八年級上冊數(shù)學(xué)教案15篇
作為一位無私奉獻(xiàn)的人民教師,往往需要進行教案編寫工作,教案是實施教學(xué)的主要依據(jù),有著至關(guān)重要的作用?靵韰⒖冀贪甘窃趺磳懙陌!下面是小編為大家收集的八年級上冊數(shù)學(xué)教案,僅供參考,大家一起來看看吧。
八年級上冊數(shù)學(xué)教案1
【教學(xué)目標(biāo)】
知識與技能
能確定多項式各項的公因式,會用提公因式法把多項式分解因式.
過程與方法
使學(xué)生經(jīng)歷探索多項式各項公因式的過程,依據(jù)數(shù)學(xué)化歸思想方法進行因式分解.
情感、態(tài)度與價值觀
培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進學(xué)生的合作交流意識,主動積極地積累確定公因式的初步經(jīng)驗,體會其應(yīng)用價值.
【教學(xué)重難點】
重點:掌握用提公因式法把多項式分解因式.
難點:正確地確定多項式的最大公因式.
關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項系數(shù)的最大公約數(shù);字母取各項相同的字母,并且各字母的指數(shù)取最低次冪.
【教學(xué)過程】
一、回顧交流,導(dǎo)入新知
【復(fù)習(xí)交流】
下列從左到右的變形是否是因式分解,為什么?
(1)2x2+4=2(x2+2);
(2)2t2-3t+1=(2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2;
(4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2.
問題:
1.多項式mn+mb中各項含有相同因式嗎?
2.多項式4x2-x和xy2-yz-y呢?
請將上述多項式分別寫成兩個因式的乘積的形式,并說明理由.
【教師歸納】我們把多項式中各項都有的公共的因式叫做這個多項式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.
概念:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積形式,這種分解因式的方法叫做提公因式法.
二、小組合作,探究方法
教師提問:多項式4x2-8x6,16a3b2-4a3b2-8ab4各項的公因式是什么?
【師生共識】提公因式的方法是先確定各項的公因式再將多項式除以這個公因式得到另一個因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項系數(shù)的最大公約數(shù);字母取各項相同的字母,并且各字母的指數(shù)取最低次冪.
三、范例學(xué)習(xí),應(yīng)用所學(xué)
例1:把-4x2yz-12xy2z+4xyz分解因式.
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
例2:分解因式:3a2(x-y)3-4b2(y-x)2
【分析】觀察所給多項式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)2·3a2(y-x)+4b2(y-x)2]
=-(y-x)2[3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)2·3a2(x-y)-4b2(x-y)2
=(x-y)2[3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
例3:用簡便的方法計算:
0.84×12+12×0.6-0.44×12.
【教師活動】引導(dǎo)學(xué)生觀察并分析怎樣計算更為簡便.
解:0.84×12+12×0.6-0.44×12
=12×(0.84+0.6-0.44)
=12×1=12.
【教師活動】在學(xué)生完成例3之后,指出例3是因式分解在計算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?
四、隨堂練習(xí),鞏固深化
課本115頁練習(xí)第1、2、3題.
【探研時空】
利用提公因式法計算:
0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69
五、課堂總結(jié),發(fā)展?jié)撃?/p>
1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)最大公因式.在找最大公因式時應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項都有的;(3)指數(shù)要找最低次冪.
2.因式分解應(yīng)注意分解徹底,也就是說,分解到不能再分解為止.
六、布置作業(yè),專題突破
課本119頁習(xí)題14.3第1、4(1)、6題.
八年級上冊數(shù)學(xué)教案2
一.教學(xué)目標(biāo):
1.了解方差的定義和計算公式。
2.理解方差概念的產(chǎn)生和形成的過程。
3.會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。
二.重點、難點和難點的突破方法:
1.重點:方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。
2.難點:理解方差公式
3.難點的突破方法:
方差公式:S = [( - ) +( - ) +…+( - )]比較復(fù)雜,學(xué)生理解和記憶這個公式都會有一定困難,以致應(yīng)用時常常出現(xiàn)計算的錯誤,為突破這一難點,我安排了幾個環(huán)節(jié),將難點化解。
(1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運動員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動程度,僅僅知道平均數(shù)是不夠的。
(2)波動性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點明了為什么去了解數(shù)據(jù)的波動性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動性的方法?梢援嬚劬圖方法來反映這種波動大小,可是當(dāng)波動大小區(qū)別不大時,僅用畫折線圖方法去描述恐怕不會準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動大小,這就引出方差產(chǎn)生的必要性。
(3)第三環(huán)節(jié)教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,教師也可以根據(jù)學(xué)生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計量。
三.例習(xí)題的意圖分析:
1.教材P125的討論問題的意圖:
(1).創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。
(2).為引入方差概念和方差計算公式作鋪墊。
(3).介紹了一種比較直觀的衡量數(shù)據(jù)波動大小的方法——畫折線法。
(4).客觀上反映了在解決某些實際問題時,求平均數(shù)或求極差等方法的局限性,使學(xué)生體會到學(xué)習(xí)方差的意義和目的。
2.教材P154例1的設(shè)計意圖:
(1).例1放在方差計算公式和利用方差衡量數(shù)據(jù)波動大小的規(guī)律之后,不言而喻其主要目的是及時復(fù)習(xí),鞏固對方差公式的掌握。
(2).例1的解題步驟也為學(xué)生做了一個示范,學(xué)生以后可以模仿例1的格式解決其他類似的實際問題。
四.課堂引入:
除采用教材中的引例外,可以選擇一些更時代氣息、更有現(xiàn)實意義的引例。例如,通過學(xué)生觀看2004年奧運會劉翔勇奪110米欄冠軍的錄像,進而引導(dǎo)教練員根據(jù)平時比賽成績選擇參賽隊員這樣的實際問題上,這樣引入自然而又真實,學(xué)生也更感興趣一些。
五.例題的分析:
教材P154例1在分析過程中應(yīng)抓住以下幾點:
1.題目中“整齊”的含義是什么?說明在這個問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動小,所以要研究兩組數(shù)據(jù)波動大小,這一環(huán)節(jié)是明確題意。
2.在求方差之前先要求哪個統(tǒng)計量,為什么?學(xué)生也可以得出先求平均數(shù),因為公式中需要平均值,這個問題可以使學(xué)生明確利用方差計算步驟。
3.方差怎樣去體現(xiàn)波動大小?
