互斥。

          (6)對(duì)立事件(互逆事件):

          (7)獨(dú)立事件:A發(fā)生與否對(duì)B發(fā)生的概率沒有影響,這樣的兩個(gè)事件叫做相互獨(dú)立事件。

          53.對(duì)某一事件概率的求法:

          分清所求的是:(1)等可能事件的概率(常采用排列組合的方法,即

          (5)如果在一次試驗(yàn)中A發(fā)生的概率是p,那么在n次獨(dú)立重復(fù)試驗(yàn)中A恰好發(fā)生

          如:設(shè)10件產(chǎn)品中有4件次品,6件正品,求下列事件的概率。

          (1)從中任取2件都是次品;

          (2)從中任取5件恰有2件次品;

          (3)從中有放回地任取3件至少有2件次品;

          解析:有放回地抽取3次(每次抽1件),∴n=103

          而至少有2件次品為“恰有2次品”和“三件都是次品”

          (4)從中依次取5件恰有2件次品。

          解析:∵一件一件抽取(有順序)

          分清(1)、(2)是組合問題,(3)是可重復(fù)排列問題,(4)是無重復(fù)排列問題。

          54.抽樣方法主要有:簡(jiǎn)單隨機(jī)抽樣(抽簽法、隨機(jī)數(shù)表法)常常用于總體個(gè)數(shù)較少時(shí),它的特征是從總體中逐個(gè)抽取;系統(tǒng)抽樣,常用于總體個(gè)數(shù)較多時(shí),它的主要特征是均衡成若干部分,每部分只取一個(gè);分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯差異,它們的共同特征是每個(gè)個(gè)體被抽到的概率相等,體現(xiàn)了抽樣的客觀性和平等性。

          55.對(duì)總體分布的估計(jì)——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計(jì)總體的期望和方差。

          要熟悉樣本頻率直方圖的作法:

          (2)決定組距和組數(shù);

          (3)決定分點(diǎn);

          (4)列頻率分布表;

          (5)畫頻率直方圖。

          如:從10名_與5名男生中選6名學(xué)生參加比賽,如果按性別分層隨機(jī)抽樣,則組成此參賽隊(duì)的概率為____________。

          56.你對(duì)向量的有關(guān)概念清楚嗎?

          (1)向量——既有大小又有方向的量。

          在此規(guī)定下向量可以在平面(或空間)平行移動(dòng)而不改變。

          (6)并線向量(平行向量)——方向相同或相反的向量。

          規(guī)定零向量與任意向量平行。

          (7)向量的加、減法如圖:

          (8)平面向量基本定理(向量的分解定理)

          的一組基底。

          (9)向量的坐標(biāo)表示

          表示。

          57.平面向量的數(shù)量積

          數(shù)量積的幾何意義:

          (2)數(shù)量積的運(yùn)算法則

          [練習(xí)]

          答案:

          答案:2

          答案:

          58.線段的定比分點(diǎn)

          ※.你能分清三角形的重心、垂心、外心、內(nèi)心及其性質(zhì)嗎?

          59.立體幾何中平行、垂直關(guān)系證明的思路清楚嗎?

          平行垂直的證明主要利用線面關(guān)系的轉(zhuǎn)化:

          線面平行的判定:

          線面平行的性質(zhì):

          三垂線定理(及逆定理):

          線面垂直:

          面面垂直:

          60.三類角的定義及求法

          (1)異面直線所成的角θ,0°<θ≤90°

          (2)直線與平面所成的角θ,0°≤θ≤90°

          (三垂線定理法:A∈α作或證AB⊥β于B,作BO⊥棱于O,連AO,則AO⊥棱l,∴∠AOB為所求。)

          三類角的求法:

         、僬页龌蜃鞒鲇嘘P(guān)的角。

         、谧C明其符合定義,并指出所求作的角。

         、塾(jì)算大小(解直角三角形,或用余弦定理)。

          [練習(xí)]

          (1)如圖,OA為α的斜線OB為其在α_影,OC為α內(nèi)過O點(diǎn)任一直線。

          (2)如圖,正四棱柱ABCD—A1B1C1D1中對(duì)角線BD1=8,BD1與側(cè)面B1BCC1所成的為30°。

         、偾驜D1和底面ABCD所成的角;

         、谇螽惷嬷本BD1和AD所成的角;

          ③求二面角C1—BD1—B1的大小。

          (3)如圖ABCD為菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB與面PCD所成的銳二面角的大小。

          (∵AB∥DC,P為面PAB與面PCD的公共點(diǎn),作PF∥AB,則PF為面PCD與面PAB的交線……)

          61.空間有幾種距離?如何求距離?

          點(diǎn)與點(diǎn),點(diǎn)與線,點(diǎn)與面,線與線,線與面,面與面間距離。

          將空間距離轉(zhuǎn)化為兩點(diǎn)的距離,構(gòu)造三角形,解三角形求線段的長(zhǎng)(如:三垂線定理法,或者用等積轉(zhuǎn)化法)。

          如:正方形ABCD—A1B1C1D1中,棱長(zhǎng)為a,則:

          (1)點(diǎn)C到面AB1C1的距離為___________;

          (2)點(diǎn)B到面ACB1的距離為____________;

          (3)直線A1D1到面AB1C1的距離為____________;

          (4)面AB1C與面A1DC1的距離為____________;

          (5)點(diǎn)B到直線A1C1的距離為_____________。

          62.你是否準(zhǔn)確理解正棱柱、正棱錐的定義并掌握它們的性質(zhì)?

          正棱柱——底面為正多邊形的直棱柱

          正棱錐——底面是正多邊形,頂點(diǎn)在底面的射影是底面的中心。

          正棱錐的計(jì)算集中在四個(gè)直角三角形中:

          它們各包含哪些元素?

          63.球有哪些性質(zhì)?

          (2)球面上兩點(diǎn)的距離是經(jīng)過這兩點(diǎn)的大圓的劣弧長(zhǎng)。為此,要找球心角!

          (3)如圖,θ為緯度角,它是線面成角;α為經(jīng)度角,它是面面成角。

          (5)球內(nèi)接長(zhǎng)方體的對(duì)角線是球的直徑。正四面體的外接球半徑R與內(nèi)切球半徑r之比為R:r=3:1。

          積為()

          答案:A

          64.熟記下列公式了嗎?

