數(shù)學(xué)知識點(diǎn)總結(jié)通用15篇
總結(jié)是對取得的成績、存在的問題及得到的經(jīng)驗(yàn)和教訓(xùn)等方面情況進(jìn)行評價(jià)與描述的一種書面材料,通過它可以正確認(rèn)識以往學(xué)習(xí)和工作中的優(yōu)缺點(diǎn),為此要我們寫一份總結(jié)。那么我們該怎么去寫總結(jié)呢?下面是小編為大家收集的數(shù)學(xué)知識點(diǎn)總結(jié),希望能夠幫助到大家。
數(shù)學(xué)知識點(diǎn)總結(jié)1
直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。
直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。③直線和平面平行——沒有公共點(diǎn)
直線和平面平行的定義:如果一條直線和一個(gè)平面沒有公共點(diǎn),那么我們就說這條直線和這個(gè)平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。
直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。
多面體
1、棱柱
棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每兩個(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質(zhì)
(1)側(cè)棱都相等,側(cè)面是平行四邊形
(2)兩個(gè)底面與平行于底面的截面是全等的多邊形
(3)過不相鄰的兩條側(cè)棱的截面(對角面)是平行四邊形
2、棱錐
棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐
棱錐的性質(zhì):
(1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方
3、正棱錐
正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3)多個(gè)特殊的直角三角形
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。
數(shù)學(xué)知識點(diǎn)總結(jié)2
一、基本知識
一、數(shù)與代數(shù)
A、數(shù)與式:
1、有理數(shù):①整數(shù)→正整數(shù),0,負(fù)整數(shù);
②分?jǐn)?shù)→正分?jǐn)?shù),負(fù)分?jǐn)?shù)
數(shù)軸:①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長度作為單位長度,規(guī)定直線上向右的方向?yàn)檎较颍偷玫綌?shù)軸。
、谌魏我粋(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。
、廴绻麅蓚(gè)數(shù)只有符號不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。
、軘(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
絕對值:①在數(shù)軸上,一個(gè)數(shù)所對應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對值。
、谡龜(shù)的絕對值是他的本身、負(fù)數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個(gè)負(fù)數(shù)比較大小,絕對值大的反而小。
有理數(shù)的運(yùn)算:帶上符號進(jìn)行正常運(yùn)算。
加法:
、偻栂嗉,取相同的符號,把絕對值相加。
、诋愄栂嗉樱^對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。
、垡粋(gè)數(shù)與0相加不變。
減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號得正,異號得負(fù),絕對值相乘。
、谌魏螖(shù)與0相乘得0。
、鄢朔e為1的兩個(gè)有理數(shù)互為倒數(shù)。
除法:①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。
、0不能作除數(shù)。
乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)或指數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
2、實(shí)數(shù)
無理數(shù)
無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù),例如:π=3.1415926…
平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。
②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。
、垡粋(gè)正數(shù)有2個(gè)平方根;0的平方根為0;負(fù)數(shù)沒有平方根。
、芮笠粋(gè)數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。
立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。
②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。
、矍笠粋(gè)數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。
實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無理數(shù)。
、谠趯(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣;
③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。
3、代數(shù)式
代數(shù)式:單獨(dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。
合并同類項(xiàng):①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng);②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。
、墼诤喜⑼愴(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式
整式:①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。
②一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。
、垡粋(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。
整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號先去括號,再合并同類項(xiàng)。
冪的運(yùn)算:
A^M+A^N=A^(M+N)
(A^M)^N=A^(MN
。
(A/B)^N=A^N/B^N
除法一樣。
整式的乘法:
、賳雾(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。
、趩雾(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
、鄱囗(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
公式兩條:平方差公式:A^2-B^2=(A+B)(A-B);
完全平方公式:(A+B)^2=A^2+2AB+B^2;(A-B)^2=A^2-2AB+B^2。
整式的除法:①單項(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。
、诙囗(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。
分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。
方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對于任何一個(gè)分式,分母不為0。
②分式的分子與分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。
分式的運(yùn)算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。
加減法:①同分母分式相加減,分母不變,把分子相加減。
②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數(shù)的方程叫分式方程。
、谑狗匠痰姆帜笧0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。
適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。
二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。
解二元一次方程組的方法:代入消元法;加減消元法。
一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程:ax^2+bx+c=0;
1)一元二次方程的二次函數(shù)的關(guān)系
大家已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)Y=0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,圖像與X軸的交點(diǎn)。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數(shù)有頂點(diǎn)式(-b/2a
,4ac-b^2/4a),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變?yōu)橥耆椒焦剑谟弥苯娱_平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b^2-4ac)]}/2a,X2={-b-√[b^2-4ac)]}/2a
3)解一元二次方程的步驟:
。1)配方法的步驟:
先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c
4)韋達(dá)定理
利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用
5)一元二次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao
ta”,而△=b2-4ac,這里可以分為3種情況:
I當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;
II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;
III當(dāng)△B,則A+C>B+C;
在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號不改向;
例如:如果A>B,則A-C>B-C;
在不等式中,如果乘以同一個(gè)正數(shù),不等式符號不改向;
例如:如果A>B,則A*C>B*C(C>0);
在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號改向;
例如:如果A>B,則A*C
如果不等式乘以0,那么不等號改為等號;
所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘的數(shù)就不等于0,否則不等式不成立;
3、函數(shù)
變量:因變量Y,自變量X。
在用圖像表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。
一次函數(shù):①若兩個(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。
、诋(dāng)B=0時(shí),稱Y是X的正比例函數(shù)。
一次函數(shù)的圖像:
①把一個(gè)函數(shù)的自變量X與對應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖像。
②正比例函數(shù)Y=KX的圖像是經(jīng)過原點(diǎn)的一條直線。
③在一次函數(shù)中,當(dāng)K〈0,B〈O時(shí),則經(jīng)234象限;
當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;
當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;
當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。
、墚(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認(rèn)識
1、點(diǎn),線,面
點(diǎn),線,面:①圖形是由點(diǎn),線,面構(gòu)成的。
、诿媾c面相交得線,線與線相交得點(diǎn)。
、埸c(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。
展開與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。
、贜棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經(jīng)過這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。
、趫A可以分割成若干個(gè)扇形。
2、角
線:①線段有兩個(gè)端點(diǎn)。
②將線段向一個(gè)方向無限延長就形成了射線。射線只有一個(gè)端點(diǎn)。
、蹖⒕段的兩端無限延長就形成了直線。直線沒有端點(diǎn)。
、芙(jīng)過兩點(diǎn)有且只有一條直線。
比較長短:①兩點(diǎn)之間的所有連線中,線段最短。兩點(diǎn)之間直線最短。
、趦牲c(diǎn)之間線段的長度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。
、谝欢鹊1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。
角的比較:①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。
②一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角,180。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角,360。
、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。
平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。
②經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。
、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。
、诨ハ啻怪钡膬蓷l直線的交點(diǎn)叫做垂足。
③平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫法,后面會講)一定要把線段穿出2點(diǎn)。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;
判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上;
角平分線:把一個(gè)角平分的射線叫該角的角平分線。
定義中有幾個(gè)要點(diǎn)要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個(gè)角的角平分線就是到角兩邊距離相等的點(diǎn)的集合。
性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等;
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上;
正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點(diǎn)有且只有一條直線
2、兩點(diǎn)之間線段最短
3、同角或等角的補(bǔ)角相等
——補(bǔ)角=180-角度。
4、同角或等角的余角相等——余角=90-角度。
5、過一點(diǎn)有且只有一條直線和已知直線垂直
6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7、平行公理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內(nèi)錯(cuò)角相等,兩直線平行
11、同旁內(nèi)角互補(bǔ),兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內(nèi)錯(cuò)角相等
14、兩直線平行,同旁內(nèi)角互補(bǔ)
15、定理
三角形兩邊的和大于第三邊
16、推論
三角形兩邊的差小于第三邊
17、三角形內(nèi)角和定理:
三角形三個(gè)內(nèi)角的和等于180°
18、推論1
直角三角形的兩個(gè)銳角互余
19、推論2
三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20、推論3
三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21、全等三角形的對應(yīng)邊、對應(yīng)角相等
22、邊角邊公理(SAS):有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等
23、角邊角公理(
ASA):有兩角和它們的夾邊對應(yīng)相等的
兩個(gè)三角形全等
24、推論(AAS):有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等
25、邊邊邊公理(SSS):有三邊對應(yīng)相等的兩個(gè)三角形全等
26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等
27、定理1
在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28、定理2
到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30、推論1
等腰三角形頂角的平分線平分底邊并且垂直于底邊
31、推論2等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;
32、推論3
等邊三角形的各角都相等,并且每一個(gè)角都等于60°
33、等腰三角形的判定定理
如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)
34、等腰三角形的性質(zhì)定理
等腰三角形的兩個(gè)底角相等
(即等邊對等角)
35、推論1
三個(gè)角都相等的三角形是等邊三角形
36、推論
有一個(gè)角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角三角形斜邊上的中線等于斜邊上的一半
39、定理
線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
40、逆定理
和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1
關(guān)于某條直線對稱的兩個(gè)圖形是全等形
43、定理
如果兩個(gè)圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線
44、定理3
兩個(gè)圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上
45、逆定理
如果兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對稱
46、勾股定理
直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理
如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形
48、定理
四邊形的內(nèi)角和等于360°
49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理
n邊形的內(nèi)角的和等于(n-2)×180°
51、推論
任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1
平行四邊形的對角相等
53、平行四邊形性質(zhì)定理2
平行四邊形的對邊相等
54、推論
夾在兩條平行線間的平行線段相等
55、平行四邊形性質(zhì)定理3
平行四邊形的對角線互相平分
56、平行四邊形判定定理1
兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2
兩組對邊分別相等的四邊
形是平行四邊形
58、平行四邊形判定定理3
對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4
一組對邊平行相等的四邊形是平行四邊形
60、矩形性質(zhì)定理1
矩形的四個(gè)角都是直角
61、矩形性質(zhì)定理2
矩形的對角線相等
62、矩形判定定理1
有三個(gè)角是直角的四邊形是矩形
63、矩形判定定理2
對角線相等的平行四邊形是矩形
64、菱形性質(zhì)定理1
菱形的四條邊都相等
65、菱形性質(zhì)定理2
菱形的對角線互相垂直,并且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1
四邊都相等的四邊形是菱形
68、菱形判定定理2
對角線互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1
正方形的四個(gè)角都是直角,四條邊都相等
70、正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71、定理1
關(guān)于中心對稱的兩個(gè)圖形是全等的
72、定理2
關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分
73、逆定理
如果兩個(gè)圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱
74、等腰梯形性質(zhì)定理
等腰梯形在同一底上的兩個(gè)角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理
在同一底上的兩個(gè)角相等的梯
形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理
如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1
經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
80、推論2
經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊
81、三角形中位線定理
三角形的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理
梯形的中位線平行于兩底,并且等于兩底和的一半
L=(a+b)÷2
S=L×h
83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc
如果
ad=bc,那么a:b=c:d
84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理
三條平行線截兩條直線,所得的對應(yīng)線段成比例
87、推論
平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例
88、定理
如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線,
所截得的三角形的三邊與原三角形三邊對應(yīng)成比例
90、定理
平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
91、相似三角形判定定理1
兩角對應(yīng)相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
93、判定定理2
兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3
三邊對應(yīng)成比例,兩三角形相似(SSS)
95、定理
如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似(HL)
96、性質(zhì)定理1
相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比
97、性質(zhì)定理2
相似三角形周長的比等于相似比
98、性質(zhì)定理3
相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
(a<90)
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
101、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
104、同圓或等圓的半徑相等
105、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓
106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線
108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理
不在同一直線上的三點(diǎn)確定一個(gè)圓。
110、垂徑定理
垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111、推論1
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧
、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條。ㄖ睆剑
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112、推論2
圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論
在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
116、定理
一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1
同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2
半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3
如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形
120、定理
圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角
121、①直線L和⊙O相交
0<=d<r
、谥本L和⊙O相切
d=r
③直線L和⊙O相離
d>r
122、切線的判定定理
經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
123、切線的性質(zhì)定理
圓的切線垂直于經(jīng)過切點(diǎn)的半徑
124、推論1
經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
125、推論2
經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
126、切線長定理
從圓外一點(diǎn)引圓的兩條切線相交與一點(diǎn),它們的切線長相等
,圓心和這一點(diǎn)的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理
弦切角等于它所夾的弧對的圓周角?