這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動大小的規(guī)律。
六.隨堂練習(xí):
1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
問:(1)哪種農(nóng)作物的苗長的比較高?
(2)哪種農(nóng)作物的苗長得比較整齊?
2.段巍和金志強兩人參加體育項目訓(xùn)練,近期的5次測試成績?nèi)缦卤硭荆l的成績比較穩(wěn)定?為什么?
測試次數(shù)1 2 3 4 5
段巍13 14 13 12 13
金志強10 13 16 14 12
參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊
2.段巍的成績比金志強的成績要穩(wěn)定。
七.課后練習(xí):
1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。
2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S S,所以確定去參加比賽。
3.甲、乙兩臺機床生產(chǎn)同種零件,10天出的次品分別是( )
甲:0、1、0、2、2、0、3、1、2、4
乙:2、3、1、2、0、2、1、1、2、1
分別計算出兩個樣本的平均數(shù)和方差,根據(jù)你的計算判斷哪臺機床的性能較好?
4.小爽和小兵在10次百米跑步練習(xí)中成績?nèi)绫硭荆?單位:秒)
小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?
答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機床性能好
4. =10.9、S =0.02;
=10.9、S =0.008
選擇小兵參加比賽。
八年級上冊數(shù)學(xué)教案3
《正方形》教學(xué)設(shè)計
教學(xué)內(nèi)容分析:
、艑W(xué)習(xí)特殊的平行四邊形—正方形,它的特殊的性質(zhì)和判定。
⑵前面學(xué)習(xí)了平行四邊形、矩形菱形,類比他們的性質(zhì)與判斷,有利于對正方形的研究。
、菍Ρ竟(jié)的學(xué)習(xí),繼續(xù)培養(yǎng)學(xué)生分類研究的思想,并且建立新舊知識的聯(lián)系,類比的基礎(chǔ)上進行歸納,梳理知識,進一步發(fā)展學(xué)生的推理能力。
學(xué)生分析:
、艑W(xué)生在小學(xué)初步認(rèn)識了正方形,并且本節(jié)課之前,學(xué)生又學(xué)習(xí)了幾種平行四邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗與知識基礎(chǔ)。
⑵學(xué)生在上幾節(jié)已有了推理的經(jīng)歷,但是對于證明,學(xué)生的思維能力還不成熟,有待于提高。
教學(xué)目標(biāo):
、胖R與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會利用性質(zhì)與判定進行簡單的說理。
⑵過程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判定。通過運用提高學(xué)生的推理能力。
、乔楦袘B(tài)度與價值觀:在學(xué)習(xí)中體會正方形的完美性,通過活動獲得成功的喜悅與自信。
重點:掌握正方形的性質(zhì)與判定,并進行簡單的推理。
難點:探索正方形的判定,發(fā)展學(xué)生的推理能
教學(xué)方法:類比與探究
教具準(zhǔn)備:可以活動的四邊形模型。
一、教學(xué)分析
(一)教學(xué)內(nèi)容分析
1.教材:義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書《數(shù)學(xué)》九年級上冊(人民教育出版社)
2.本課教學(xué)內(nèi)容的地位、作用,知識的前后聯(lián)系
《中心對稱圖形》是新人教版九年級數(shù)學(xué)上冊第二十三章第二單元第二節(jié)課的內(nèi)容。本節(jié)教材屬于圖形變換的內(nèi)容,是在學(xué)習(xí)了“軸對稱和軸對稱圖形”、“旋轉(zhuǎn)和中心對稱”后的一種對稱圖形,因此涉及歸納、類比等思想方法,對激發(fā)學(xué)生探索精神和創(chuàng)新意識等方面都有重要意義。
3.本課教學(xué)內(nèi)容的特點,重點分析體現(xiàn)新課程理念的特點
本節(jié)課主要介紹中心對稱圖形的概念、中心對稱圖形的識別、中心對稱圖形與軸對稱圖形與中心對稱的比較、中心對稱圖形的性質(zhì)。為使學(xué)生感受、理解知識的產(chǎn)生和發(fā)展過程,培養(yǎng)學(xué)生的抽象思維,我將通過:(1)例舉日常生活中的一些旋轉(zhuǎn)對稱圖形引出中心對稱圖形的概念;(2)引導(dǎo)學(xué)生觀察、猜想、實驗、歸納、類比等方法探究中心對稱圖形的性質(zhì),(3)通過多媒體演示使學(xué)生對中心對稱圖形的性質(zhì)有直觀的表象。我認(rèn)為這環(huán)環(huán)相扣、層層深入、循序漸進的活動過程,符合新課程標(biāo)準(zhǔn)理念和學(xué)生建構(gòu)知識的規(guī)律,有利于激發(fā)學(xué)生的學(xué)習(xí)情趣。
(二)教學(xué)對象分析
1.學(xué)生所在地區(qū)、學(xué)校及班級的特色
我授課的班級是西安市閻良區(qū)振興中學(xué)九年級一班,作為九年級的學(xué)生,在圖形的對稱方面已經(jīng)積累一些經(jīng)驗,已經(jīng)具有一定的觀察、猜想、實驗、歸納、類比等研究圖形對稱變換的能力;班級學(xué)生具有個性活潑,思維活躍,對各種事物充滿好奇,學(xué)習(xí)情緒易于調(diào)動,學(xué)習(xí)積極性高的特點,但學(xué)生的抽象思維能力個體差異較大,并且班級中已出現(xiàn)分化現(xiàn)象。
2.學(xué)生的年齡特點和認(rèn)知特點
班級學(xué)生的年齡大多在15歲到17歲間。他們已具備了一定的獨立分析、解決問題的能力,表現(xiàn)欲望較為強烈,喜好發(fā)表個人見解并且具有一定的合作交流、共同探討的意識與經(jīng)驗,因此在課程內(nèi)容的安排中,適當(dāng)?shù)貏?chuàng)設(shè)一些具有一定思維深度的問題,加強學(xué)生在學(xué)習(xí)過程中自主探索與合作交流的緊密結(jié)合,促使學(xué)生在探究的過程中,更多地獲得成功的體驗,感受學(xué)習(xí)思考的樂趣。
教學(xué)過程:
一:復(fù)習(xí)鞏固,建立聯(lián)系。
【教師活動】
問題設(shè)置:①平行四邊形、矩形,菱形各有哪些性質(zhì)?