          (2)直線方程:

          65.如何判斷兩直線平行、垂直?

          66.怎樣判斷直線l與圓C的位置關(guān)系?

          圓心到直線的距離與圓的半徑比較。

          直線與圓相交時(shí),注意利用圓的“垂徑定理”。

          67.怎樣判斷直線與圓錐曲線的位置?

          68.分清圓錐曲線的定義

          70.在圓錐曲線與直線聯(lián)立求解時(shí),消元后得到的方程,要注意其二次項(xiàng)系數(shù)是否為零?△≥0的限制。(求交點(diǎn),弦長(zhǎng),中點(diǎn),斜率,對(duì)稱存在性問題都在△≥0下進(jìn)行。)

          71.會(huì)用定義求圓錐曲線的焦半徑嗎?

          如:

          通徑是拋物線的所有焦點(diǎn)弦中最短者;以焦點(diǎn)弦為直徑的圓與準(zhǔn)線相切。

          72.有關(guān)中點(diǎn)弦問題可考慮用“代點(diǎn)法”。

          答案:

          73.如何求解“對(duì)稱”問題?

          (1)證明曲線C:F(x,y)=0關(guān)于點(diǎn)M(a,b)成中心對(duì)稱,設(shè)A(x,y)為曲線C上任意一點(diǎn),設(shè)A(x,y)為A關(guān)于點(diǎn)M的對(duì)稱點(diǎn)。

          75.求軌跡方程的常用方法有哪些?注意討論范圍。

          (直接法、定義法、轉(zhuǎn)移法、參數(shù)法)

          76.對(duì)線性規(guī)劃問題:作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的最值。

          高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

          1、集合的概念

          集合是集合論中的不定義的原始概念,教材中對(duì)集合的概念進(jìn)行了描述性說明:“一般地,把一些能夠確定的不同的對(duì)象看成一個(gè)整體,就說這個(gè)整體是由這些對(duì)象的全體構(gòu)成的集合(或集)”。理解這句話,應(yīng)該把握4個(gè)關(guān)鍵詞:對(duì)象、確定的、不同的、整體。

          對(duì)象――即集合中的元素。集合是由它的元素確定的。

          整體――集合不是研究某一單一對(duì)象的,它關(guān)注的是這些對(duì)象的全體。

          確定的――集合元素的確定性――元素與集合的“從屬”關(guān)系。

          不同的――集合元素的互異性。

          2、有限集、無限集、空集的意義

          有限集和無限集是針對(duì)非空集合來說的。我們理解起來并不困難。

          我們把不含有任何元素的'集合叫做空集,記做Φ。理解它時(shí)不妨思考一下“0與Φ”及“Φ與{Φ}”的關(guān)系。

          幾個(gè)常用數(shù)集N、N_N+、Z、Q、R要記牢。

          3、集合的表示方法

          (1)列舉法的表示形式比較容易掌握,并不是所有的集合都能用列舉法表示,同學(xué)們需要知道能用列舉法表示的三種集合:

         、僭夭惶嗟挠邢藜鐊0,1,8}

         、谠剌^多但呈現(xiàn)一定的規(guī)律的有限集,如{1,2,3,…,100}

         、鄢尸F(xiàn)一定規(guī)律的無限集,如{1,2,3,…,n,…}

          ●注意a與{a}的區(qū)別

          ●注意用列舉法表示集合時(shí),集合元素的“無序性”。

          (2)特征性質(zhì)描述法的關(guān)鍵是把所研究的集合的“特征性質(zhì)”找準(zhǔn),然后適當(dāng)?shù)乇硎境鰜砭托辛恕5P(guān)鍵點(diǎn)也是難點(diǎn)。學(xué)習(xí)時(shí)多加練習(xí)就可以了。另外,弄清“代表元素”也是非常重要的。如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三個(gè)不同的集合。

          4、集合之間的關(guān)系

          ●注意區(qū)分“從屬”關(guān)系與“包含”關(guān)系

          “從屬”關(guān)系是元素與集合之間的關(guān)系。

          “包含”關(guān)系是集合與集合之間的關(guān)系。掌握子集、真子集的概念,掌握集合相等的概念,學(xué)會(huì)正確使用“”等符號(hào),會(huì)用Venn圖描述集合之間的關(guān)系是基本要求。

          ●注意辨清Φ與{Φ}兩種關(guān)系。

          高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

          一、集合有關(guān)概念

          1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。

          2、集合的中元素的三個(gè)特性:

          1.元素的確定性;2.元素的互異性;3.元素的無序性

          說明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

          (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

          (3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

          (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

          3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

          1.用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

          2.集合的表示方法:列舉法與描述法。

          二、集合間的基本關(guān)系

          1.“包含”關(guān)系—子集

          注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

          反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

          2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

          實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同”

          結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的.元素,我們就說集合A等于集合B,即:A=B

         、偃魏我粋(gè)集合是它本身的子集。AíA

          ②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

         、廴绻鸄íB,BíC,那么AíC

          ④如果AíB同時(shí)BíA那么A=B

          3.不含任何元素的集合叫做空集,記為Φ

          規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

          三、集合的運(yùn)算

          1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

          記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

          2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

          3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.

          高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

          高一數(shù)學(xué)集合有關(guān)概念

          集合的含義

          集合的中元素的三個(gè)特性:

          元素的確定性如:世界上的山

          元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

          元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

          3。集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

          用拉丁字母表示集合:A={我校的'籃球隊(duì)員},B={1,2,3,4,5}

          集合的表示方法:列舉法與描述法。

          注意:常用數(shù)集及其記法:

          非負(fù)整數(shù)集(即自然數(shù)集)記作:N

          正整數(shù)集N_N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

          列舉法:{a,b,c……}

          描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。{x(R|x—3>2},{x|x—3>2}

          語言描述法:例:{不是直角三角形的三角形}

          Venn圖:

          4、集合的分類:

          有限集含有有限個(gè)元素的集合

          無限集含有無限個(gè)元素的集合

          空集不含任何元素的集合例:{x|x2=—5}

          高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

          圓的方程定義:

          圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2中,有三個(gè)參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨(dú)立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。

          直線和圓的位置關(guān)系:

          1.直線和圓位置關(guān)系的判定方法一是方程的觀點(diǎn),即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來討論位置關(guān)系.