129、推論
如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
130、相交弦定理
圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等
131、推論
如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)
132、切割線定理
從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)?
133、推論
從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條
割線與圓的交點(diǎn)的兩條線段長的積相等
134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
135、①兩圓外離
d>R+r
②兩圓外切
d=R+r
、蹆蓤A相交
R-r<d<R+r(R>r)
、軆蓤A內(nèi)切
d=R-r(R>r)
、輧蓤A內(nèi)含
d<R-r(R>r)
136、定理
相交兩圓的連心線垂直平分兩圓的公共弦
137、定理
把圓平均分成n(n≥3):
⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
、平(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
138、定理
任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
139、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
140、定理
正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
141、正n邊形的面積Sn=pn*rn/2
p表示正n邊形的周長
142、正三角形面積√3a^2/4
a表示邊長
143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計(jì)算公式:L=n兀R/180——》L=nR
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內(nèi)公切線長=d-(R-r)
外公切線長=d-(R+r)
數(shù)學(xué)知識點(diǎn)總結(jié)3
正數(shù)和負(fù)數(shù)
⒈、正數(shù)和負(fù)數(shù)的概念
負(fù)數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負(fù)數(shù)
注意:①字母a可以表示任意數(shù),當(dāng)a表示正數(shù)時(shí),—a是負(fù)數(shù);當(dāng)a表示負(fù)數(shù)時(shí),—a是正數(shù);當(dāng)a表示0時(shí),—a仍是0。(如果出判斷題為:帶正號的數(shù)是正數(shù),帶負(fù)號的數(shù)是負(fù)數(shù),這種說法是錯(cuò)誤的,例如+a,—a就不能做出簡單判斷)
、谡龜(shù)有時(shí)也可以在前面加“+”,有時(shí)“+”省略不寫。所以省略“+”的正數(shù)的符號是正號。
2、具有相反意義的量
若正數(shù)表示某種意義的量,則負(fù)數(shù)可以表示具有與該正數(shù)相反意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:—8℃
3、0表示的意義
(1)0表示“沒有”,如教室里有0個(gè)人,就是說教室里沒有人;
。2)0是正數(shù)和負(fù)數(shù)的分界線,0既不是正數(shù),也不是負(fù)數(shù)。如:
。3)0表示一個(gè)確切的量。如:0℃以及有些題目中的基準(zhǔn),比如以海平面為基準(zhǔn),則0米就表示海平面。
有理數(shù)
1、有理數(shù)的概念
。1)正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱為整數(shù)(0和正整數(shù)統(tǒng)稱為自然數(shù))
。2)正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱為分?jǐn)?shù)
。3)正整數(shù),0,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù)都可以寫成分?jǐn)?shù)的形式,這樣的數(shù)稱為有理數(shù)。
理解:只有能化成分?jǐn)?shù)的數(shù)才是有理數(shù)。①π是無限不循環(huán)小數(shù),不能寫成分?jǐn)?shù)形式,不是有理數(shù)。②有限小數(shù)和無限循環(huán)小數(shù)都可化成分?jǐn)?shù),都是有理數(shù)。③整數(shù)也能化成分?jǐn)?shù),也是有理數(shù)
注意:引入負(fù)數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴(kuò)大了,像—2,—4,—6,—8也是偶數(shù),—1,—3,—5也是奇數(shù)。
數(shù)學(xué)知識點(diǎn)總結(jié)4
(一)多姿多彩的圖形
立體圖形:棱柱、棱錐、圓柱、圓錐、球等.
1、幾何圖形
平面圖形:三角形、四邊形、圓等.
主(正)視圖---------從正面看
2、幾何體的三視圖 側(cè)(左、右)視圖-----從左(右)邊看
俯視圖---------------從上面看
(1)會判斷簡單物體(直棱柱、圓柱、圓錐、球)的三視圖.
(2)能根據(jù)三視圖描述基本幾何體或?qū)嵨镌?
3、立體圖形的平面展開圖
(1)同一個(gè)立體圖形按不同的方式展開,得到的平現(xiàn)圖形不一樣的.
(2)了解直棱柱、圓柱、圓錐、的平面展開圖,能根據(jù)展開圖判斷和制作立體模型.
4、點(diǎn)、線、面、體
(1)幾何圖形的組成
點(diǎn):線和線相交的地方是點(diǎn),它是幾何圖形最基本的圖形.
線:面和面相交的地方是線,分為直線和曲線.
面:包圍著體的是面,分為平面和曲面.
體:幾何體也簡稱體.
(2)點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體.
(二)直線、射線、線段
1、基本概念
圖形 直線 射線 線段
端點(diǎn)個(gè)數(shù) 無 一個(gè) 兩個(gè)
表示法 直線a
直線AB(BA) 射線AB 線段a
線段AB(BA)
作法敘述 作直線AB;
作直線a 作射線AB 作線段a;
作線段AB;
連接AB
延長敘述 不能延長 反向延長射線AB 延長線段AB;
反向延長線段BA
2、直線的性質(zhì)
經(jīng)過兩點(diǎn)有一條直線,并且只有一條直線.
簡單地:兩點(diǎn)確定一條直線.
3、畫一條線段等于已知線段
(1)度量法
(2)用尺規(guī)作圖法
4、線段的大小比較方法
(1)度量法
(2)疊合法
5、線段的中點(diǎn)(二等分點(diǎn))、三等分點(diǎn)、四等分點(diǎn)等
定義:把一條線段平均分成兩條相等線段的點(diǎn).
圖形:
A M B
符號:若點(diǎn)M是線段AB的中點(diǎn),則AM=BM=AB,AB=2AM=2BM.
6、線段的性質(zhì)
兩點(diǎn)的所有連線中,線段最短.簡單地:兩點(diǎn)之間,線段最短.
7、兩點(diǎn)的距離
連接兩點(diǎn)的線段長度叫做兩點(diǎn)的距離.
8、點(diǎn)與直線的位置關(guān)系
(1)點(diǎn)在直線上 (2)點(diǎn)在直線外.
(三)角
1、角:由公共端點(diǎn)的兩條射線所組成的圖形叫做角.
2、角的表示法(四種):
3、角的度量單位及換算
4、角的分類
銳角 直角 鈍角 平角 周角
范圍 090=90 90 =180=360
5、角的比較方法
(1)度量法
(2)疊合法
6、角的和、差、倍、分及其近似值
7、畫一個(gè)角等于已知角
(1)借助三角尺能畫出15的倍數(shù)的角,在0~180之間共能畫出11個(gè)角.
(2)借助量角器能畫出給定度數(shù)的角.
(3)用尺規(guī)作圖法.
8、角的平線線
定義:從一個(gè)角的頂點(diǎn)出發(fā),把這個(gè)角分成相等的兩個(gè)角的射線叫做角的平分線.
圖形:
符號:
9、互余、互補(bǔ)
(1)若2=90,則1與2互為余角.其中1是2的余角,2是1的余角.
(2)若2=180,則1與2互為補(bǔ)角.其中1是2的補(bǔ)角,2是1的補(bǔ)角.
(3)余(補(bǔ))角的性質(zhì):等角的補(bǔ)(余)角相等.
10、方向角
(1)正方向
(2)北(南)偏東(西)方向
(3)東(西)北(南)方向
數(shù)學(xué)知識點(diǎn)總結(jié)5
一、角的定義
“靜態(tài)”概念:有公共端點(diǎn)的兩條射線組成的圖形叫做角。
“動(dòng)態(tài)”概念:角可以看作是一條射線繞其端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。
如果一個(gè)角的兩邊成一條直線,那么這個(gè)角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。
二、角的換算:1周角=2平角=4直角=360°;
1平角=2直角=180°;
1直角=90°;
1度=60分=3600秒(即:1°=60′=3600″);
1分=60秒(即:1′=60″).