、()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。
【學(xué)生活動】
學(xué)生回憶,并舉手回答,對于填空題,讓更多的學(xué)生參與,說出更多的答案。
【教師活動】
評析學(xué)生的結(jié)果,給予表揚。
總結(jié)性質(zhì)從邊角對角線考慮,在填空時也考慮這幾方面之外,還應(yīng)該考慮三者之間的聯(lián)系與區(qū)別。
演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。
二:動手操作,探索發(fā)現(xiàn)。
活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?
【學(xué)生活動】
學(xué)生拿出自備矩形紙片,動手操作,不難發(fā)現(xiàn)它是正方形。
設(shè)置問題:①什么是正方形?
觀察發(fā)現(xiàn),從活動中體會。
【教師活動】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。
【學(xué)生活動】認(rèn)真觀察變化過程,思考之間的聯(lián)系,舉手回答設(shè)置問題。
設(shè)置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?
【學(xué)生活動】
小組討論,分組回答。
【教師活動】
總結(jié)板書:㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的菱形是正方形。
設(shè)置問題③正方形有那些性質(zhì)?
【學(xué)生活動】
小組討論,舉手搶答。
【教師活動】
表揚學(xué)生發(fā)言,板書學(xué)生發(fā)現(xiàn),㈡正方形每一條對角線平分一組對角
活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸?
學(xué)生活動
折紙發(fā)現(xiàn),說出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對稱圖形。
教師活動
演示從平行四邊形變?yōu)檎叫蔚倪^程,擦去板書㈠中的括號內(nèi)容,出示一下問題:你還可以怎樣填空?
()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。
學(xué)生活動
小組充分交流,表達(dá)不同的意見。
教師活動
評析活動,總結(jié)發(fā)現(xiàn):
一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;
有一個角是直角的菱形是正方形,對角線相等的菱形是正方形,;
有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形;
四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。
以上是正方形的判定方法。
正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子?
學(xué)生交流,感受正方形
三,應(yīng)用體驗,推理證明。
出示例一:正方形ABCD的兩條對角線AC,BD交與O,AB長4cm,求AC,AO長,及的度數(shù)。
方法一解:∵四邊形ABCD是正方形
∴∠ABC=90°(正方形的四個角是直角)
BC=AB=4cm(正方形的四條邊相等)
∴=45°(等腰直角三角形的底角是45°)
∴利用勾股定理可知,AC===4cm
∵AO=AC(正方形的對角線互相平分)
∴AO=×4=2cm
方法二:證明△AOB是等腰直角三角形,即可得證。
學(xué)生活動
獨立思考,寫出推理過程,再進行小組討論,并且各小組指派代表寫在黑板上,共同交流。
教師活動
總結(jié)解題方法,從正方形的性質(zhì)全面考慮,準(zhǔn)確利用條件,減少麻煩。評析解題步驟,表揚突出學(xué)生。
出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?
學(xué)生活動
小組交流,分析題意,整理思路,指名口答。
教師活動
說明思路,從已知出發(fā)或者從已有的判定加以選擇。
四,歸納新知,梳理知識。
這一節(jié)課你有什么收獲?