         、佴>0,直線和圓相交.②Δ=0,直線和圓相切.③Δ<0,直線和圓相離.

          方法二是幾何的觀點(diǎn),即把圓心到直線的距離d和半徑R的大小加以比較.

          ①dR,直線和圓相離.

          2.直線和圓相切,這類問題主要是求圓的切線方程.求圓的切線方程主要可分為已知斜率k或已知直線上一點(diǎn)兩種情況,而已知直線上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種情況.

          3.直線和圓相交,這類問題主要是求弦長(zhǎng)以及弦的中點(diǎn)問題.

          切線的性質(zhì)

         、艌A心到切線的距離等于圓的半徑;

          ⑵過切點(diǎn)的半徑垂直于切線;

         、墙(jīng)過圓心,與切線垂直的直線必經(jīng)過切點(diǎn);

         、冉(jīng)過切點(diǎn),與切線垂直的直線必經(jīng)過圓心;

          當(dāng)一條直線滿足

          (1)過圓心;

          (2)過切點(diǎn);

          (3)垂直于切線三個(gè)性質(zhì)中的兩個(gè)時(shí),第三個(gè)性質(zhì)也滿足.

          切線的判定定理

          經(jīng)過半徑的外端點(diǎn)并且垂直于這條半徑的直線是圓的切線.

          切線長(zhǎng)定理

          從圓外一點(diǎn)作圓的兩條切線,兩切線長(zhǎng)相等,圓心與這一點(diǎn)的'連線平分兩條切線的夾角.

          圓錐曲線性質(zhì):

          一、圓錐曲線的定義

          1.橢圓:到兩個(gè)定點(diǎn)的距離之和等于定長(zhǎng)(定長(zhǎng)大于兩個(gè)定點(diǎn)間的距離)的動(dòng)點(diǎn)的軌跡叫做橢圓.

          2.雙曲線:到兩個(gè)定點(diǎn)的距離的差的絕對(duì)值為定值(定值小于兩個(gè)定點(diǎn)的距離)的動(dòng)點(diǎn)軌跡叫做雙曲線.即.

          3.圓錐曲線的統(tǒng)一定義:到定點(diǎn)的距離與到定直線的距離的比e是常數(shù)的點(diǎn)的軌跡叫做圓錐曲線.當(dāng)01時(shí)為雙曲線.

          二、圓錐曲線的方程

          1.橢圓:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)

          2.雙曲線:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)

          3.拋物線:y2=±2px(p>0),x2=±2py(p>0)

          三、圓錐曲線的性質(zhì)

          1.橢圓:+=1(a>b>0)

          (1)范圍:|x|≤a,|y|≤b(2)頂點(diǎn):(±a,0),(0,±b)(3)焦點(diǎn):(±c,0)(4)離心率:e=∈(0,1)(5)準(zhǔn)線:x=±

          2.雙曲線:-=1(a>0,b>0)(1)范圍:|x|≥a,y∈R(2)頂點(diǎn):(±a,0)(3)焦點(diǎn):(±c,0)(4)離心率:e=∈(1,+∞)(5)準(zhǔn)線:x=±(6)漸近線:y=±x

          3.拋物線:y2=2px(p>0)(1)范圍:x≥0,y∈R(2)頂點(diǎn):(0,0)(3)焦點(diǎn):(,0)(4)離心率:e=1(5)準(zhǔn)線:x=-

          高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

          集合的有關(guān)概念

          1)集合(集):某些指定的對(duì)象集在一起就成為一個(gè)集合(集).其中每一個(gè)對(duì)象叫元素

          注意:①集合與集合的元素是兩個(gè)不同的概念,教科書中是通過描述給出的,這與平面幾何中的點(diǎn)與直線的概念類似。

         、诩现械脑鼐哂写_定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個(gè)集合)。

          ③集合具有兩方面的`意義,即:凡是符合條件的對(duì)象都是它的元素;只要是它的元素就必須符號(hào)條件

          2)集合的表示方法:常用的有列舉法、描述法和圖文法

          3)集合的分類:有限集,無限集,空集。

          4)常用數(shù)集:N,Z,Q,R,N

          子集、交集、并集、補(bǔ)集、空集、全集等概念

          1)子集:若對(duì)x∈A都有x∈B,則AB(或AB);

          2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)

          3)交集:A∩B={x|x∈A且x∈B}

          4)并集:A∪B={x|x∈A或x∈B}

          5)補(bǔ)集:CUA={x|xA但x∈U}

          注意:A,若A≠?,則?A;

          若且,則A=B(等集)

          集合與元素

          掌握有關(guān)的術(shù)語和符號(hào),特別要注意以下的符號(hào):(1)與、?的區(qū)別;(2)與的區(qū)別;(3)與的區(qū)別。

          子集的幾個(gè)等價(jià)關(guān)系

          ①A∩B=AAB;②A∪B=BAB;③ABCuACuB;

          ④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

          交、并集運(yùn)算的性質(zhì)

         、貯∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;

         、跜u(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

          有限子集的個(gè)數(shù):

          設(shè)集合A的元素個(gè)數(shù)是n,則A有2n個(gè)子集,2n-1個(gè)非空子集,2n-2個(gè)非空真子集。

          練習(xí)題:

          已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿足關(guān)系()

          A)M=NPB)MN=PC)MNPD)NPM

          分析一:從判斷元素的共性與區(qū)別入手。

          解答一:對(duì)于集合M:{x|x=,m∈Z};對(duì)于集合N:{x|x=,n∈Z}

          對(duì)于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以MN=P,故選B。

          高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

          高一數(shù)學(xué)必修一知識(shí)點(diǎn)

          指數(shù)函數(shù)

          (一)指數(shù)與指數(shù)冪的運(yùn)算

          1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

          當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

          當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。

          注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),

          2.分?jǐn)?shù)指數(shù)冪

          正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

          0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

          指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

          3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

          (二)指數(shù)函數(shù)及其性質(zhì)

          1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.