三、余角、補(bǔ)角的概念和性質(zhì):
概念:如果兩個(gè)角的和是一個(gè)平角,那么這兩個(gè)角叫做互為補(bǔ)角。
如果兩個(gè)角的和是一個(gè)直角,那么這兩個(gè)角叫做互為余角。
說明:互補(bǔ)、互余是指兩個(gè)角的數(shù)量關(guān)系,沒有位置關(guān)系。
性質(zhì):同角(或等角)的余角相等;
同角(或等角)的補(bǔ)角相等。
四、角的比較方法:
角的大小比較,有兩種方法:
(1)度量法(利用量角器);
(2)疊合法(利用圓規(guī)和直尺)。
五、角平分線:從一個(gè)角的頂點(diǎn)引出的一條射線。把這個(gè)角分成相等的兩部分,這條射線叫做這個(gè)角的平分線。
常見考法
(1)考查與時(shí)鐘有關(guān)的問題;(2)角的計(jì)算與度量。
誤區(qū)提醒
角的度、分、秒單位的換算是60進(jìn)制,而不是10進(jìn)制,換算時(shí)易受10進(jìn)制影響而出錯(cuò)。
【典型例題】(20xx云南曲靖)從3時(shí)到6時(shí),鐘表的時(shí)針旋轉(zhuǎn)角的度數(shù)是( )
【答案】3時(shí)到6時(shí),時(shí)針旋轉(zhuǎn)的是一個(gè)周角的1/4,故是90度 ,本題選C.
數(shù)學(xué)知識點(diǎn)總結(jié)6
人教版小學(xué)數(shù)學(xué)知識點(diǎn)大全 基本概念
第一章 數(shù)和數(shù)的運(yùn)算 一、概念 (一)整數(shù)
1、整數(shù)的意義
自然數(shù)和0都是整數(shù)。
2、自然數(shù)
我們在數(shù)物體的時(shí)候,用來表示物體個(gè)數(shù)的1,2,3??叫做自然數(shù)。
一個(gè)物體也沒有,用0表示。0也是自然數(shù)。
3、計(jì)數(shù)單位
一(個(gè))、十、百、千、萬、十萬、百萬、千萬、億??都是計(jì)數(shù)單位。其中“一”是計(jì)數(shù)的基本單位。
10個(gè)1是10,10個(gè)10是100??每相鄰兩個(gè)計(jì)數(shù)單位之間的進(jìn)率都是10。這樣的計(jì)數(shù)法叫做十進(jìn)制計(jì)數(shù)法。
4、數(shù)位
計(jì)數(shù)單位按照一定的順序排列起來,它們所占的位置叫做數(shù)位。
5、整數(shù)的讀法:從高位到低位,一級一級地讀。讀億級、萬級時(shí),先按照個(gè)級的讀法去讀,再在后面加一個(gè)“億”或“萬”字。每一級末尾的0都不讀出來,其它數(shù)位連續(xù)有幾個(gè)0都只讀一個(gè)零。
6、整數(shù)的寫法:從高位到低位,一級一級地寫,哪一個(gè)數(shù)位上一個(gè)單位也沒有,就在那個(gè)數(shù)位上寫0。
7、一個(gè)較大的多位數(shù),為了讀寫方便,常常把它改寫成用“萬”或“億”作單位的數(shù)。有時(shí)還可以根據(jù)需要,省略這個(gè)數(shù)某一位后面的數(shù),寫成近似數(shù)。
? 準(zhǔn)確數(shù):在實(shí)際生活中,為了計(jì)數(shù)的簡便,可以把一個(gè)較大的數(shù)改寫成以萬或億為單位的數(shù)。改寫后的數(shù)是原數(shù)的準(zhǔn)確數(shù)。 例如把 1254300000 改寫成以萬做單位的數(shù)是 125430 萬;改寫成 以億做單位 的數(shù) 12.543 億。
? 近似數(shù):根據(jù)實(shí)際需要,我們還可以把一個(gè)較大的數(shù),省略某一位后面的尾數(shù),用一個(gè)近似數(shù)來表示。 例如: 1302490015 省略億后面的尾數(shù)是 13 億。? 四舍五入法:求近似數(shù),看尾數(shù)最高位上的數(shù)是幾,比5小就舍去,是5或大于5舍去尾數(shù)向前一位進(jìn)1。這種求近似數(shù)的方法就叫做四舍五入法。
8、整數(shù)大小的比較:位數(shù)多的那個(gè)數(shù)就大,如果位數(shù)相同,就看最高位,最高位上的數(shù)大,那個(gè)數(shù)就大;最高位上的數(shù)相同,就看下一位,哪一位上的數(shù)大那個(gè)數(shù)就大。以此類推。 (二)小數(shù)
1、小數(shù)的意義
把整數(shù)1平均分成10份、100份、1000份?? 得到的十分之幾、百分之幾、千分之幾?? 可以用小數(shù)表示。如1/10記作0.1,7/100記作0.07。
一位小數(shù)表示十分之幾,兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾??
一個(gè)小數(shù)由整數(shù)部分、小數(shù)部分和小數(shù)點(diǎn)部分組成。數(shù)中的圓點(diǎn)叫做小數(shù)點(diǎn),小數(shù)點(diǎn)左邊的數(shù)叫做整數(shù)部分,小數(shù)點(diǎn)左邊的數(shù)叫做整數(shù)部分,小數(shù)點(diǎn)右邊的數(shù)叫做小數(shù)部分。
小數(shù)點(diǎn)右邊第一位叫十分位,計(jì)數(shù)單位是十分之一(0.1);第二位叫百分位,計(jì)數(shù)單位是百分之一(0.01)??小數(shù)部分最大的計(jì)數(shù)單位是十分之一,沒有最小的計(jì)數(shù)單位。小數(shù)部分有幾個(gè)數(shù)位,就叫做幾位小數(shù)。如0.36是兩位小數(shù),3.066是三位小數(shù)
在小數(shù)里,每相鄰兩個(gè)計(jì)數(shù)單位之間的進(jìn)率都是10。小數(shù)部分的最高分?jǐn)?shù)單位“十分之一”和整數(shù)部分的最低單位“一”之間的進(jìn)率也是10。
2、小數(shù)的讀法:讀小數(shù)的時(shí)候,整數(shù)部分按照整數(shù)的讀法讀,小數(shù)點(diǎn)讀作“點(diǎn)”,小數(shù)部分從左向右順次讀出每一位數(shù)位上的數(shù)字。
3、小數(shù)的寫法:寫小數(shù)的時(shí)候,整數(shù)部分按照整數(shù)的寫法來寫,小數(shù)點(diǎn)寫在個(gè)位右下角,小數(shù)部分順次寫出每一個(gè)數(shù)位上的數(shù)字。
4、比較小數(shù)的大。合瓤此鼈兊恼麛(shù)部分,,整數(shù)部分大的那個(gè)數(shù)就大;整數(shù)部分相同的,十分位上的數(shù)大的那個(gè)數(shù)就大;十分位上的數(shù)也相同的,百分位上的數(shù)大的那個(gè)數(shù)就大??
5、小數(shù)的分類
? 純小數(shù):整數(shù)部分是零的小數(shù),叫做純小數(shù)。例如: 0.25 、 0.368 都是純小數(shù)。
? 帶小數(shù):整數(shù)部分不是零的小數(shù),叫做帶小數(shù)。 例如: 3.25 、 5.26 都是帶小數(shù)。
? 有限小數(shù):小數(shù)部分的數(shù)位是有限的小數(shù),叫做有限小數(shù)。 例如: 41.7 、 25.3 、 0.23 都是有限小數(shù)。
? 無限小數(shù):小數(shù)部分的數(shù)位是無限的小數(shù),叫做無限小數(shù)。 例如: 4.33 ?? 3.1415926 ??
? 無限不循環(huán)小數(shù):一個(gè)數(shù)的小數(shù)部分,數(shù)字排列無規(guī)律且位數(shù)無限,這樣的小數(shù)叫做無限不循環(huán)小數(shù)。 例如:∏
? 循環(huán)小數(shù):一個(gè)數(shù)的小數(shù)部分,有一個(gè)數(shù)字或者幾個(gè)數(shù)字依次不斷重復(fù)出現(xiàn),這個(gè)數(shù)叫做循環(huán)小數(shù)。 例如: 3.555 ?? 0.0333 ?? 12.109109 ??
一個(gè)循環(huán)小數(shù)的小數(shù)部分,依次不斷重復(fù)出現(xiàn)的數(shù)字叫做這個(gè)循環(huán)小數(shù)的循環(huán)節(jié)。 例如: 3.99 ??的循環(huán)節(jié)是“ 9 ” , 0.5454 ??的循環(huán)節(jié)是“ 54 ” 。
? 純循環(huán)小數(shù):循環(huán)節(jié)從小數(shù)部分第一位開始的,叫做純循環(huán)小數(shù)。 例如: 3.111 ?? 0.5656 ??
? 混循環(huán)小數(shù):循環(huán)節(jié)不是從小數(shù)部分第一位開始的,叫做混循環(huán)小數(shù)。 3.1222 ?? 0.03333 ??