學(xué)生舉手談?wù)撟约旱氖斋@。
請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關(guān)系。
發(fā)表評論
教學(xué)目標(biāo):
情意目標(biāo):培養(yǎng)學(xué)生團結(jié)協(xié)作的精神,體驗探究成功的樂趣。
能力目標(biāo):能利用等腰梯形的性質(zhì)解簡單的幾何計算、證明題;培養(yǎng)學(xué)生探究問題、自主學(xué)習(xí)的能力。
認(rèn)知目標(biāo):了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。
教學(xué)重點、難點
重點:等腰梯形性質(zhì)的探索;
難點:梯形中輔助線的添加。
教學(xué)課件:PowerPoint演示文稿
教學(xué)方法:啟發(fā)法、
學(xué)習(xí)方法:討論法、合作法、練習(xí)法
教學(xué)過程:
。ㄒ唬⿲(dǎo)入
1、出示圖片,說出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習(xí):下列圖形中哪些圖形是梯形?(投影)
結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)
6、特殊梯形的分類:(投影)
。ǘ┑妊菪涡再|(zhì)的探究
【探究性質(zhì)一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個內(nèi)角相等。
【操練】
。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
(2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質(zhì)二】
如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學(xué)生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質(zhì):等腰梯形的兩條對角線相等。
【探究性質(zhì)三】
問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學(xué)生操作、作答)
問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)
等腰梯形性質(zhì):同以底上的兩個內(nèi)角相等,對角線相等
。ㄈ┵|(zhì)疑反思、小結(jié)
讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問題;
學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對角線、對稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
八年級上冊數(shù)學(xué)教案4
一、教學(xué)目標(biāo)
1、認(rèn)識中位數(shù)和眾數(shù),并會求出一組數(shù)據(jù)中的眾數(shù)和中位數(shù)。
2、理解中位數(shù)和眾數(shù)的意義和作用。它們也是數(shù)據(jù)代表,可以反映一定的數(shù)據(jù)信息,幫助人們在實際問題中分析并做出決策。
3、會利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。
二、重點、難點和難點的突破方法:
1、重點:認(rèn)識中位數(shù)、眾數(shù)這兩種數(shù)據(jù)代表
2、難點:利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。
3、難點的突破方法:
首先應(yīng)交待清楚中位數(shù)和眾數(shù)意義和作用:
中位數(shù)僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的變動對中位數(shù)沒有影響,中位數(shù)可能出現(xiàn)在所給的數(shù)據(jù)中,當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)描述其趨勢。眾數(shù)是當(dāng)一組數(shù)據(jù)中某一重復(fù)出現(xiàn)次數(shù)較多時,人們往往關(guān)心的一個量,眾數(shù)不受極端值的影響,這是它的一個優(yōu)勢,中位數(shù)的計算很少不受極端值的影響。
教學(xué)過程中注重雙基,一定要使學(xué)生能夠很好的掌握中位數(shù)和眾數(shù)的求法,求中位數(shù)的步驟:⑴將數(shù)據(jù)由小到大(或由大到小)排列,⑵數(shù)清數(shù)據(jù)個數(shù)是奇數(shù)還是偶數(shù),如果數(shù)據(jù)個數(shù)為奇數(shù)則取中間的數(shù),如果數(shù)據(jù)個數(shù)為偶數(shù),則取中間位置兩數(shù)的平均值作為中位數(shù)。求眾數(shù)的方法:找出頻數(shù)最多的那個數(shù)據(jù),若幾個數(shù)據(jù)頻數(shù)都是最多且相同,此時眾數(shù)就是這多個數(shù)據(jù)。
在利用中位數(shù)、眾數(shù)分析實際問題時,應(yīng)根據(jù)具體情況,課堂上教師應(yīng)多舉實例,使同學(xué)在分析不同實例中有所體會。
三、例習(xí)題的意圖分析
1、教材P143的例4的意圖
(1)、這個問題的研究對象是一個樣本,主要是反映了統(tǒng)計學(xué)中常用到一種解決問題的方法:對于數(shù)據(jù)較多的研究對象,我們可以考察總體中的一個樣本,然后由樣本的研究結(jié)論去估計總體的情況。
(2)、這個例題另一個意圖是交待了當(dāng)數(shù)據(jù)個數(shù)為偶數(shù)時,中位數(shù)的求法和解題步驟。(因為在前面有介紹中位數(shù)求法,這里不再重述)
(3)、問題2顯然反映學(xué)習(xí)中位數(shù)的意義:它可以估計一個數(shù)據(jù)占總體的相對位置,說明中位數(shù)是統(tǒng)計學(xué)中的一個重要的數(shù)據(jù)代表。
(4)、這個例題再一次體現(xiàn)了統(tǒng)計學(xué)知識與實際生活是緊密聯(lián)系的,所以應(yīng)鼓勵學(xué)生學(xué)好這部分知識。
2、教材P145例5的意圖
(1)、通過例5應(yīng)使學(xué)生明白通常對待銷售問題我們要研究的是眾數(shù),它代表該型號的產(chǎn)品銷售,以便給商家合理的建議。
(2)、例5也交待了眾數(shù)的求法和解題步驟(由于求法在前面已介紹,這里不再重述)
(3)、例5也反映了眾數(shù)是數(shù)據(jù)代表的一種。
四、課堂引入
嚴(yán)格的講教材本節(jié)課沒有引入的問題,而是在復(fù)習(xí)和延伸中位數(shù)的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經(jīng)和同學(xué)們研究過了平均數(shù)的這個數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔(dān)當(dāng)了重要的角色,今天我們來共同研究和認(rèn)識數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們在分析數(shù)據(jù)過程中又起到怎樣的作用。
五、例習(xí)題的分析
教材P144例4,從所給的數(shù)據(jù)可以看到并沒有按照從小到大(或從大到小)的順序排列。因此,首先應(yīng)將數(shù)據(jù)重新排列,通過觀察會發(fā)現(xiàn)共有12個數(shù)據(jù),偶數(shù)個可以取中間的兩個數(shù)據(jù)146、148,求其平均值,便可得這組數(shù)據(jù)的中位數(shù)。
教材P145例5,由表中第二行可以查到23.5號鞋的頻數(shù),因此這組數(shù)據(jù)的眾數(shù)可以得到,所提的建議應(yīng)圍繞利于商家獲得較大利潤提出。
六、隨堂練習(xí)
1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統(tǒng)計了這15個人的銷售量如下(單位:件)
1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150
求這15個銷售員該月銷量的中位數(shù)和眾數(shù)。
假設(shè)銷售部負(fù)責(zé)人把每位營銷員的月銷售定額定為320件,你認(rèn)為合理嗎?如果不合理,請你制定一個合理的銷售定額并說明理由。
2、某商店3、4月份出售某一品牌各種規(guī)格的空調(diào),銷售臺數(shù)如表所示:
1匹1.2匹1.5匹2匹
3月12臺20臺8臺4臺
4月16臺30臺14臺8臺
根據(jù)表格回答問題:
商店出售的各種規(guī)格空調(diào)中,眾數(shù)是多少?
假如你是經(jīng)理,現(xiàn)要進貨,6月份在有限的資金下進貨單位將如何決定?