          注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

          2、指數(shù)函數(shù)的圖象和性質(zhì)

          高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)梳理

          空間幾何體表面積體積公式:

          1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

          2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

          3、a-邊長(zhǎng),S=6a2,V=a3

          4、長(zhǎng)方體a-長(zhǎng),b-寬,c-高S=2(ab+ac+bc)V=abc

          5、棱柱S-h-高V=Sh

          6、棱錐S-h-高V=Sh/3

          7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

          8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

          9、圓柱r-底半徑,h-高,C—底面周長(zhǎng)S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h

          10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)

          11、r-底半徑h-高V=πr^2h/3

          12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6

          14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

          15、球臺(tái)r1和r2-球臺(tái)上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

          16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4

          17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

          人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)梳理

          1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

          (1)棱柱:

          定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

          分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

          表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱。

          幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

          (2)棱錐

          定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。

          分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

          表示:用各頂點(diǎn)字母,如五棱錐

          幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

          (3)棱臺(tái):

          定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

          分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

          表示:用各頂點(diǎn)字母,如五棱臺(tái)

          幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

          (4)圓柱:

          定義:以矩形的`一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

          幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。

          (5)圓錐:

          定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。

          幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。

          (6)圓臺(tái):

          定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

          幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。

          (7)球體:

          定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

          幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

          2、空間幾何體的三視圖

          定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

          注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;

          俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;

          側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

          3、空間幾何體的直觀圖——斜二測(cè)畫法

          斜二測(cè)畫法特點(diǎn):

         、僭瓉砼cx軸平行的線段仍然與x平行且長(zhǎng)度不變;

         、谠瓉砼cy軸平行的線段仍然與y平行,長(zhǎng)度為原來的一半。

          高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

          知識(shí)點(diǎn)總結(jié)

          本節(jié)知識(shí)包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱性和函數(shù)的圖象等知識(shí)點(diǎn)。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個(gè)知識(shí)點(diǎn),函數(shù)的圖象就迎刃而解了。

          一、函數(shù)的單調(diào)性

          1、函數(shù)單調(diào)性的定義

          2、函數(shù)單調(diào)性的判斷和證明:(1)定義法 (2)復(fù)合函數(shù)分析法 (3)導(dǎo)數(shù)證明法 (4)圖象法

          二、函數(shù)的奇偶性和周期性

          1、函數(shù)的奇偶性和周期性的定義

          2、函數(shù)的奇偶性的判定和證明方法

          3、函數(shù)的周期性的判定方法

          三、函數(shù)的圖象

          1、函數(shù)圖象的作法 (1)描點(diǎn)法 (2)圖象變換法

          2、圖象變換包括圖象:平移變換、伸縮變換、對(duì)稱變換、翻折變換。

          常見考法

          本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的`重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。

          誤區(qū)提醒

          1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。

          2、單調(diào)區(qū)間必須用區(qū)間來表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點(diǎn)問題。

          3、在多個(gè)單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號(hào)隔開。

          4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱,則函數(shù)一定是非奇非偶函數(shù)。

          5、作函數(shù)的圖象,一般是首先化簡(jiǎn)解析式,然后確定用描點(diǎn)法或圖象變換法作函數(shù)的圖象。

          高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

          集合間的基本關(guān)系

          1.“包含”關(guān)系—子集

          注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

          2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

          實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同”

          結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

          A?① 任何一個(gè)集合是它本身的`子集。A

          B那就說集合A是集合B的真子集,記作A B(或B A)?B,且A?②真子集:如果A

          C?C ,那么 A?B, B?③如果 A

          A 那么A=B?B 同時(shí) B?④ 如果A

          3. 不含任何元素的集合叫做空集,記為Φ

          規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

          集合的運(yùn)算

          1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

          記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

          2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

          3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

          4、全集與補(bǔ)集

          (1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

          A}?S且 x? x?記作: CSA 即 CSA ={x

          (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來表示。

          (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

          高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

          立體幾何初步

          柱、錐、臺(tái)、球的結(jié)構(gòu)特征

          棱柱

          定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

          分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

          表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱。

          幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

          棱錐

          定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。

          分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

          表示:用各頂點(diǎn)字母,如五棱錐

          幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

          棱臺(tái)

          定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

          分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

          表示:用各頂點(diǎn)字母,如五棱臺(tái)

          幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

          圓柱

          定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

          幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。

          圓錐

          定義:以直角三角形的'一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。

          幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。

          圓臺(tái)

          定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

          幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。

          球體

          定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

          幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

          NO.2空間幾何體的三視圖

          定義三視圖

          定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

          注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;

          俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;

          側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

          NO.3空間幾何體的直觀圖——斜二測(cè)畫法

          斜二測(cè)畫法

          斜二測(cè)畫法特點(diǎn)

         、僭瓉砼cx軸平行的線段仍然與x平行且長(zhǎng)度不變;

         、谠瓉砼cy軸平行的線段仍然與y平行,長(zhǎng)度為原來的一半。

          直線與方程

          直線的傾斜角

          定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

          直線的斜率

          定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

          過兩點(diǎn)的直線的斜率公式:

          (注意下面四點(diǎn))

          (1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;

          (2)k與P1、P2的順序無關(guān);

          (3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

          (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

          冪函數(shù)

          定義

          形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量?jī)鐬橐蜃兞,指?shù)為常量的函數(shù)稱為冪函數(shù)。

          定義域和值域

          當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域

          性質(zhì)

          對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

          首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

          排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

          排除了為0這種可能,即對(duì)于x<0和x>0的所有實(shí)數(shù),q不能是偶數(shù);

          排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

          高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

          集合間的基本關(guān)系

          1.子集,A包含于B,記為:,有兩種可能

          (1)A是B的一部分,

          (2)A與B是同一集合,A=B,A、B兩集合中元素都相同。

          反之:集合A不包含于集合B,記作。

          如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三個(gè)集合的關(guān)系可以表示為,,B=C。A是C的子集,同時(shí)A也是C的.真子集。

          2.真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

          3、不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。

          4、有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-2個(gè)非空真子集。如A={1,2,3,4,5},則集合A有25=32個(gè)子集,25-1=31個(gè)真子集,25-2=30個(gè)非空真子集。

          例:集合共有個(gè)子集。(13年高考第4題,簡(jiǎn)單)