寫循環(huán)小數(shù)的時(shí)候,為了簡便,小數(shù)的循環(huán)部分只需寫出一個(gè)循環(huán)節(jié),并在這個(gè)循環(huán)節(jié)的首、末位數(shù)字上各點(diǎn)一個(gè)圓點(diǎn)。如果循環(huán) 節(jié)只有一個(gè)數(shù)字,就只在它的上面點(diǎn)一個(gè)點(diǎn)。 (三)分?jǐn)?shù)
1、分?jǐn)?shù)的意義
把單位“1”平均分成若干份,表示這樣的一份或者幾份的數(shù)叫做分?jǐn)?shù)。
在分?jǐn)?shù)里,中間的橫線叫做分?jǐn)?shù)線;分?jǐn)?shù)線下面的數(shù),叫做分母,表示把單位“1”平均分成多少份;分?jǐn)?shù)線下面的數(shù)叫做分子,表示有這樣的多少份。
把單位“1”平均分成若干份,表示其中的一份的數(shù),叫做分?jǐn)?shù)單位。
2、分?jǐn)?shù)的讀法:讀分?jǐn)?shù)時(shí),先讀分母再讀“分之”然后讀分子,分子和分母按照整數(shù)的讀法來讀。
3、分?jǐn)?shù)的寫法:先寫分?jǐn)?shù)線,再寫分母,最后寫分子,按照整數(shù)的寫法來寫。
4、比較分?jǐn)?shù)的大小:
? 分母相同的分?jǐn)?shù),分子大的那個(gè)分?jǐn)?shù)就大。
? 分子相同的分?jǐn)?shù),分母小的那個(gè)分?jǐn)?shù)就大。
? 分母和分子都不同的分?jǐn)?shù),通常是先通分,轉(zhuǎn)化成通分母的分?jǐn)?shù),再比較大小。
? 如果被比較的分?jǐn)?shù)是帶分?jǐn)?shù),先要比較它們的整數(shù)部分,整數(shù)部分大的那個(gè)帶分?jǐn)?shù)就大;如果整數(shù)部分相同,再比較它們的分?jǐn)?shù)部分,分?jǐn)?shù)部分大的那個(gè)帶分?jǐn)?shù)就大。
5、分?jǐn)?shù)的分類
按照分子、分母和整數(shù)部分的不同情況,可以分成:真分?jǐn)?shù)、假分?jǐn)?shù)、帶分?jǐn)?shù)
? 真分?jǐn)?shù):分子比分母小的分?jǐn)?shù)叫做真分?jǐn)?shù)。真分?jǐn)?shù)小于1。
? 假分?jǐn)?shù):分子比分母大或者分子和分母相等的分?jǐn)?shù),叫做假分?jǐn)?shù)。假分?jǐn)?shù)大于或等于1。
? 帶分?jǐn)?shù):假分?jǐn)?shù)可以寫成整數(shù)與真分?jǐn)?shù)合成的數(shù),通常叫做帶分?jǐn)?shù)。
6、分?jǐn)?shù)和除法的關(guān)系及分?jǐn)?shù)的基本性質(zhì)
? 除法是一種運(yùn)算,有運(yùn)算符號;分?jǐn)?shù)是一種數(shù)。因此,一般應(yīng)敘述為被除數(shù)相當(dāng)于分子,而不能說成被除數(shù)就是分子。? 由于分?jǐn)?shù)和除法有密切的關(guān)系,根據(jù)除法中“商不變”的性質(zhì)可得出分?jǐn)?shù)的基本性質(zhì)。
? 分?jǐn)?shù)的分子和分母都乘以或者除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變,這叫做分?jǐn)?shù)的基本性質(zhì),它是約分和通分的依據(jù)。
7、約分和通分
? 分子、分母是互質(zhì)數(shù)的分?jǐn)?shù),叫做最簡分?jǐn)?shù)。
? 把一個(gè)分?jǐn)?shù)化成同它相等但分子、分母都比較小的分?jǐn)?shù),叫做約分。
? 約分的方法:用分子和分母的公約數(shù)(1除外)去除分子、分母;通常要除到得出最簡分?jǐn)?shù)為止。
? 把異分母分?jǐn)?shù)分別化成和原來分?jǐn)?shù)相等的同分母分?jǐn)?shù),叫做通分。
? 通分的方法:先求出原來幾個(gè)分母的最小公倍數(shù),然后把各分?jǐn)?shù)化成用這個(gè)最小公倍數(shù)作分母的分?jǐn)?shù)。
8、倒 數(shù)
? 乘積是1的兩個(gè)數(shù)互為倒數(shù)。
? 求一個(gè)數(shù)(0除外)的倒數(shù),只要把這個(gè)數(shù)的分子、分母調(diào)換位置。
? 1的倒數(shù)是1,0沒有倒數(shù) (四)百分?jǐn)?shù)
1、百分?jǐn)?shù)的意義
表示一個(gè)數(shù)是另一個(gè)數(shù)的百分之幾的數(shù) 叫做百分?jǐn)?shù),也叫做百分率或百分比。百分?jǐn)?shù)通常用"%"來表示。百分號是表示百分?jǐn)?shù)的符號。
2、百分?jǐn)?shù)的讀法:讀百分?jǐn)?shù)時(shí),先讀百分之,再讀百分號前面的數(shù),讀數(shù)時(shí)按照整數(shù)的讀法來讀。
3、百分?jǐn)?shù)的寫法:百分?jǐn)?shù)通常不寫成分?jǐn)?shù)形式,而在原來的分子后面加上百分號“%”來表示。
4、百分?jǐn)?shù)與折數(shù)、成數(shù)的互化:
例如:三折就是30%,七五折就是75%,成數(shù)就是十分之幾,如一成就是牐 闖砂俜質(zhì) 褪?0%,則六成五就是65%。
5、納稅和利息:
稅率:應(yīng)納稅額與各種收入的比率。
利率:利息與本金的百分率。由銀行規(guī)定按年或按月計(jì)算。
利息的計(jì)算公式:利息=本金×利率×?xí)r間
6、百分?jǐn)?shù)與分?jǐn)?shù)的區(qū)別主要有以下三點(diǎn):
? 意義不同。百分?jǐn)?shù)是“表示一個(gè)數(shù)是另一個(gè)數(shù)的百分之幾的數(shù)!彼荒鼙硎緝蓴(shù)之間的倍數(shù)關(guān)系,不能表示某一具體數(shù)量。如:可以說 1米 是 5米 的 20%,不可以說“一段繩子長為20%米。”因此,百分?jǐn)?shù)后面不能帶單位名稱。分?jǐn)?shù)是“把單位‘1’平均分成若干份,表示這樣一份或幾份的數(shù)”。分?jǐn)?shù)不僅 可以表示兩數(shù)之間的倍數(shù)關(guān)系,如:甲數(shù)是3,乙數(shù)是4,甲數(shù)是乙數(shù)的?;還可以表示一定的數(shù)量,如:犌Э恕 米等。
? 應(yīng)用范圍不同。百分?jǐn)?shù)在生產(chǎn)、工作和生活中,常用于調(diào)查、統(tǒng)計(jì)、分析與比較。而分?jǐn)?shù)常常是在測量、計(jì)算中,得不到整數(shù)結(jié)果時(shí)使用。
? 書寫形式不同。百分?jǐn)?shù)通常不寫成分?jǐn)?shù)形式,而采用百分號“%”來表示。如:百分之四十五,寫作:45%;百分?jǐn)?shù)的分母固定為100,因此,不論百分?jǐn)?shù) 的分子、分母之間有多少個(gè)公約數(shù),都不約分;百分?jǐn)?shù)的分子可以是自然數(shù),也可以是小數(shù)。而分?jǐn)?shù)的分子只能是自然數(shù),它的表示形式有:真分?jǐn)?shù)、假分?jǐn)?shù)、帶分 數(shù),計(jì)算結(jié)果不是最簡分?jǐn)?shù)的一般要通過約分化成最簡分?jǐn)?shù),是假分?jǐn)?shù)的要化成帶分?jǐn)?shù)。
7、數(shù)的互化
? 小數(shù)化成分?jǐn)?shù):原來有幾位小數(shù),就在1的后面寫幾個(gè)零作分母,把原來的小數(shù)去掉小數(shù)點(diǎn)作分子,能約分的要約分。
? 分?jǐn)?shù)化成小數(shù):用分母去除分子。能除盡的就化成有限小數(shù),有的不能除盡,不能化成有限小數(shù)的,一般保留三位小數(shù)。
? 一個(gè)最簡分?jǐn)?shù),如果分母中除了2和5以外,不含有其他的質(zhì)因數(shù),這個(gè)分?jǐn)?shù)就能化成有限小數(shù);如果分母中含有2和5 以外的質(zhì)因數(shù),這個(gè)分?jǐn)?shù)就不能化成有限小數(shù)。
? 小數(shù)化成百分?jǐn)?shù):只要把小數(shù)點(diǎn)向右移動(dòng)兩位,同時(shí)在后面添上百分號。
? 百分?jǐn)?shù)化成小數(shù):把百分?jǐn)?shù)化成小數(shù),只要把百分號去掉,同時(shí)把小數(shù)點(diǎn)向左移動(dòng)兩位。
? 分?jǐn)?shù)化成百分?jǐn)?shù):通常先把分?jǐn)?shù)化成小數(shù)(除不盡時(shí),通常保留三位小數(shù)),再把小數(shù)化成百分?jǐn)?shù)。