答案:1. (1)210件、210件(2)不合理。因為15人中有13人的銷售額達(dá)不到320件(320雖是原始數(shù)據(jù)的平均數(shù),卻不能反映營銷人員的一般水平),銷售額定為210件合適,因為它既是中位數(shù)又是眾數(shù),是大部分人能達(dá)到的額定。
2. (1)1.2匹(2)通過觀察可知1.2匹的銷售,所以要多進1.2匹,由于資金有限就要少進2匹空調(diào)。
七、課后練習(xí)
1.數(shù)據(jù)8、9、9、8、10、8、99、8、10、7、9、9、8的中位數(shù)是,眾數(shù)是
2.一組數(shù)據(jù)23、27、20、18、X、12,它的中位數(shù)是21,則X的值是.
3.數(shù)據(jù)92、96、98、100、X的眾數(shù)是96,則其中位數(shù)和平均數(shù)分別是( )
A.97、96 B.96、96.4 C.96、97 D.98、97
4.如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2、5、3、4次,并且沒有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )
A.24、25 B.23、24 C.25、25 D.23、25
5.隨機抽取我市一年(按365天計)中的30天平均氣溫狀況如下表:
溫度(℃) -8 -1 7 15 21 24 30
天數(shù)3 5 5 7 6 2 2
請你根據(jù)上述數(shù)據(jù)回答問題:
(1).該組數(shù)據(jù)的中位數(shù)是什么?
(2).若當(dāng)氣溫在18℃~25℃為市民“滿意溫度”,則我市一年中達(dá)到市民“滿意溫度”的大約有多少天?
答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)約97天
八年級上冊數(shù)學(xué)教案5
教學(xué)目標(biāo)
1.知識與技能
領(lǐng)會運用完全平方公式進行因式分解的方法,發(fā)展推理能力.
2.過程與方法
經(jīng)歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.
3.情感、態(tài)度與價值觀
培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.
重、難點與關(guān)鍵
1.重點:理解完全平方公式因式分解,并學(xué)會應(yīng)用.
2.難點:靈活地應(yīng)用公式法進行因式分解.
3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的
教學(xué)方法
采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.
教學(xué)過程
一、回顧交流,導(dǎo)入新知
【問題牽引】
1.分解因式:
(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;
(3)x2-0.01y2.
【知識遷移】
2.計算下列各式:
(1)(m-4n)2;(2)(m+4n)2;
(3)(a+b)2;(4)(a-b)2.
【教師活動】引導(dǎo)學(xué)生完成下面兩道題,并運用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.
3.分解因式:
(1)m2-8mn+16n2(2)m2+8mn+16n2;
(3)a2+2ab+b2;(4)a2-2ab+b2.
【學(xué)生活動】從逆向思維的角度入手,很快得到下面答案:
解:
(1)m2-8mn+16n2=(m-4n)2;
(2)m2+8mn+16n2=(m+4n)2;
(3)a2+2ab+b2=(a+b)2;
(4)a2-2ab+b2=(a-b)2.
【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.
二、范例學(xué)習(xí),應(yīng)用所學(xué)
【例1】把下列各式分解因式:
(1)-4a2b+12ab2-9b3;
(2)8a-4a2-4;
(3)(x+y)2-14(x+y)+49;(4)+n4.
【例2】如果x2+axy+16y2是完全平方,求a的值.
【思路點撥】根據(jù)完全平方式的定義,解此題時應(yīng)分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應(yīng)求出a的值,即可求出a3.
三、隨堂練習(xí),鞏固深化
課本P170練習(xí)第1、2題.
【探研時空】
1.已知x+y=7,xy=10,求下列各式的值.
(1)x2+y2;(2)(x-y)2
2.已知x+=-3,求x4+的值.
四、課堂總結(jié),發(fā)展?jié)撃?/p>
由于多項式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個:
a2-b2=(a+b)(a-b);
a2±ab+b2=(a±b)2.
在運用公式因式分解時,要注意:
(1)每個公式的形式與特點,通過對多項式的項數(shù)、次數(shù)等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當(dāng)多項式是二項式時,考慮用平方差公式分解;當(dāng)多項式是三項時,應(yīng)考慮用完全平方公式分解;(2)在有些情況下,多項式不一定能直接用公式,需要進行適當(dāng)?shù)慕M合、變形、代換后,再使用公式法分解;(3)當(dāng)多項式各項有公因式時,應(yīng)該首先考慮提公因式,然后再運用公式分解.