          練習(xí):A={1,2,3},B={1,2,3,4},請(qǐng)問A集合有多少個(gè)子集,并寫出子集,B集合有多少個(gè)非空真子集,并將其寫出來。

          解析:

          集合A有3個(gè)元素,所以有23=8個(gè)子集。分別為:①不含任何元素的子集Φ;②含有1個(gè)元素的子集{1}{2}{3};③含有兩個(gè)元素的子集{1,2}{1,3}{2,3};④含有三個(gè)元素的子集{1,2,3}。

          集合B有4個(gè)元素,所以有24-2=14個(gè)非空真子集。具體的子集自己寫出來。

          此處這么羅嗦主要是為了讓同學(xué)們注意寫的順序,數(shù)學(xué)就是要講究嚴(yán)謹(jǐn)性和邏輯性的。一定要養(yǎng)成自己的邏輯習(xí)慣。如果就是為了提高計(jì)算能力倒不如直接去菜場(chǎng)賣菜算了,絕對(duì)能飛速提高的,那學(xué)數(shù)學(xué)也沒什么必要了。

          高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)16

          1.函數(shù)知識(shí):基本初等函數(shù)性質(zhì)的考查,以導(dǎo)數(shù)知識(shí)為背景的函數(shù)問題;以向量知識(shí)為背景的函數(shù)問題;從具體函數(shù)的考查轉(zhuǎn)向抽象函數(shù)考查;從重結(jié)果考查轉(zhuǎn)向重過程考查;從熟悉情景的考查轉(zhuǎn)向新穎情景的考查。

          2.向量知識(shí):向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運(yùn)算律;考查平面向量的坐標(biāo)運(yùn)算;考查平面向量與幾何、三角、代數(shù)等學(xué)科的綜合性問題。

          3.不等式知識(shí):突出工具性,淡化獨(dú)立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規(guī)劃問題為必考內(nèi)容,不等式的性質(zhì)與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結(jié)合起來,考查不等式的性質(zhì)、最值、函數(shù)的單調(diào)性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識(shí)為背景,在知識(shí)網(wǎng)絡(luò)的交匯處命題,綜合性強(qiáng),能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起?疾閷W(xué)生的等價(jià)轉(zhuǎn)化能力和分類討論能力;以當(dāng)前經(jīng)濟(jì)、社會(huì)生產(chǎn)、生活為背景與不等式綜合的應(yīng)用題仍將是高考的熱點(diǎn),主要考查學(xué)生閱讀理解能力以及分析問題、解決問題的能力。

          4.立體幾何知識(shí):20xx年已經(jīng)變得簡(jiǎn)單,20xx年難度依然不大,基本的三視圖的考查難點(diǎn)不大,以及球與幾何體的'組合體,涉及切,接的問題,線面垂直、平行位置關(guān)系的考查,已經(jīng)線面角,面面角和幾何體的體積計(jì)算等問題,都是重點(diǎn)考查內(nèi)容。

          5.解析幾何知識(shí):小題主要涉及圓錐曲線方程,和直線與圓的位置關(guān)系,以及圓錐曲線幾何性質(zhì)的考查,極坐標(biāo)下的解析幾何知識(shí),解答題主要考查直線和圓的知識(shí),直線與圓錐曲線的知識(shí),涉及圓錐曲線方程,直線與圓錐曲線方程聯(lián)立,定點(diǎn),定值,范圍的考查,考試的難度降低。

          6.導(dǎo)數(shù)知識(shí):導(dǎo)數(shù)的考查還是以理科19題,文科20題的形式給出,從常見函數(shù)入手,導(dǎo)數(shù)工具作用(切線和單調(diào)性)的考查,綜合性強(qiáng),能力要求高;往往與公式、導(dǎo)數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉(zhuǎn)化與化歸能力,但今年的難點(diǎn)整體偏低。

          7.開放型創(chuàng)新題:答案不,或是邏輯推理題,以及解答題中的開放型試題的考查,都是重點(diǎn),理科13,文科14題。

          高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)17

          一、指數(shù)函數(shù)

          (一)指數(shù)與指數(shù)冪的運(yùn)算

          1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

          當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

          當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。

          注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),

          2.分?jǐn)?shù)指數(shù)冪

          正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

          0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

          指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

          3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

          (二)指數(shù)函數(shù)及其性質(zhì)

          1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.

          注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

          2、指數(shù)函數(shù)的圖象和性質(zhì)

          【第三章:第三章函數(shù)的應(yīng)用】

          1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

          2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:

          方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).

          3、函數(shù)零點(diǎn)的求法:

          求函數(shù)的零點(diǎn):

          (1)(代數(shù)法)求方程的實(shí)數(shù)根;

          (2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).

          4、二次函數(shù)的零點(diǎn):

          二次函數(shù).

          1)△>0,方程有兩不等實(shí)根,二次函數(shù)的`圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).  2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

          3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).

          3.2.1幾類不同增長(zhǎng)的函數(shù)模型

          【課 型】新授課

          【教學(xué)目標(biāo)】

          結(jié)合實(shí)例體會(huì)直線上升、指數(shù)爆炸、對(duì)數(shù)增長(zhǎng)等不同增長(zhǎng)的函數(shù)模型意義, 理解它們的增長(zhǎng)差異性.

          【教學(xué)重點(diǎn)、難點(diǎn)】

          1. 教學(xué)重點(diǎn) 將實(shí)際問題轉(zhuǎn)化為函數(shù)模型,比較常數(shù)函數(shù)、一次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)模型的增長(zhǎng)差異,結(jié)合實(shí)例體會(huì)直線上升、指數(shù)爆炸、對(duì)數(shù)增長(zhǎng)等不同函數(shù)類型增長(zhǎng)的含義.

          2.教學(xué)難點(diǎn) 選擇合適的數(shù)學(xué)模型分析解決實(shí)際問題.

          【學(xué)法與教學(xué)用具】

          1. 學(xué)法:學(xué)生通過閱讀教材,動(dòng)手畫圖,自主學(xué)習(xí)、思考,并相互討論,進(jìn)行探索.

          2.教學(xué)用具:多媒體.

          【教學(xué)過程】

          (一)引入實(shí)例,創(chuàng)設(shè)情景.