? 百分?jǐn)?shù)化成小數(shù):先把百分?jǐn)?shù)改寫成分?jǐn)?shù),能約分的要約成最簡分?jǐn)?shù)。 (五)數(shù)的整除
1、整除的意義
整數(shù)a除以整數(shù)b(b ≠ 0),除得的商是整數(shù)而沒有余數(shù),我們就說a能被b整除,或者說b能整除a 。
除盡的意義 甲數(shù)除以乙數(shù),所得的.商是整數(shù)或有限小數(shù)而余數(shù)也為0時(shí),我們就說甲數(shù)能被乙數(shù)除盡,(或者說乙數(shù)能除盡甲數(shù))這里的甲數(shù)、乙數(shù)可以是自然數(shù),也可以是小數(shù)(乙數(shù)不能為0)。
2、約數(shù)和倍數(shù)
? 如果數(shù)a能被數(shù)b(b ≠ 0)整除,a就叫做b的倍數(shù),b就(來自:WWw.SmhaiDa.com :小學(xué)數(shù)學(xué)總結(jié))叫做a的約數(shù)(或a的因數(shù))。倍數(shù)和約數(shù)是相互依存的。
? 一個(gè)數(shù)的約數(shù)的個(gè)數(shù)是有限的,其中最小的約數(shù)是1,最大的約數(shù)是它本身。
? 一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無限的,其中最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
3、奇數(shù)和偶數(shù)
? 自然數(shù)按能否被2 整除的特征可分為奇數(shù)和偶數(shù)。
① 能被2整除的數(shù)叫做偶數(shù)。0也是偶數(shù)。
、 不能被2整除的數(shù)叫做奇數(shù)。
? 奇數(shù)和偶數(shù)的運(yùn)算性質(zhì):
、 相鄰兩個(gè)自然數(shù)之和是奇數(shù),之積是偶數(shù)。
、 奇數(shù)+奇數(shù)=偶數(shù),奇數(shù)+偶數(shù)=奇數(shù),偶數(shù)+偶數(shù)=偶數(shù);奇數(shù)-奇數(shù)=偶數(shù),
奇數(shù)-偶數(shù)=奇數(shù),偶數(shù)-奇數(shù)=奇數(shù),偶數(shù)-偶數(shù)=偶數(shù);奇數(shù)×奇數(shù)=奇數(shù),奇數(shù)×偶數(shù)=偶數(shù),偶數(shù)×偶數(shù)=偶數(shù)。
4、整除的特征
? 個(gè)位上是0、2、4、6、8的數(shù),都能被2整除。
? 個(gè)位上是0或5的數(shù),都能被5整除。
? 一個(gè)數(shù)的各位上的數(shù)的和能被3整除,這個(gè)數(shù)就能被3整除。
? 一個(gè)數(shù)各位數(shù)上的和能被9整除,這個(gè)數(shù)就能被9整除。
? 能被3整除的數(shù)不一定能被9整除,但是能被9整除的數(shù)一定能被3整除。
? 一個(gè)數(shù)的末兩位數(shù)能被4(或25)整除,這個(gè)數(shù)就能被4(或25)整除。
? 一個(gè)數(shù)的末三位數(shù)能被8(或125)整除,這個(gè)數(shù)就能被8(或125)整除。
5、質(zhì)數(shù)和合數(shù)
? 一個(gè)數(shù),如果只有1和它本身兩個(gè)約數(shù),這樣的數(shù)叫做質(zhì)數(shù)(或素?cái)?shù)),100以內(nèi)的質(zhì)數(shù)有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
? 一個(gè)數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù),例如 4、6、8、9、12都是合數(shù)。
? 1不是質(zhì)數(shù)也不是合數(shù),自然數(shù)除了1外,不是質(zhì)數(shù)就是合數(shù)。如果把自然數(shù)按其約數(shù)的個(gè)數(shù)的不同分類,可分為質(zhì)數(shù)、合數(shù)和1。
6、分解質(zhì)因數(shù)
? 質(zhì)因數(shù)
每個(gè)合數(shù)都可以寫成幾個(gè)質(zhì)數(shù)相乘的形式。其中每個(gè)質(zhì)數(shù)都是這個(gè)合數(shù)的因數(shù),叫做這個(gè)合數(shù)的質(zhì)因數(shù),例如15=3×5,3和5 叫做15的質(zhì)因數(shù)。
? 分解質(zhì)因數(shù)
把一個(gè)合數(shù)用質(zhì)因數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。通常用短除法來分解質(zhì)因數(shù)。先用能整除這個(gè)合數(shù)的質(zhì)數(shù)去除,一直除到商是質(zhì)數(shù)為止,再把除數(shù)和商寫成連乘的形式。
? 公因(約)數(shù)
幾個(gè)數(shù)公有的因數(shù)叫做這幾個(gè)數(shù)的公因數(shù)。其中最大的一個(gè)叫這幾個(gè)數(shù)的最大公因數(shù)。
公因數(shù)只有1的兩個(gè)數(shù),叫做互質(zhì)數(shù)。成互質(zhì)關(guān)系的兩個(gè)數(shù),有下列幾種情況:①和任何自然數(shù)互質(zhì);
、谙噜彽膬蓚(gè)自然數(shù)互質(zhì);
、郛(dāng)合數(shù)不是質(zhì)數(shù)的倍數(shù)時(shí),這個(gè)合數(shù)和這個(gè)質(zhì)數(shù)互質(zhì);
、軆蓚(gè)合數(shù)的公約數(shù)只有1時(shí),這兩個(gè)合數(shù)互質(zhì),如果幾個(gè)數(shù)中任意兩個(gè)都互質(zhì),就說這幾個(gè)數(shù)兩兩互質(zhì)。
如果較小數(shù)是較大數(shù)的約數(shù),那么較小數(shù)就是這兩個(gè)數(shù)的最大公約數(shù)。
如果兩個(gè)數(shù)是互質(zhì)數(shù),它們的最大公約數(shù)就是1。
? 公倍數(shù)
① 幾個(gè)數(shù)公有的倍數(shù)叫做這幾個(gè)數(shù)的公倍數(shù)。其中最大的一個(gè)叫這幾個(gè)數(shù)的最大公倍數(shù)。
求幾個(gè)數(shù)的最大公約數(shù)的方法是:先用這幾個(gè)數(shù)的公約數(shù)連續(xù)去除,一直除到所得的商只有公約數(shù)1為止,然后把所有的除數(shù)連乘求積,這個(gè)積就是這幾個(gè)數(shù)的的最大公約數(shù)。
、 幾個(gè)數(shù)公有的倍數(shù),叫做這幾個(gè)數(shù)的公倍數(shù),其中最小的一個(gè),叫做這幾個(gè)數(shù)的最小公倍數(shù)。
求幾個(gè)數(shù)的最小公倍數(shù)的方法是:先用這幾個(gè)數(shù)(或其中的部分?jǐn)?shù))的公約數(shù)去除,一直除到互質(zhì)(或兩兩互質(zhì))為止,然后把所有的除數(shù)和商連乘求積,這個(gè)積就是這幾個(gè)數(shù)的最小公倍數(shù)。
如果較大數(shù)是較小數(shù)的倍數(shù),那么較大數(shù)就是這兩個(gè)數(shù)的最小公倍數(shù)。
如果兩個(gè)數(shù)是互質(zhì)數(shù),那么這兩個(gè)數(shù)的積就是它們的最小公倍數(shù)。
幾個(gè)數(shù)的公約數(shù)的個(gè)數(shù)是有限的,而幾個(gè)數(shù)的公倍數(shù)的個(gè)數(shù)是無限的。 二、性質(zhì)和規(guī)律 (一)商不變的規(guī)律
商不變的規(guī)律:在除法里,被除數(shù)和除數(shù)同時(shí)擴(kuò)大或者同時(shí)縮小相同的倍,商不變。 (二)小數(shù)的性質(zhì)
小數(shù)的性質(zhì):在小數(shù)的末尾添上零或者去掉零小數(shù)的大小不變。 (三)小數(shù)點(diǎn)位置的移動(dòng)引起小數(shù)大小的變化
1、小數(shù)點(diǎn)向右移動(dòng)一位,原來的數(shù)就擴(kuò)大10倍;小數(shù)點(diǎn)向右移動(dòng)兩位,原來的數(shù)就擴(kuò)大100倍;小數(shù)點(diǎn)向右移動(dòng)三位,原來的數(shù)就擴(kuò)大1000倍??
2、小數(shù)點(diǎn)向左移動(dòng)一位,原來的數(shù)就縮小10倍;小數(shù)點(diǎn)向左移動(dòng)兩位,原來的數(shù)就縮小100倍;小數(shù)點(diǎn)向左移動(dòng)三位,原來的數(shù)就縮小1000倍??