五、布置作業(yè),專題突破
八年級上冊數(shù)學(xué)教案6
教學(xué)目標(biāo):
1、知識目標(biāo):了解圖案最常見的構(gòu)圖方式:軸對稱、平移、旋轉(zhuǎn)……,理解簡單圖案設(shè)計的意圖。認(rèn)識和欣賞平移,旋轉(zhuǎn)在現(xiàn)實生活中的應(yīng)用,能夠靈活運用軸對稱、平移、旋轉(zhuǎn)的組合,設(shè)計出簡單的圖案。
2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計的過程,培養(yǎng)學(xué)生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。
3、情感體驗點:經(jīng)歷對典型圖案設(shè)計意圖的分析,進一步發(fā)展學(xué)生的空間觀念,增強審美意識,培養(yǎng)學(xué)生積極進取的生活態(tài)度。
重點與難點:
重點:靈活運用軸對稱、平移、旋轉(zhuǎn)……等方法及它們的組合進行的圖案設(shè)計。
難點:分析典型圖案的設(shè)計意圖。
疑點:在設(shè)計的圖案中清晰地表現(xiàn)自己的設(shè)計意圖
教具學(xué)具準(zhǔn)備:
提前一周布置學(xué)生以小組為單位,通過各種渠道收集到的圖案、圖標(biāo)的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。
教學(xué)過程設(shè)計:
1、情境導(dǎo)入:在優(yōu)美的音樂中,逐個展示生活中常見的典型圖案,并讓學(xué)生試著說一說每種圖案標(biāo)志的.對象。(展示課本圖3—23)
明確在欣賞了圖案后,簡單地復(fù)習(xí)平移、旋轉(zhuǎn)的概念,為下面圖案的設(shè)計作好理論準(zhǔn)備。對教材給出的六個圖案通過觀察、分析進行議論交流,讓學(xué)生初步了解圖案的設(shè)計中常常運用圖形變換的思想方法,為學(xué)生自己設(shè)計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說說每個旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學(xué)生指出對軸對稱及對稱軸的條數(shù)),而圖(2)可以通過平移形成。
2、課本
1 欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。
評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學(xué)生逐步能夠進行圖案設(shè)計,同時了解軸對稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運用平移、旋轉(zhuǎn)關(guān)系加以說明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點。
評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。
(二)課內(nèi)練習(xí)
(1) 以小組為單位,由每組指定一個同學(xué)展示該組搜集得到的圖案,并在全班交流。
(2) 利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對稱、中心對稱等方法進行圖案設(shè)計,并簡要說明自己的設(shè)計意圖。
(三)議一議
生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個,并與同伴進行交流。
(四)課時小結(jié)
本課時的重點是了解平移、旋轉(zhuǎn)和軸對稱變換是圖案設(shè)計的基本方法,并能運用這些變換設(shè)計出一些簡單的圖案。
通過今天的學(xué)習(xí),你對圖案的設(shè)計又增加了哪些新的認(rèn)識?(可以利用平移、旋轉(zhuǎn)、軸對稱等多種方法來設(shè)計,而且設(shè)計的圖案要能表達(dá)自己的創(chuàng)作意圖,再就是圖案的設(shè)計一定要新穎,獨特,這樣才能使人過目不忘,達(dá)到標(biāo)志的效果。)
八年級數(shù)學(xué)上冊教案(五)延伸拓展
進一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計它,并結(jié)合實際背景分析它的設(shè)計意圖。
八年級上冊數(shù)學(xué)教案7
第11章平面直角坐標(biāo)系
11。1平面上點的坐標(biāo)
第1課時平面上點的坐標(biāo)(一)
教學(xué)目標(biāo)
【知識與技能】
1。知道有序?qū)崝?shù)對的概念,認(rèn)識平面直角坐標(biāo)系的相關(guān)知識,如平面直角坐標(biāo)系的構(gòu)成:橫軸、縱軸、原點等。
2。理解坐標(biāo)平面內(nèi)的點與有序?qū)崝?shù)對的一一對應(yīng)關(guān)系,能寫出給定的平面直角坐標(biāo)系中某一點的坐標(biāo)。已知點的坐標(biāo),能在平面直角坐標(biāo)系中描出點。
3。能在方格紙中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系來描述點的位置。
【過程與方法】
1。結(jié)合現(xiàn)實生活中表示物體位置的例子,理解有序?qū)崝?shù)對和平面直角坐標(biāo)系的作用。
2。學(xué)會用有序?qū)崝?shù)對和平面直角坐標(biāo)系中的點來描述物體的位置。
【情感、態(tài)度與價值觀】
通過引入有序?qū)崝?shù)對、平面直角坐標(biāo)系讓學(xué)生體會到現(xiàn)實生活中的問題的解決與數(shù)學(xué)的發(fā)展之間有聯(lián)系,感受到數(shù)學(xué)的價值。
重點難點
【重點】
認(rèn)識平面直角坐標(biāo)系,寫出坐標(biāo)平面內(nèi)點的坐標(biāo),已知坐標(biāo)能在坐標(biāo)平面內(nèi)描出點。
【難點】
理解坐標(biāo)系中的坐標(biāo)與坐標(biāo)軸上的數(shù)字之間的關(guān)系。
教學(xué)過程
一、創(chuàng)設(shè)情境、導(dǎo)入新知
師:如果讓你描述自己在班級中的位置,你會怎么說?
生甲:我在第3排第5個座位。
生乙:我在第4行第7列。
師:很好!我們買的電影票上寫著幾排幾號,是對應(yīng)某一個座位,也就是這個座位可以用排號和列號兩個數(shù)字確定下來。
二、合作探究,獲取新知
師:在以上幾個問題中,我們根據(jù)一個物體在兩個互相垂直的方向上的數(shù)量來表示這個物體
的位置,這兩個數(shù)量我們可以用一個實數(shù)對來表示,但是,如果(5,3)表示5排3號的話,那么(3,5)表示什么呢?
生:3排5號。
師:對,它們對應(yīng)的不是同一個位置,所以要求表示物體位置的這個實數(shù)對是有序的。誰來說說我們應(yīng)該怎樣表示一個物體的位置呢?
生:用一個有序的實數(shù)對來表示。
師:對。我們學(xué)過實數(shù)與數(shù)軸上的點是一一對應(yīng)的,有序?qū)崝?shù)對是不是也可以和一個點對應(yīng)起來呢?
生:可以。
教師在黑板上作圖:
我們可以在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸。水平的數(shù)軸叫做x軸或橫軸,取向右為
正方向;豎直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸交點為原點。這樣就構(gòu)成了平面直角坐標(biāo)系,這個平面叫做坐標(biāo)平面。
師:有了平面直角坐標(biāo)系,平面內(nèi)的點就可以用一個有序?qū)崝?shù)對來表示了,F(xiàn)在請大家自己動手畫一個平面直角坐標(biāo)系。
學(xué)生操作,教師巡視。教師指正學(xué)生易犯的錯誤。
教師邊操作邊講解:
如圖,由點P分別向x軸和y軸作垂線,垂足M在x軸上的坐標(biāo)是3,垂足N在y軸上的坐標(biāo)是5,我們就說P點的橫坐標(biāo)是3,縱坐標(biāo)是5,我們把橫坐標(biāo)寫在前,縱坐標(biāo)寫在后,(3,5)就是點P的坐標(biāo)。在x軸上的點,過這點向y軸作垂線,對應(yīng)的坐標(biāo)是0,所以它的縱坐標(biāo)就是0;在y軸上的點,過這點向x軸作垂線,對應(yīng)的坐標(biāo)是0,所以它的橫坐標(biāo)就是0;原點的橫坐標(biāo)和縱坐標(biāo)都是0,即原點的坐標(biāo)是(0,0)。
教師多媒體出示:
師:如圖,請同學(xué)們寫出A、B、C、D這四點的坐標(biāo)。
生甲:A點的坐標(biāo)是(—5,4)。
生乙:B點的坐標(biāo)是(—3,—2)。
生丙:C點的坐標(biāo)是(4,0)。
生。篋點的坐標(biāo)是(0,—6)。
師:很好!我們已經(jīng)知道了怎樣寫出點的坐標(biāo),如果已知一點的坐標(biāo)為(3,—2),怎樣在平面直角坐標(biāo)系中找到這個點呢?