          教師引導(dǎo)學(xué)生閱讀例1,分析其中的數(shù)量關(guān)系,思考應(yīng)當(dāng)選擇怎樣的函數(shù)模型來描述;由學(xué)生自己根據(jù)數(shù)量關(guān)系,歸納概括出相應(yīng)的函數(shù)模型,寫出每個(gè)方案的函數(shù)解析式,教師在數(shù)量關(guān)系的分析、函數(shù)模型的選擇上作指導(dǎo).

          (二)互動(dòng)交流,探求新知.

          1. 觀察數(shù)據(jù),體會(huì)模型.

          教師引導(dǎo)學(xué)生觀察例1表格中三種方案的數(shù)量變化情況,體會(huì)三種函數(shù)的增長(zhǎng)差異,說出自己的發(fā)現(xiàn),并進(jìn)行交流.

          2. 作出圖象,描述特點(diǎn).

          教師引導(dǎo)學(xué)生借助計(jì)算器作出三個(gè)方案的函數(shù)圖象,分析三種方案的不同變化趨勢(shì),并進(jìn)行描述,為方案選擇提供依據(jù).

          (三)實(shí)例運(yùn)用,鞏固提高.

          1. 教師引導(dǎo)學(xué)生分析影響方案選擇的因素,使學(xué)生認(rèn)識(shí)到要做出正確選擇除了考慮每天的收益,還要考慮一段時(shí)間內(nèi)的總收益.學(xué)生通過自主活動(dòng),分析整理數(shù)據(jù),并根據(jù)其中的信息做出推理判斷,獲得累計(jì)收益并給出本例的完整解答,然后全班進(jìn)行交流.

          2. 教師引導(dǎo)學(xué)生分析例2中三種函數(shù)的不同增長(zhǎng)情況對(duì)于獎(jiǎng)勵(lì)模型的影響,使學(xué)生明確問題的實(shí)質(zhì)就是比較三個(gè)函數(shù)的增長(zhǎng)情況,進(jìn)一步體會(huì)三種基本函數(shù)模型在實(shí)際中廣泛應(yīng)用,體會(huì)它們的增長(zhǎng)差異.

          3.教師引導(dǎo)學(xué)生分析得出:要對(duì)每一個(gè)獎(jiǎng)勵(lì)模型的獎(jiǎng)金總額是否超出5萬元,以及獎(jiǎng)勵(lì)比例是否超過25%進(jìn)行分析,才能做出正確選擇,學(xué)會(huì)對(duì)數(shù)據(jù)的特點(diǎn)與作用進(jìn)行分析、判斷。

          4.教師引導(dǎo)學(xué)生利用解析式,結(jié)合圖象,對(duì)例2的三個(gè)模型的增長(zhǎng)情況進(jìn)行分析比較,寫出完整的解答過程.進(jìn)一步認(rèn)識(shí)三個(gè)函數(shù)模型的增長(zhǎng)差異,并掌握解答的規(guī)范要求.

          5.教師引導(dǎo)學(xué)生通過以上具體函數(shù)進(jìn)行比較分析,探究?jī)绾瘮?shù)(>0)、指數(shù)函數(shù)(>1)、對(duì)數(shù)函數(shù)(>1)在區(qū)間(0,+∞)上的增長(zhǎng)差異,并從函數(shù)的性質(zhì)上進(jìn)行研究、論證,同學(xué)之間進(jìn)行交流總結(jié),形成結(jié)論性報(bào)告.教師對(duì)學(xué)生的結(jié)論進(jìn)行評(píng)析,借助信息技術(shù)手段進(jìn)行驗(yàn)證演示.

          6. 課堂練習(xí)

          教材P98練習(xí)1、2,并由學(xué)生演示,進(jìn)行講評(píng)。

          (四)歸納總結(jié),提升認(rèn)識(shí).

          教師通過計(jì)算機(jī)作圖進(jìn)行總結(jié),使學(xué)生認(rèn)識(shí)直線上升、指數(shù)爆炸、對(duì)數(shù)增長(zhǎng)等不同函數(shù)模型的含義及其差異,認(rèn)識(shí)數(shù)學(xué)與現(xiàn)實(shí)生活、與其他學(xué)科的密切聯(lián)系,從而體會(huì)數(shù)學(xué)的實(shí)用價(jià)值和內(nèi)在變化規(guī)律.

          (五)布置作業(yè)

          教材P107練習(xí)第2題

          收集一些社會(huì)生活中普遍使用的遞增的一次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的實(shí)例,對(duì)它們的增長(zhǎng)速度進(jìn)行比較,了解函數(shù)模型的廣泛應(yīng)用,并思考。有時(shí)同一個(gè)實(shí)際問題可以建立多個(gè)函數(shù)模型,在具體應(yīng)用函數(shù)模型時(shí),應(yīng)該怎樣選用合理的函數(shù)模型.

          3.2.2 函數(shù)模型的應(yīng)用實(shí)例(Ⅰ)

          【課 型】新授課

          【教學(xué)目標(biāo)】

          能夠找出簡(jiǎn)單實(shí)際問題中的函數(shù)關(guān)系式,初步體會(huì)應(yīng)用一次函數(shù)、二次函數(shù)模型解決實(shí)際問題.

          【教學(xué)重點(diǎn)與難點(diǎn)】

          1.教學(xué)重點(diǎn):運(yùn)用一次函數(shù)、二次函數(shù)模型解決一些實(shí)際問題.

          2. 教學(xué)難點(diǎn):將實(shí)際問題轉(zhuǎn)變?yōu)閿?shù)學(xué)模型.

          【學(xué)法與教學(xué)用具】

          1. 學(xué)法:學(xué)生自主閱讀教材,采用嘗試、討論方式進(jìn)行探究.