3、小數(shù)點(diǎn)向左移或者向右移位數(shù)不夠時(shí),要用“0"補(bǔ)足位。 (四)分?jǐn)?shù)的基本性質(zhì)
分?jǐn)?shù)的基本性質(zhì):分?jǐn)?shù)的分子和分母都乘以或者除以相同的數(shù)(零除外),分?jǐn)?shù)的大小不變。 (五)分?jǐn)?shù)與除法的關(guān)系
1、被除數(shù)÷除數(shù)= 被除數(shù)/除數(shù)
2、因?yàn)榱悴荒茏鞒龜?shù),所以分?jǐn)?shù)的分母不能為零。
3、被除數(shù) 相當(dāng)于分子,除數(shù)相當(dāng)于分母。 三、運(yùn)算法則 (一)整數(shù)四則運(yùn)算的法則
1、整數(shù)加法:
把兩個(gè)數(shù)合并成一個(gè)數(shù)的運(yùn)算叫做加法。
在加法里,相加的數(shù)叫做加數(shù),加得的數(shù)叫做和。加數(shù)是部分?jǐn)?shù),和是總數(shù)。
加數(shù)+加數(shù)=和一個(gè)加數(shù)=和-另一個(gè)加數(shù)
2、整數(shù)減法:
已知兩個(gè)加數(shù)的和與其中的一個(gè)加數(shù),求另一個(gè)加數(shù)的運(yùn)算叫做減法。
在減法里,已知的和叫做被減數(shù),已知的加數(shù)叫做減數(shù),未知的加數(shù)叫做差。被減數(shù)是總數(shù),減數(shù)和差分別是部分?jǐn)?shù)。
加法和減法互為逆運(yùn)算。
3、整數(shù)乘法:
求幾個(gè)相同加數(shù)的和的簡便運(yùn)算叫做乘法。
在乘法里,相同的加數(shù)和相同加數(shù)的個(gè)數(shù)都叫做因數(shù)。相同加數(shù)的和叫做積。
在乘法里,0和任何數(shù)相乘都得0.1和任何數(shù)相乘都的任何數(shù)。
一個(gè)因數(shù)× 一個(gè)因數(shù) =積一個(gè)因數(shù)=積÷另一個(gè)因數(shù)
4、整數(shù)除法:
已知兩個(gè)因數(shù)的積與其中一個(gè)因數(shù),求另一個(gè)因數(shù)的運(yùn)算叫做除法。
在除法里,已知的積叫做被除數(shù),已知的一個(gè)因數(shù)叫做除數(shù),所求的因數(shù)叫做商。
乘法和除法互為逆運(yùn)算。
在除法里,0不能做除數(shù)。因?yàn)?和任何數(shù)相乘都得0,所以任何一個(gè)數(shù)除以0,均得不到一個(gè)確定的商。
被除數(shù)÷除數(shù)=商 除數(shù)=被除數(shù)÷商 被除數(shù)=商×除數(shù)
5、乘方:
求幾個(gè)相同因數(shù)的積的運(yùn)算叫做乘方。例如 3 × 3 =32 (二)小數(shù)四則運(yùn)算
1、小數(shù)加法:
小數(shù)加法的意義與整數(shù)加法的意義相同。是把兩個(gè)數(shù)合并成一個(gè)數(shù)的運(yùn)算。
數(shù)學(xué)知識點(diǎn)總結(jié)7
三角函數(shù)關(guān)系
倒數(shù)關(guān)系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的關(guān)系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關(guān)系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數(shù)關(guān)系六角形記憶法
構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
倒數(shù)關(guān)系
對角線上兩個(gè)函數(shù)互為倒數(shù);
商數(shù)關(guān)系
六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積,下面4個(gè)也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。
平方關(guān)系
在帶有陰影線的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。
銳角三角函數(shù)定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。
正弦(sin)等于對邊比斜邊;sinA=a/c
余弦(cos)等于鄰邊比斜邊;cosA=b/c
正切(tan)等于對邊比鄰邊;tanA=a/b
余切(cot)等于鄰邊比對邊;cotA=b/a
正割(sec)等于斜邊比鄰邊;secA=c/b
余割(csc)等于斜邊比對邊。cscA=c/a
互余角的三角函數(shù)間的關(guān)系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
平方關(guān)系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
積的關(guān)系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒數(shù)關(guān)系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
中考數(shù)學(xué)知識點(diǎn)
1、反比例函數(shù)的概念
一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實(shí)數(shù),函數(shù)的取值范圍也是一切非零實(shí)數(shù)。
2、反比例函數(shù)的圖像
反比例函數(shù)的圖像是雙曲線,它有兩個(gè)分支,這兩個(gè)分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點(diǎn)對稱。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒有交點(diǎn),即雙曲線的兩個(gè)分支無限接近坐標(biāo)軸,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。
3、反比例函數(shù)的性質(zhì)
反比例函數(shù)k的符號k>0k<0圖像yO xyO x性質(zhì)①x的取值范圍是x0,
y的取值范圍是y0;
②當(dāng)k>0時(shí),函數(shù)圖像的兩個(gè)分支分別
在第一、三象限。在每個(gè)象限內(nèi),y
隨x 的增大而減小。
、賦的取值范圍是x0,
y的取值范圍是y0;
②當(dāng)k<0時(shí),函數(shù)圖像的兩個(gè)分支分別
在第二、四象限。在每個(gè)象限內(nèi),y
隨x 的增大而增大。
4、反比例函數(shù)解析式的確定
確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個(gè)待定系數(shù),因此只需要一對對應(yīng)值或圖像上的一個(gè)點(diǎn)的坐標(biāo),即可求出k的值,從而確定其解析式。
5、反比例函數(shù)的幾何意義
設(shè)是反比例函數(shù)圖象上任一點(diǎn),過點(diǎn)P作軸、軸的垂線,垂足為A,則
(1)△OPA的面積.
(2)矩形OAPB的面積。這就是系數(shù)的幾何意義.并且無論P(yáng)怎樣移動(dòng),△OPA的面積和矩形OAPB的面積都保持不變。
矩形PCEF面積=,平行四邊形PDEA面積=
數(shù)學(xué)知識點(diǎn)總結(jié)8
由于空集是任何非空集合的真子集,因此B=?時(shí)也滿足B?A。解含有參數(shù)的集合問題時(shí),要特別注意當(dāng)參數(shù)在某個(gè)范圍內(nèi)取值時(shí)所給的集合可能是空集這種情況。
忽視集合元素的三性致誤
集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對字母參數(shù)的一些要求。
混淆命題的否定與否命題
命題的“否定”與命題的“否命題”是兩個(gè)不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結(jié)論。
充分條件、必要條件顛倒致誤
對于兩個(gè)條件A,B,如果A?B成立,則A是B的充分條件,B是A的必要條件;如果B?A成立,則A是B的必要條件,B是A的充分條件;如果A?B,則A,B互為充分必要條件。解題時(shí)最容易出錯(cuò)的就是顛倒了充分性與必要性,所以在解決這類問題時(shí)一定要根據(jù)充分條件和必要條件的概念作出準(zhǔn)確的判斷。
“或”“且”“非”理解不準(zhǔn)致誤
命題p∨q真?p真或q真,命題p∨q假?p假且q假(概括為一真即真);命題p∧q真?p真且q真,命題p∧q假?p假或q假(概括為一假即假);綈p真?p假,綈p假?p真(概括為一真一假)。求參數(shù)取值范圍的題目,也可以把“或”“且”“非”與集合的“并”“交”“補(bǔ)”對應(yīng)起來進(jìn)行理解,通過集合的運(yùn)算求解。
函數(shù)的單調(diào)區(qū)間理解不準(zhǔn)致誤
在研究函數(shù)問題時(shí)要時(shí)時(shí)刻刻想到“函數(shù)的圖像”,學(xué)會從函數(shù)圖像上去分析問題、尋找解決問題的方法。對于函數(shù)的幾個(gè)不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。
判斷函數(shù)奇偶性忽略定義域致誤
判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域關(guān)于原點(diǎn)對稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶函數(shù)。
函數(shù)零點(diǎn)定理使用不當(dāng)致誤
如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),但f(a)f(b)>0時(shí),不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點(diǎn)。函數(shù)的零點(diǎn)有“變號零點(diǎn)”和“不變號零點(diǎn)”,對于“不變號零點(diǎn)”函數(shù)的零點(diǎn)定理是“無能為力”的,在解決函數(shù)的零點(diǎn)問題時(shí)要注意這個(gè)問題。
三角函數(shù)的單調(diào)性判斷致誤
對于函數(shù)y=Asin(ωx+φ)的單調(diào)性,當(dāng)ω>0時(shí),由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當(dāng)ω<0時(shí),內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時(shí)該函數(shù)的單調(diào)性和函數(shù)y=sinx的單調(diào)性相反,就不能再按照函數(shù)y=sinx的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決。對于帶有絕對值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進(jìn)行判斷。
忽視零向量致誤
零向量是向量中最特殊的向量,規(guī)定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實(shí)數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯(cuò),考生應(yīng)給予足夠的重視。
向量夾角范圍不清致誤
解題時(shí)要全面考慮問題。數(shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時(shí)把這些因素考慮到,是解題成功的關(guān)鍵,如當(dāng)a·b<0時(shí),a與b的夾角不一定為鈍角,要注意θ=π的情況。
an與Sn關(guān)系不清致誤
在數(shù)列問題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在下列關(guān)系:an=S1,n=1,Sn-Sn-1,n≥2。這個(gè)關(guān)系對任意數(shù)列都是成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n≥2時(shí)這個(gè)關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯(cuò)的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn)。
對數(shù)列的定義、性質(zhì)理解錯(cuò)誤
等差數(shù)列的前n項(xiàng)和在公差不為零時(shí)是關(guān)于n的常數(shù)項(xiàng)為零的二次函數(shù);一般地,有結(jié)論“若數(shù)列{an}的前n項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈Nx)是等差數(shù)列。
數(shù)列中的最值錯(cuò)誤
數(shù)列問題中其通項(xiàng)公式、前n項(xiàng)和公式都是關(guān)于正整數(shù)n的函數(shù),要善于從函數(shù)的觀點(diǎn)認(rèn)識和理解數(shù)列問題。數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系是高考的命題重點(diǎn),解題時(shí)要注意把n=1和n≥2分開討論,再看能不能統(tǒng)一。在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點(diǎn)要根據(jù)正整數(shù)距離二次函數(shù)的對稱軸的遠(yuǎn)近而定。
錯(cuò)位相減求和項(xiàng)處理不當(dāng)致誤
錯(cuò)位相減求和法的適用條件:數(shù)列是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對應(yīng)項(xiàng)的乘積所組成的,求其前n項(xiàng)和;痉椒ㄊ窃O(shè)這個(gè)和式為Sn,在這個(gè)和式兩端同時(shí)乘以等比數(shù)列的公比得到另一個(gè)和式,這兩個(gè)和式錯(cuò)一位相減,就把問題轉(zhuǎn)化為以求一個(gè)等比數(shù)列的前n項(xiàng)和或前n-1項(xiàng)和為主的求和問題.這里最容易出現(xiàn)問題的就是錯(cuò)位相減后對剩余項(xiàng)的處理。
不等式性質(zhì)應(yīng)用不當(dāng)致誤
在使用不等式的基本性質(zhì)進(jìn)行推理論證時(shí)一定要準(zhǔn)確,特別是不等式兩端同時(shí)乘以或同時(shí)除以一個(gè)數(shù)式、兩個(gè)不等式相乘、一個(gè)不等式兩端同時(shí)n次方時(shí),一定要注意使其能夠這樣做的條件,如果忽視了不等式性質(zhì)成立的前提條件就會出現(xiàn)錯(cuò)誤。
忽視基本不等式應(yīng)用條件致誤
利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數(shù)的最值時(shí),務(wù)必注意a,b為正數(shù)(或a,b非負(fù)),ab或a+b其中之一應(yīng)是定值,特別要注意等號成立的條件。對形如y=ax+bx(a,b>0)的函數(shù),在應(yīng)用基本不等式求函數(shù)最值時(shí),一定要注意ax,bx的'符號,必要時(shí)要進(jìn)行分類討論,另外要注意自變量x的取值范圍,在此范圍內(nèi)等號能否取到。
數(shù)學(xué)知識點(diǎn)總結(jié)9
一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個(gè)特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合
3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集:N_或N+
整數(shù)集:Z
有理數(shù)集:Q
實(shí)數(shù)集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合{xR|x-3>2},{x|x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個(gè)元素的集合
(2)無限集含有無限個(gè)元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:①任何一個(gè)集合是它本身的子集。AA
、谡孀蛹:如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄B,BC,那么AC
、苋绻鸄B同時(shí)BA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集個(gè)數(shù):
有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集
三、集合的運(yùn)算
運(yùn)算類型交集并集補(bǔ)集
定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.