教師邊操作邊講解:
在x軸上找出橫坐標(biāo)是3的點,過這一點向x軸作垂線,橫坐標(biāo)是3的點都在這條直線上;在y軸上找出縱坐標(biāo)是—2的點,過這一點向y軸作垂線,縱坐標(biāo)是—2的點都在這條直線上;這兩條直線交于一點,這一點既滿足橫坐標(biāo)為3,又滿足縱坐標(biāo)為—2,所以這就是坐標(biāo)為(3,—2)的點。下面請同學(xué)們在方格紙中建立一個平面直角坐標(biāo)系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個點。
學(xué)生動手作圖,教師巡視指導(dǎo)。
三、深入探究,層層推進
師:兩個坐標(biāo)軸把坐標(biāo)平面劃分為四個區(qū)域,從x軸正半軸開始,按逆時針方向,把這四個區(qū)域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標(biāo)軸不屬于任何一個象限。在同一象限內(nèi)的點,它們的橫坐標(biāo)的符號一樣嗎?縱坐標(biāo)的符號一樣嗎?
生:都一樣。
師:對,由作垂線求坐標(biāo)的過程,我們知道第一象限內(nèi)的點的橫坐標(biāo)的符號為+,縱坐標(biāo)的符號也為+。你能說出其他象限內(nèi)點的坐標(biāo)的符號嗎?
生:能。第二象限內(nèi)的點的坐標(biāo)的符號為(—,+),第三象限內(nèi)的點的坐標(biāo)的符號為(—,—),第四象限內(nèi)的點的坐標(biāo)的符號為(+,—)。
師:很好!我們知道了一點所在的象限,就能知道它的坐標(biāo)的符號。同樣的,我們由點的坐標(biāo)也能知道它所在的象限。一點的坐標(biāo)的符號為(—,+),你能判斷這點是在哪個象限嗎?
生:能,在第二象限。
四、練習(xí)新知
師:現(xiàn)在我給出幾個點,你們判斷一下它們分別在哪個象限。
教師寫出四個點的坐標(biāo):A(—5,—4),B(3,—1),C(0,4),D(5,0)。
生甲:A點在第三象限。
生乙:B點在第四象限。
生丙:C點不屬于任何一個象限,它在y軸上。
生。篋點不屬于任何一個象限,它在x軸上。
師:很好!現(xiàn)在請大家在方格紙上建立一個平面直角坐標(biāo)系,在上面描出這些點。
學(xué)生作圖,教師巡視,并予以指導(dǎo)。
五、課堂小結(jié)
師:本節(jié)課你學(xué)到了哪些新的知識?
生:認(rèn)識了平面直角坐標(biāo)系,會寫出坐標(biāo)平面內(nèi)點的坐標(biāo),已知坐標(biāo)能描點,知道了四個象限以及四個象限內(nèi)點的符號特征。
教師補充完善。
教學(xué)反思
物體位置的說法和表述物體的位置等問題,學(xué)生在實際生活中經(jīng)常遇到,但可能沒有想到這些問題與數(shù)學(xué)的聯(lián)系。教師在這節(jié)課上引導(dǎo)學(xué)生去想到建立一個平面直角坐標(biāo)系來表示物體的位置,讓學(xué)生參與到探索獲取新知的活動中,主動學(xué)習(xí)思考,感受數(shù)學(xué)的魅力。在教學(xué)中我讓學(xué)生由生活中的實例與坐標(biāo)的聯(lián)系感受坐標(biāo)的實用性,增強了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
第2課時平面上點的坐標(biāo)(二)
教學(xué)目標(biāo)
【知識與技能】
進一步學(xué)習(xí)和應(yīng)用平面直角坐標(biāo)系,認(rèn)識坐標(biāo)系中的圖形。
【過程與方法】
通過探索平面上的點連接成的圖形,形成二維平面圖形的概念,發(fā)展抽象思維能力。
【情感、態(tài)度與價值觀】
培養(yǎng)學(xué)生的合作交流意識和探索精神,體驗通過二維坐標(biāo)來描述圖形頂點,從而描述圖形的方法。
重點難點
【重點】
理解平面上的點連接成的圖形,計算圍成的圖形的面積。
【難點】
不規(guī)則圖形面積的求法。
教學(xué)過程
一、創(chuàng)設(shè)情境,導(dǎo)入新知
師:上節(jié)課我們學(xué)習(xí)了平面直角坐標(biāo)系的概念,也學(xué)習(xí)了已知點的坐標(biāo),怎樣在平面直角坐標(biāo)系中把這個點表示出來。下面請大家在方格紙上建立一個平面直角坐標(biāo)系,并在上面標(biāo)出A(5,1),B(2,1),C(2,—3)這三個點。
學(xué)生作圖。
教師邊操作邊講解:
二、合作探究,獲取新知
師:現(xiàn)在我們把這三個點用線段連接起來,看一下得到的是什么圖形?