          2. 教學(xué)用具:多媒體

          【教學(xué)過程】

          (一)創(chuàng)設(shè)情景,揭示課題

          引例:大約在一千五百年前,大數(shù)學(xué)家孫子在《孫子算經(jīng)》中記載了這樣的一道題:“今有雛兔同籠,上有三十五頭,下有九十四足,問雛兔各幾何?”這四句的意思就是:有若干只有幾只雞和兔?你知道孫子是如何解答這個(gè)“雞兔同籠”問題的嗎?你有什么更好的方法?老師介紹孫子的大膽解法:他假設(shè)砍去每只雞和兔一半的腳,則每只雞和兔就變成了“獨(dú)腳雞”和“雙腳兔”.這樣,“獨(dú)腳雞”和“雙腳兔”腳的數(shù)量與它們頭的數(shù)量之差,就是兔子數(shù),即:47-35=12;雞數(shù)就是:35-12=23.

          比例激發(fā)學(xué)生學(xué)習(xí)興趣,增強(qiáng)其求知欲望.

          可引導(dǎo)學(xué)生運(yùn)用方程的思想解答“雞兔同籠”問題.

          (二)結(jié)合實(shí)例,探求新知

          例1. 某列火車眾北京西站開往石家莊,全程277km,火車出發(fā)10min開出13km后,以120km/h勻速行駛.試寫出火車行駛的總路程S與勻速行駛的時(shí)間t之間的關(guān)系式,并求火車離開北京2h內(nèi)行駛的路程.

          探索:

          1)本例所涉及的變量有哪些?它們的取值范圍怎樣;

          2)所涉及的變量的關(guān)系如何?

          3)寫出本例的解答過程.

          老師提示:路程S和自變量t的取值范圍(即函數(shù)的定義域),注意t的實(shí)際意義.

          學(xué)生獨(dú)立思考,完成解答,并相互討論、交流、評(píng)析.

          例2.某商店出售茶壺和茶杯,茶壺每只定價(jià)20元,茶杯每只定價(jià)5元,該商店制定了兩種優(yōu)惠辦法:

          1)本例所涉及的變量之間的關(guān)系可用何種函數(shù)模型來描述?

          2)本例涉及到幾個(gè)函數(shù)模型?

          3)如何理解“更省錢?”;

          4)寫出具體的解答過程.

          在學(xué)生自主思考,相互討論完成本例題解答之后,老師小結(jié):通過以上兩例,數(shù)學(xué)模型是用數(shù)學(xué)語言模擬現(xiàn)實(shí)的一種模型,它把實(shí)際問題中某些事物的主要特征和關(guān)系抽象出來,并用數(shù)學(xué)語言來表達(dá),這一過程稱為建模,是解應(yīng)用題的關(guān)鍵。數(shù)學(xué)模型可采用各種形式,如方程(組),函數(shù)解析式,圖形與網(wǎng)絡(luò)等.

          高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)18

          一、直線與方程

          (1)直線的傾斜角

          定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0180

          (2)直線的斜率

         、俣x:傾斜角不是90的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時(shí),。當(dāng)時(shí),;當(dāng)時(shí),不存在。

         、谶^兩點(diǎn)的直線的斜率公式:

          注意下面四點(diǎn):

          (1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90

          (2)k與P1、P2的順序無關(guān);

          (3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

          (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

          (3)直線方程

         、冱c(diǎn)斜式:直線斜率k,且過點(diǎn)

          注意:當(dāng)直線的斜率為0時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的'方程是x=x1。

         、谛苯厥剑,直線斜率為k,直線在y軸上的截距為b

          ③兩點(diǎn)式:()直線兩點(diǎn),

         、芙鼐厥剑浩渲兄本與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。

         、菀话闶剑(A,B不全為0)

         、菀话闶剑(A,B不全為0)

          注意:○1各式的適用范圍

          ○2特殊的方程如:平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

          (4)直線系方程:即具有某一共同性質(zhì)的直線

          (一)平行直線系

          平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

          (二)過定點(diǎn)的直線系

          (ⅰ)斜率為k的直線系:直線過定點(diǎn);

          (ⅱ)過兩條直線,的交點(diǎn)的直線系方程為(為參數(shù)),其中直線不在直線系中。

          (5)兩直線平行與垂直;

          注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。

          (6)兩條直線的交點(diǎn)

          相交:交點(diǎn)坐標(biāo)即方程組的一組解。方程組無解;方程組有無數(shù)解與重合

          (7)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),則

          (8)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離

          (9)兩平行直線距離公式:在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。

          高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)19

          一、集合及其表示

          1、集合的含義:

          “集合”這個(gè)詞首先讓我們想到的是上體育課或者開會(huì)時(shí)老師經(jīng)常喊的“全體集合”。數(shù)學(xué)上的“集合”和這個(gè)意思是一樣的,只不過一個(gè)是動(dòng)詞一個(gè)是名詞而已。

          所以集合的含義是:某些指定的.對(duì)象集在一起就成為一個(gè)集合,簡(jiǎn)稱集,其中每一個(gè)對(duì)象叫元素。比如高一二班集合,那么所有高一二班的同學(xué)就構(gòu)成了一個(gè)集合,每一個(gè)同學(xué)就稱為這個(gè)集合的元素。

          2、集合的表示

          通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。

          有一些特殊的集合需要記憶:

          非負(fù)整數(shù)集(即自然數(shù)集)N正整數(shù)集N_或N+

          整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

          集合的表示方法:列舉法與描述法。

         、倭信e法:{a,b,c……}

          ②描述法:將集合中的元素的公共屬性描述出來。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

          ③語言描述法:例:{不是直角三角形的三角形}

          例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

          強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素

          A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。

          3、集合的三個(gè)特性

          (1)無序性

          指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。

          例題:集合A={1,2},B={a,b},若A=B,求a、b的值。

          解:,A=B

          注意:該題有兩組解。

          (2)互異性

          指集合中的元素不能重復(fù),A={2,2}只能表示為{2}

          (3)確定性

          集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。

          高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)20

          一、平面解析幾何的基本思想和主要問題

          平面解析幾何是用代數(shù)的方法研究幾何問題的一門數(shù)學(xué)學(xué)科,其基本思想就是用代數(shù)的方法研究幾何問題。例如,用直線的方程可以研究直線的性質(zhì),用兩條直線的方程可以研究這兩條直線的位置關(guān)系等。