由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).
設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)
記作,即
CSA=
AA=A
AΦ=Φ
AB=BA
ABA
ABB
AA=A
AΦ=A
AB=BA
ABA
ABB
(CuA)(CuB)
=Cu(AB)
(CuA)(CuB)
=Cu(AB)
A(CuA)=U
A(CuA)=Φ.
二、函數(shù)的有關(guān)概念
1.函數(shù)的概念
設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)數(shù)x,在集合B中都有確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.
注意:
1.定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域。
求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:
(1)分式的分母不等于零;
(2)偶次方根的被開方數(shù)不小于零;
(3)對數(shù)式的真數(shù)必須大于零;
(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.
(5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數(shù)為零底不可以等于零,
(7)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.
相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無關(guān));
②定義域一致(兩點(diǎn)必須同時(shí)具備)
2.值域:先考慮其定義域
(1)觀察法(2)配方法(3)代換法
3.函數(shù)圖象知識歸納
(1)定義:
在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.
(2)畫法
1.描點(diǎn)法:2.圖象變換法:常用變換方法有三種:1)平移變換2)伸縮變換3)對稱變換
4.區(qū)間的概念
(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間(2)無窮區(qū)間(3)區(qū)間的數(shù)軸表示.
5.映射
一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應(yīng)法則f,使對于集合A中的任意一個(gè)元素x,在集合B中都有確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從集合A到集合B的一個(gè)映射。記作“f(對應(yīng)關(guān)系):A(原象)B(象)”
對于映射f:A→B來說,則應(yīng)滿足:
(1)集合A中的每一個(gè)元素,在集合B中都有象,并且象是的;
(2)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個(gè);
(3)不要求集合B中的每一個(gè)元素在集合A中都有原象。
6.分段函數(shù)
(1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。
(2)各部分的自變量的取值情況.
(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.
補(bǔ)充:復(fù)合函數(shù)
如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復(fù)合函數(shù)。
二.函數(shù)的性質(zhì)
1.函數(shù)的單調(diào)性(局部性質(zhì))
(1)增函數(shù)
設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1
如果對于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1
注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);
(2)圖象的特點(diǎn)
如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的
(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法
(A)定義法:
(1)任取x1,x2∈D,且x1
(2)作差f(x1)-f(x2);或者做商
(3)變形(通常是因式分解和配方);
(4)定號(即判斷差f(x1)-f(x2)的正負(fù));
(5)下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).
(B)圖象法(從圖象上看升降)
(C)復(fù)合函數(shù)的單調(diào)性
復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”
注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.
8.函數(shù)的奇偶性(整體性質(zhì))
(1)偶函數(shù):一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
(2)奇函數(shù):一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).
(3)具有奇偶性的函數(shù)的圖象的特征:偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱.
9.利用定義判斷函數(shù)奇偶性的步驟:
○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對稱;
○2確定f(-x)與f(x)的關(guān)系;
○3作出相應(yīng)結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).
注意:函數(shù)定義域關(guān)于原點(diǎn)對稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,若不對稱則函數(shù)是非奇非偶函數(shù).若對稱,(1)再根據(jù)定義判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;(3)利用定理,或借助函數(shù)的圖象判定.
10、函數(shù)的解析表達(dá)式
(1)函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域.
(2)求函數(shù)的解析式的主要方法有:1.湊配法2.待定系數(shù)法3.換元法4.消參法
11.函數(shù)(小)值
○1利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的(小)值
○2利用圖象求函數(shù)的(小)值
○3利用函數(shù)單調(diào)性的判斷函數(shù)的(小)值:
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有值f(b);
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);
第三章基本初等函數(shù)
一、指數(shù)函數(shù)
(一)指數(shù)與指數(shù)冪的運(yùn)算
1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈_.
負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。
當(dāng)是奇數(shù)時(shí),,當(dāng)是偶數(shù)時(shí),
2.分?jǐn)?shù)指數(shù)冪
正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
,
0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義
3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)
(1);
(2);
(3).
(二)指數(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù),其中x是自變量,函數(shù)的定義域?yàn)镽.
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.
2、指數(shù)函數(shù)的圖象和性質(zhì)
a>10
定義域R定義域R
值域y>0值域y>0
在R上單調(diào)遞增在R上單調(diào)遞減
非奇非偶函數(shù)非奇非偶函數(shù)
函數(shù)圖象都過定點(diǎn)(0,1)函數(shù)圖象都過定點(diǎn)(0,1)
注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:
(1)在[a,b]上,值域是或;
(2)若,則;取遍所有正數(shù)當(dāng)且僅當(dāng);
(3)對于指數(shù)函數(shù),總有;
二、對數(shù)函數(shù)
(一)對數(shù)
1.對數(shù)的概念:
一般地,如果,那么數(shù)叫做以為底的對數(shù),記作:(—底數(shù),—真數(shù),—對數(shù)式)
說明:○1注意底數(shù)的限制,且;
○2;
○3注意對數(shù)的書寫格式.
兩個(gè)重要對數(shù):
○1常用對數(shù):以10為底的對數(shù);
○2自然對數(shù):以無理數(shù)為底的對數(shù)的對數(shù).
指數(shù)式與對數(shù)式的互化
冪值真數(shù)
=N=b
底數(shù)
指數(shù)對數(shù)
(二)對數(shù)的運(yùn)算性質(zhì)
如果,且,,,那么:
○1+;
○2-;
○3.
注意:換底公式:(,且;,且;).
利用換底公式推導(dǎo)下面的結(jié)論:(1);(2).
(3)、重要的公式①、負(fù)數(shù)與零沒有對數(shù);②、,③、對數(shù)恒等式
(二)對數(shù)函數(shù)
1、對數(shù)函數(shù)的概念:函數(shù),且叫做對數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+∞).
注意:○1對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如:,都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù).
○2對數(shù)函數(shù)對底數(shù)的限制:,且.
2、對數(shù)函數(shù)的性質(zhì):
a>10
定義域x>0定義域x>0
值域?yàn)镽值域?yàn)镽
在R上遞增在R上遞減
函數(shù)圖象都過定點(diǎn)(1,0)函數(shù)圖象都過定點(diǎn)(1,0)
(三)冪函數(shù)
1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù).
2、冪函數(shù)性質(zhì)歸納.
(1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(diǎn)(1,1);
(2)時(shí),冪函數(shù)的圖象通過原點(diǎn),并且在區(qū)間上是增函數(shù).特別地,當(dāng)時(shí),冪函數(shù)的圖象下凸;當(dāng)時(shí),冪函數(shù)的圖象上凸;
(3)時(shí),冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當(dāng)從右邊趨向原點(diǎn)時(shí),圖象在軸右方無限地逼近軸正半軸,當(dāng)趨于時(shí),圖象在軸上方無限地逼近軸正半軸.
第四章函數(shù)的應(yīng)用
一、方程的根與函數(shù)的零點(diǎn)
1、函數(shù)零點(diǎn)的概念:對于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。
即:方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).
3、函數(shù)零點(diǎn)的求法:
○1(代數(shù)法)求方程的實(shí)數(shù)根;
○2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).
4、二次函數(shù)的零點(diǎn):
二次函數(shù).
(1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).
(2)△=0,方程有兩相等實(shí)根,二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).
(3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).
