必修二數(shù)學(xué)圓與方程知識點總結(jié)
總結(jié)就是把一個時段的學(xué)習(xí)、工作或其完成情況進行一次全面系統(tǒng)的總結(jié),它可以提升我們發(fā)現(xiàn)問題的能力,因此十分有必須要寫一份總結(jié)哦?偨Y(jié)一般是怎么寫的呢?下面是小編收集整理的必修二數(shù)學(xué)圓與方程知識點總結(jié),希望對大家有所幫助。
必修二數(shù)學(xué)圓與方程知識點總結(jié)1
圓的一般方程
圓的標(biāo)準(zhǔn)方程是一個關(guān)于x和y的二次方程,將它展開并按x、y的降冪排列,得:
x+y—2ax—2by+a+b—R=0
設(shè)D=—2a,E=—2b,F(xiàn)=a+b—R;則方程變成:
x+y+Dx+Ey+F=0
任意一個圓的方程都可寫成上述形式。把它和下述的一般形式的二元二次方程比較,可以看出它有這樣的特點:
。1)x2項和y2項的系數(shù)相等且不為0(在這里為1);
。2)沒有xy的乘積項。
Ax+Bxy+Cy+Dx+Ey+F=0
圓的端點式:
若已知兩點A(a1,b1),B(a2,b2),則以線段AB為直徑的圓的方程為(x—a1)(x—a2)+(y—b1)(y—b2)=0
圓的離心率e=0,在圓上任意一點的曲率半徑都是r。
經(jīng)過圓x+y=r上一點M(a0,b0)的切線方程為a0·x+b0·y=r
在圓(x+y=r)外一點M(a0,b0)引該圓的兩條切線,且兩切點為A,B,則A,B兩點所在直線的方程也為a0·x+b0·y=r。
圓的性質(zhì)有哪些
1、圓是定點的距離等于定長的點的集合
2、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
3、圓的外部可以看作是圓心的距離大于半徑的點的集合
4、同圓或等圓的半徑相等。
圓是一種幾何圖形,指的是平面中到一個定點距離為定值的所有點的集合。這個給定的點稱為圓的圓心。作為定值的距離稱為圓的半徑。當(dāng)一條線段繞著它的一個端點在平面內(nèi)旋轉(zhuǎn)一周時,它的另一個端點的軌跡就是一個圓。圓的直徑有無數(shù)條;圓的對稱軸有無數(shù)條。圓的直徑是半徑的2倍,圓的半徑是直徑的一半。
用圓規(guī)畫圓時,針尖所在的點叫做圓心,一般用字母O表示。連接圓心和圓上任意一點的線段叫做半徑,一般用字母r表示,半徑的長度就是圓規(guī)兩個角之間的距離。通過圓心并且兩端都在圓上的線段叫做直徑,一般用字母d表示。
數(shù)學(xué)指數(shù)與指數(shù)冪的運算
1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈x。
當(dāng)是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù)。此時,的次方根用符號表示。式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand)。
當(dāng)是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù)。此時,正數(shù)的正的次方根用符號表示,負的次方根用符號—表示。正的次方根與負的次方根可以合并成±(>0)。由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,記作。
注意:當(dāng)是奇數(shù)時,當(dāng)是偶數(shù)時,
2、分數(shù)指數(shù)冪
正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:
0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義
指出:規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。
數(shù)學(xué)的學(xué)習(xí)方法
1、養(yǎng)成良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣包括課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面。
2、及時了解、掌握常用的數(shù)學(xué)思想和方法,學(xué)好高中數(shù)學(xué),需要我們從數(shù)學(xué)思想與方法高度來掌握它。中學(xué)數(shù)學(xué)學(xué)習(xí)要重點掌握的的數(shù)學(xué)思想有以上幾個:集合與對應(yīng)思想,分類討論思想,數(shù)形結(jié)合思想,運動思想,轉(zhuǎn)化思想,變換思想。
3、逐步形成“以我為主”的學(xué)習(xí)模式數(shù)學(xué)不是靠老師教會的,而是在老師的引導(dǎo)下,靠自己主動的思維活動去獲取的。學(xué)習(xí)數(shù)學(xué)就要積極主動地參與學(xué)習(xí)過程,養(yǎng)成實事求是的科學(xué)態(tài)度,獨立思考、勇于探索的創(chuàng)新精神。
4、記數(shù)學(xué)筆記,特別是對概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。
必修二數(shù)學(xué)圓與方程知識點總結(jié)2
1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑.
2、圓的方程
(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;
(2)一般方程
當(dāng)時,方程表示圓,此時圓心為,半徑為
當(dāng)時,表示一個點;當(dāng)時,方程不表示任何圖形.
(3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求.確定一個圓需要三個獨立條件,若利用圓的標(biāo)準(zhǔn)方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置.
3、直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設(shè)直線,圓,圓心到l的`距離為,則有; ;
(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設(shè)點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
設(shè)圓,
兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
當(dāng)時兩圓外離,此時有公切線四條。
當(dāng)時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條。
當(dāng)時兩圓相交,連心線垂直平分公共弦,有兩條外公切線。
當(dāng)時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線。
當(dāng)時,兩圓內(nèi)含;當(dāng)時,為同心圓。
注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線。
圓的輔助線一般為連圓心與切線或者連圓心與弦中點。
數(shù)學(xué)集合的運算知識點
運算類型交集并集補集
定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.
由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).
學(xué)數(shù)學(xué)的方法
學(xué)習(xí)方法
很多女生在學(xué)習(xí)數(shù)學(xué)的時候喜歡按部就班,注重基礎(chǔ),但是卻很少做難題,所以便導(dǎo)致了解題能力薄弱。女生上課的時候很認真,復(fù)習(xí)的時候喜歡看筆記和書本,但是卻忽視了對自己能力的訓(xùn)練,所以導(dǎo)致了自己適應(yīng)性比較差。
所以,女生應(yīng)該從這幾點下手,多下功夫,對于難題我們不要害怕,但是也不能一味地做難題,適當(dāng)?shù)挠?xùn)練,對于自己的數(shù)學(xué)能力是有很大提升的。還有,女生在學(xué)習(xí)數(shù)學(xué)的時候應(yīng)該多向男生學(xué)習(xí),學(xué)習(xí)他們的一些優(yōu)秀技巧,進而轉(zhuǎn)化為自己的學(xué)習(xí)技巧,結(jié)合在做題上,多訓(xùn)練,相信對自己的數(shù)學(xué)水平是有很大幫助的。
課前預(yù)習(xí)。
正所謂“笨鳥先飛”,我們經(jīng)過預(yù)習(xí)可以提前對新內(nèi)容有一個大概的了解,從而在聽課的時候能夠有的放矢,對自己不了解的知識點著重注意,很可能會有奇效。而提前預(yù)習(xí),還能對女生的心理有一個暗示,對女生的信心提高也是有極大的好處。
【必修二數(shù)學(xué)圓與方程知識點總結(jié)】相關(guān)文章:
數(shù)學(xué)必修二圓的方程知識點總結(jié)10-05
高二數(shù)學(xué)必修二知識點總結(jié)02-19
必修二數(shù)學(xué)知識點總結(jié)02-15
高一數(shù)學(xué)必修2直線與方程知識點總結(jié)12-03
圓與方程數(shù)學(xué)教案08-27
高二數(shù)學(xué)必修五知識點總結(jié)02-08
高二數(shù)學(xué)必修2知識點總結(jié)12-02