          平面解析幾何研究的問題主要有兩類:一是根據(jù)已知條件,求出表示平面曲線的方程;二是通過方程,研究平面曲線的性質(zhì)。

          二、直線坐標(biāo)系和直角坐標(biāo)系

          直線坐標(biāo)系,也就是數(shù)軸,它有三個(gè)要素:原點(diǎn)、度量單位和方向。如果讓一個(gè)實(shí)數(shù)與數(shù)軸上坐標(biāo)為的點(diǎn)對(duì)應(yīng),那么就可以在實(shí)數(shù)集與數(shù)軸上的點(diǎn)集之間建立一一對(duì)應(yīng)關(guān)系。

          點(diǎn)與實(shí)數(shù)對(duì)應(yīng),則稱點(diǎn)的坐標(biāo)為,記作,如點(diǎn)坐標(biāo)為,則記作;點(diǎn)坐標(biāo)為,則記為。

          直角坐標(biāo)系是由兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成,兩條數(shù)軸的度量單位一般相同,但有時(shí)也可以不同,兩個(gè)數(shù)軸的交點(diǎn)是直角坐標(biāo)系的原點(diǎn)。在平面直角坐標(biāo)系中,有序?qū)崝?shù)對(duì)構(gòu)成的集合與坐標(biāo)平面內(nèi)的點(diǎn)集具有一一對(duì)應(yīng)關(guān)系。

          一個(gè)點(diǎn)的坐標(biāo)是這樣求得的,由點(diǎn)向軸及軸作垂線,在兩坐標(biāo)軸上形成正投影,在軸上的正投影所對(duì)應(yīng)的值為點(diǎn)的橫坐標(biāo),在軸上的正投影所對(duì)應(yīng)的值為點(diǎn)的縱坐標(biāo)。

          在學(xué)習(xí)這兩種坐標(biāo)系時(shí),要注意用類比的方法。例如,平面直角坐標(biāo)系是二維坐標(biāo)系,它有兩個(gè)坐標(biāo)軸,每個(gè)點(diǎn)的坐標(biāo)需用兩個(gè)實(shí)數(shù)(即一對(duì)有序?qū)崝?shù))來表示,而直線坐標(biāo)系是一維坐標(biāo)系,它只有一個(gè)坐標(biāo)軸,每個(gè)點(diǎn)的坐標(biāo)只需用一個(gè)實(shí)數(shù)來表示。

          三、向量的有關(guān)概念和公式

          如果數(shù)軸上的任意一點(diǎn)沿著軸的正向或負(fù)向移動(dòng)到另一個(gè)點(diǎn),則說點(diǎn)在軸上作了一次位移。位移是一個(gè)既有大小又有方向的量,通常叫做位移向量,簡(jiǎn)稱向量,記作。如果點(diǎn)移動(dòng)的方向與數(shù)軸的正方向相同,則向量為正,否則為負(fù)。線段的長(zhǎng)叫做向量的長(zhǎng)度,記作。向量的長(zhǎng)度連同表示其方向的正負(fù)號(hào)叫做向量的坐標(biāo)(或數(shù)量),用表示。這里同學(xué)們要分清,,三個(gè)符號(hào)的含義。

          對(duì)于數(shù)軸上任意三點(diǎn),都有成立。該等式左邊表示在數(shù)軸上點(diǎn)向點(diǎn)作一次位移,等式右邊表示點(diǎn)先向點(diǎn)作一次位移,再由點(diǎn)向點(diǎn)作一次位移,它們的最終結(jié)果是相同的。

          向量的坐標(biāo)公式(或數(shù)量公式),它表示向量的數(shù)量等于終點(diǎn)的坐標(biāo)減去起點(diǎn)的坐標(biāo),這個(gè)公式非常重要。

          有相等坐標(biāo)的兩個(gè)向量相等,看做同一個(gè)向量;反之,兩個(gè)相等向量坐標(biāo)必相等。

          注意:①相等的所有向量看做一個(gè)整體,作為同一向量,都等于以原點(diǎn)為起點(diǎn),坐標(biāo)與這所有向量相等的`那個(gè)向量。②向量與數(shù)軸上的實(shí)數(shù)(或點(diǎn))是一一對(duì)應(yīng)的,零向量即原點(diǎn)。

          四、兩點(diǎn)的距離公式和中點(diǎn)公式

          1。對(duì)于數(shù)軸上的兩點(diǎn),設(shè)它們的坐標(biāo)分別為,,則的距離為,的中點(diǎn)的坐標(biāo)為。

          由于表示數(shù)軸上兩點(diǎn)與的距離,所以在解一些簡(jiǎn)單的含絕對(duì)值的方程或不等式時(shí),常借助于數(shù)形結(jié)合思想,將問題轉(zhuǎn)化為數(shù)軸上的距離問題加以解決。例如,解方程時(shí),可以將問題看作在數(shù)軸上求一點(diǎn),使它到,的距離之和等于。

          2。對(duì)于直角坐標(biāo)系中的兩點(diǎn),設(shè)它們的坐標(biāo)分別為,,則兩點(diǎn)的距離為,的中點(diǎn)的坐標(biāo)滿足。

          兩點(diǎn)的距離公式和中點(diǎn)公式是解析幾何中最基本、最常用的公式之一,要求同學(xué)們能熟練掌握并能靈活運(yùn)用。

          五、坐標(biāo)法

          坐標(biāo)法是數(shù)學(xué)中一種重要的數(shù)學(xué)思想方法,它是借助于坐標(biāo)系來研究幾何圖形的一種方法,是數(shù)形結(jié)合的典范。這種方法是在平面上建立直角坐標(biāo)系,用坐標(biāo)表示點(diǎn),把曲線看成滿足某種條件的點(diǎn)的集合或軌跡,用曲線上點(diǎn)的坐標(biāo)所滿足的方程表示曲線,通過研究方程,間接地來研究曲線的性質(zhì)。

        【高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

        數(shù)學(xué)高一函數(shù)知識(shí)點(diǎn)總結(jié)11-03

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)09-08

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11-19

        高一數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)12-01

        高一數(shù)學(xué)集合知識(shí)點(diǎn)總結(jié)12-01

        高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)12-15

        高一數(shù)學(xué)的知識(shí)點(diǎn)歸納總結(jié)07-11

        高一數(shù)學(xué)函數(shù)的知識(shí)點(diǎn)總結(jié)01-15

        高一數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納總結(jié)09-08

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納09-08

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>