數(shù)學(xué)知識點(diǎn)總結(jié)10
考點(diǎn)要求:
1、幾何體的展開圖、幾何體的三視圖仍是高考的熱點(diǎn)。
2、三視圖和其他的知識點(diǎn)結(jié)合在一起命題是新教材中考查學(xué)生三視圖及幾何量計(jì)算的趨勢。
3、重點(diǎn)掌握以三視圖為命題背景,研究空間幾何體的結(jié)構(gòu)特征的題型。
4、要熟悉一些典型的幾何體模型,如三棱柱、長(正)方體、三棱錐等幾何體的三視圖。
知識結(jié)構(gòu):
1、多面體的結(jié)構(gòu)特征
。1)棱柱有兩個(gè)面相互平行,其余各面都是平行四邊形,每相鄰兩個(gè)四邊形的公共邊平行。
正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱。反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形。
(2)棱錐的底面是任意多邊形,側(cè)面是有一個(gè)公共頂點(diǎn)的三角形。
正棱錐:底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐。特別地,各棱均相等的正三棱錐叫正四面體。反過來,正棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的中心。
。3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。
2、旋轉(zhuǎn)體的結(jié)構(gòu)特征
。1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到。
(2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到。
。3)圓臺可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到。
。4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到。
3、空間幾何體的三視圖
空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖。
三視圖的長度特征:“長對正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長,側(cè)視圖和俯視圖一樣寬。若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實(shí)、虛線的畫法。
4、空間幾何體的直觀圖
空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:
。1)畫幾何體的底面
在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點(diǎn)O,畫直觀圖時(shí),把它們畫成對應(yīng)的x′軸、y′軸,兩軸相交于點(diǎn)O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸。已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话搿?/p>
。2)畫幾何體的高
在已知圖形中過O點(diǎn)作z軸垂直于xOy平面,在直觀圖中對應(yīng)的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變。
數(shù)學(xué)知識點(diǎn)總結(jié)11
一、數(shù)與數(shù)字的區(qū)別
數(shù)字(也就是數(shù)碼),是用來記數(shù)的符號,通常用國際通用的阿拉伯?dāng)?shù)字 0~9這十個(gè)數(shù)字。其他還有中國小寫數(shù)字,大寫數(shù)字,羅馬數(shù)字等等。
數(shù)是由數(shù)字和數(shù)位組成。
1.0的意義:0既可以表示“沒有”,也可以作為某些數(shù)量的界限。如溫度等。0是一個(gè)完全有確定意義的數(shù)。0是最小的自然數(shù),是一個(gè)偶數(shù)。00是最小的自然數(shù),是一個(gè)偶數(shù)。是任何自然數(shù)(0除外)的倍數(shù)。0不能作除數(shù)。
2.自然數(shù):用來表示物體個(gè)數(shù)的0、1、2、3、4、5、6、7、8、9、10……叫做自然數(shù)。簡單說就是大于等于零的整數(shù)。
3.整數(shù): 自然數(shù)都是整數(shù),整數(shù)不都是自然數(shù)。
4.小數(shù):小數(shù)是特殊形式的分?jǐn)?shù),所有分?jǐn)?shù)都可以表示成小數(shù),小數(shù)中的圓點(diǎn)叫做小數(shù)點(diǎn)。但是不能說小數(shù)就是分?jǐn)?shù)。
5.混小數(shù)(帶小數(shù)):小數(shù)的整數(shù)部分不為零的小數(shù)叫混小數(shù),也叫帶小數(shù)。
5.純小數(shù):小數(shù)的整數(shù)部分為零的小數(shù),叫做純小數(shù)。
7.有限小數(shù):小數(shù)的小數(shù)部分只有有限個(gè)數(shù)字的小數(shù)(不全為零)叫做有限小數(shù)。
8.無限小數(shù):小數(shù)的小數(shù)部分有無數(shù)個(gè)數(shù)字(不包含全為零)的小數(shù),叫做無限小數(shù)。循環(huán)小數(shù)都是無限小數(shù),無限小數(shù)不一定都是循環(huán)小數(shù)。例如,圓周率π也是無限小數(shù)。
9.循環(huán)小數(shù):小數(shù)部分一個(gè)數(shù)字或幾個(gè)數(shù)字依次不斷地重復(fù)出現(xiàn),這樣的小數(shù)叫做循環(huán)小數(shù)。例如:0.333……,1.2470470470……都是循環(huán)小數(shù)。
10.純循環(huán)小數(shù):循環(huán)節(jié)從十分位就開始的循環(huán)小數(shù),叫做純循環(huán)小數(shù)。
11.混循環(huán)小數(shù):與純循環(huán)小數(shù)有唯一的區(qū)別,不是從十分位開始循環(huán)的循環(huán)小數(shù),叫混循環(huán)小數(shù)。
12.無限不循環(huán)小數(shù):一個(gè)小數(shù),從小數(shù)部分起到無限位數(shù),沒有一個(gè)數(shù)字或幾個(gè)數(shù)字依次不斷的重復(fù)出現(xiàn),這樣的小數(shù)叫做無限不循環(huán)小數(shù)。
二、分?jǐn)?shù)
表示把 “單位1”平均分成若干份,取其中的一份或幾份的數(shù),叫做分?jǐn)?shù)。
數(shù)學(xué)知識點(diǎn)總結(jié)12
集合間的基本關(guān)系
1!鞍标P(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2。“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)A={x|x2—1=0}B={—1,1}“元素相同則兩集合相等”
即:①任何一個(gè)集合是它本身的子集。AA
、谡孀蛹喝绻鸄B,且AB那就說集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄B,BC,那么AC
、苋绻鸄B同時(shí)BA那么A=B
3。不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n個(gè)元素的集合,含有2n個(gè)子集,2n—1個(gè)真子集
集合的運(yùn)算
運(yùn)算類型交集并集補(bǔ)集
定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集。記作AB(讀作‘A交B’),即AB={x|xA,且xB}。
由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:AB(讀作‘A并B’),即AB={x|xA,或xB})。
設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)
數(shù)學(xué)知識點(diǎn)總結(jié)13
第二部分函數(shù)與導(dǎo)數(shù)
1.映射:注意①第一個(gè)集合中的元素必須有象;②一對一,或多對一。
2.函數(shù)值域的求法:①分析法;②配方法;③判別式法;④利用函數(shù)單調(diào)性;
⑤換元法;⑥利用均值不等式;⑦利用數(shù)形結(jié)合或幾何意義(斜率、距離、絕對值的意義等);⑧利用函數(shù)有界性(、、等);⑨導(dǎo)數(shù)法
3.復(fù)合函數(shù)的有關(guān)問題
(1)復(fù)合函數(shù)定義域求法:
①若f(x)的定義域?yàn)椤瞐,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出②若f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域。
(2)復(fù)合函數(shù)單調(diào)性的判定:
、偈紫葘⒃瘮(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);
②分別研究內(nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;
③根據(jù)“同性則增,異性則減”來判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。
注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。
4.分段函數(shù):值域(最值)、單調(diào)性、圖象等問題,先分段解決,再下結(jié)論。
5.函數(shù)的奇偶性
、藕瘮(shù)的定義域關(guān)于原點(diǎn)對稱是函數(shù)具有奇偶性的必要條件;
、剖瞧婧瘮(shù);
、鞘桥己瘮(shù);
、绕婧瘮(shù)在原點(diǎn)有定義,則;
、稍陉P(guān)于原點(diǎn)對稱的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;
(6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價(jià)變形,再判斷其奇偶性;
數(shù)學(xué)知識點(diǎn)總結(jié)14
1.等差數(shù)列的定義
如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.
2.等差數(shù)列的通項(xiàng)公式
若等差數(shù)列{an}的首項(xiàng)是a1,公差是d,則其通項(xiàng)公式為an=a1+(n-1)d.
3.等差中項(xiàng)
如果A=(a+b)/2,那么A叫做a與b的等差中項(xiàng).
4.等差數(shù)列的常用性質(zhì)
(1)通項(xiàng)公式的推廣:an=am+(n-m)d(n,m∈N_).
(2)若{an}為等差數(shù)列,且m+n=p+q,
則am+an=ap+aq(m,n,p,q∈N_).
(3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列.
(4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列.
(5)S2n-1=(2n-1)an.
(6)若n為偶數(shù),則S偶-S奇=nd/2;
若n為奇數(shù),則S奇-S偶=a中(中間項(xiàng)).
注意:
一個(gè)推導(dǎo)
利用倒序相加法推導(dǎo)等差數(shù)列的前n項(xiàng)和公式:
Sn=a1+a2+a3+…+an,①
Sn=an+an-1+…+a1,②
、+②得:Sn=n(a1+an)/2
兩個(gè)技巧
已知三個(gè)或四個(gè)數(shù)組成等差數(shù)列的一類問題,要善于設(shè)元.
(1)若奇數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-2d,a-d,a,a+d,a+2d,….
(2)若偶數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-3d,a-d,a+d,a+3d,…,其余各項(xiàng)再依據(jù)等差數(shù)列的定義進(jìn)行對稱設(shè)元.
四種方法
等差數(shù)列的判斷方法
(1)定義法:對于n≥2的任意自然數(shù),驗(yàn)證an-an-1為同一常數(shù);
(2)等差中項(xiàng)法:驗(yàn)證2an-1=an+an-2(n≥3,n∈N_)都成立;
(3)通項(xiàng)公式法:驗(yàn)證an=pn+q;
(4)前n項(xiàng)和公式法:驗(yàn)證Sn=An2+Bn.
注:后兩種方法只能用來判斷是否為等差數(shù)列,而不能用來證明等差數(shù)列.
數(shù)學(xué)知識點(diǎn)總結(jié)15
考點(diǎn)一:集合與簡易邏輯
集合部分一般以選擇題出現(xiàn),屬容易題。重點(diǎn)考查集合間關(guān)系的理解和認(rèn)識。近年的試題加強(qiáng)了對集合計(jì)算化簡能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時(shí),要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達(dá)數(shù)學(xué)解題過程和邏輯推理。
考點(diǎn)二:函數(shù)與導(dǎo)數(shù)
函數(shù)是高考的重點(diǎn)內(nèi)容,以選擇題和填空題的為載體針對性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運(yùn)算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問題、參數(shù)的取值范圍問題、方程根的個(gè)數(shù)問題、不等式的證明等問題。
考點(diǎn)三:三角函數(shù)與平面向量
一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運(yùn)算等,另一道對三角知識點(diǎn)的補(bǔ)充。大題中如果沒有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補(bǔ)充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點(diǎn)考查平面向量數(shù)量積的概念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問題是“新熱點(diǎn)”題型。
考點(diǎn)四:數(shù)列與不等式
不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規(guī)劃問題、基本不等式的應(yīng)用等,通常會在小題中設(shè)置1到2道題。對不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進(jìn)行考查。在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識為工具,綜合運(yùn)用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目。
考點(diǎn)五:立體幾何與空間向量
一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點(diǎn)、線、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求)。在高考試卷中,一般有1~2個(gè)客觀題和一個(gè)解答題,多為中檔題。
考點(diǎn)六:解析幾何
一般有1~2個(gè)客觀題和1個(gè)解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的定義應(yīng)用、標(biāo)準(zhǔn)方程的求解、離心率的計(jì)算等,解答題則主要考查直線與橢圓、拋物線等的位置關(guān)系問題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問題、證明問題、定點(diǎn)與定值、最值與范圍問題等。
考點(diǎn)七:算法復(fù)數(shù)推理與證明
高考對算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”?疾榈臒狳c(diǎn)是流程圖的識別與算法語言的閱讀理解。算法與數(shù)列知識的網(wǎng)絡(luò)交匯命題是考查的主流。復(fù)數(shù)考查的重點(diǎn)是復(fù)數(shù)的有關(guān)概念、復(fù)數(shù)的代數(shù)形式、運(yùn)算及運(yùn)算的幾何意義,一般是選擇題、填空題,難度不大。推理證明部分命題的方向主要會在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨(dú)出題的可能性較小。對于理科,數(shù)學(xué)歸納法可能作為解答題的一小問。
【數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章:
小升初數(shù)學(xué)的知識點(diǎn)總結(jié)04-11
數(shù)學(xué)相似知識點(diǎn)總結(jié)03-29
數(shù)學(xué)圓知識點(diǎn)總結(jié)11-03
數(shù)學(xué)知識點(diǎn)總結(jié)11-07
初中數(shù)學(xué)知識點(diǎn)總結(jié)01-23
初中數(shù)學(xué)圓的知識點(diǎn)總結(jié)04-12
初中數(shù)學(xué)必考知識點(diǎn)總結(jié)02-17
大學(xué)數(shù)學(xué)知識點(diǎn)總結(jié)12-02