生甲:三角形。
生乙:直角三角形。
師:你能計算出它的面積嗎?
生:能。
教師挑一名學(xué)生:你是怎樣算的呢?
生:AB的長是5—2=3,BC的長是1—(—3)=4,所以三角形ABC的面積是×3×4=6。
師:很好!
教師邊操作邊講解:
大家再描出四個點:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來看看形成的是什么
圖形?
學(xué)生完成操作后回答:平行四邊形。
師:你能計算它的面積嗎?
生:能。
教師挑一名學(xué)生:你是怎么計算的呢?
生:以BC為底,A到BC的垂線段AE為高,BC的長為4,AE的長為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點,我們將它們順次連接形成圖形,下面我們來看這樣一個連接成的圖形:
教師多媒體出示下圖:
八年級上冊數(shù)學(xué)教案8
一、教學(xué)目標(biāo)
1、理解分式的基本性質(zhì)。
2、會用分式的基本性質(zhì)將分式變形。
二、重點、難點
1、重點:理解分式的基本性質(zhì)。
2、難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形。
3、認(rèn)知難點與突破方法
教學(xué)難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。
三、練習(xí)題的意圖分析
1.P7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
2.P9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分。值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
教師要講清方法,還要及時地糾正學(xué)生做題時出現(xiàn)的錯誤,使學(xué)生在做提示加深對相應(yīng)概念及方法的理解。
3.P11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補充例5。
四、課堂引入
1、請同學(xué)們考慮:與相等嗎?與相等嗎?為什么?
2、說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
3、提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì)。
五、例題講解
P7例2.填空:
[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。
P11例3.約分:
[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡分式。
P11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
八年級上冊數(shù)學(xué)教案9
一、教學(xué)目標(biāo)
1.了解二次根式的意義;
2.掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;
3.掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;
4.通過二次根式的計算培養(yǎng)學(xué)生的邏輯思維能力;
5.通過二次根式性質(zhì)和的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美.
二、教學(xué)重點和難點
重點:(1)二次根的意義;(2)二次根式中字母的取值范圍.
難點:確定二次根式中字母的取值范圍.
三、教學(xué)方法
啟發(fā)式、講練結(jié)合.
四、教學(xué)過程
(一)復(fù)習(xí)提問
1.什么叫平方根、算術(shù)平方根?
2.說出下列各式的意義,并計算
(二)引入新課
新課:二次根式
定義:式子叫做二次根式.
對于請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):
(1)式子只有在條件a≥0時才叫二次根式,是二次根式嗎?呢?
若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.
(2)是二次根式,而,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的“外在形態(tài)”.請學(xué)生舉出幾個二次根式的例子,并說明為什么是二次根式.下面例題根據(jù)二次根式定義,由學(xué)生分析、回答.
例1當(dāng)a為實數(shù)時,下列各式中哪些是二次根式?
例2 x是怎樣的實數(shù)時,式子在實數(shù)范圍有意義?
解:略.
說明:這個問題實質(zhì)上是在x是什么數(shù)時,x-3是非負(fù)數(shù),式子有意義.
例3當(dāng)字母取何值時,下列各式為二次根式:
分析:由二次根式的定義,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式.
解:(1)∵a、b為任意實數(shù)時,都有a2+b2≥0,∴當(dāng)a、b為任意實數(shù)時,是二次根式.
(2)-3x≥0,x≤0,即x≤0時,是二次根式.
(3),且x≠0,∴x>0,當(dāng)x>0時,是二次根式.
(4),即,故x-2≥0且x-2≠0, ∴x>2.當(dāng)x>2時,是二次根式.
例4下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進一步鞏固二次根式的定義,.即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零.
解:(1)由2a+3≥0,得.
(2)由,得3a-1>0,解得.
(3)由于x取任何實數(shù)時都有|x|≥0,因此,|x|+0.1>0,于是,式子是二次根式.所以所求字母x的取值范圍是全體實數(shù).
(4)由-b2≥0得b2≤0,只有當(dāng)b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0.
八年級上冊數(shù)學(xué)教案10
教學(xué)目標(biāo):
知識與技能目標(biāo):
1.掌握矩形的概念、性質(zhì)和判別條件。
2.提高對矩形的性質(zhì)和判別在實際生活中的應(yīng)用能力。
過程與方法目標(biāo):
1.經(jīng)歷探索矩形的有關(guān)性質(zhì)和判別條件的過程,在直觀操作活動和簡單的說理過程中發(fā)展學(xué)生的合情推理能力,主觀探索習(xí)慣,逐步掌握說理的基本方法。
2.知道解決矩形問題的基本思想是化為三角形問題來解決,滲透轉(zhuǎn)化歸思想。
情感與態(tài)度目標(biāo):
1.在操作活動過程中,加深對矩形的的認(rèn)識,并以此激發(fā)學(xué)生的探索精神。
2.通過對矩形的探索學(xué)習(xí),體會它的內(nèi)在美和應(yīng)用美。
教學(xué)重點:
矩形的性質(zhì)和常用判別方法的理解和掌握。
教學(xué)難點:
矩形的性質(zhì)和常用判別方法的綜合應(yīng)用。
教學(xué)方法:
分析啟發(fā)法
教具準(zhǔn)備:
像框,平行四邊形框架教具,多媒體課件。
教學(xué)過程設(shè)計:
一、情境導(dǎo)入:
演示平行四邊形活動框架,引入課題。
二、講授新課:
1.歸納矩形的定義:
問題:從上面的演示過程可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?(學(xué)生思考、回答。)
結(jié)論:有一個內(nèi)角是直角的平行四邊形是矩形。
2.探究矩形的性質(zhì):
(1)問題:像框除了“有一個內(nèi)角是直角”外,還具有哪些一般平行四邊形不具備的性質(zhì)?(學(xué)生思考、回答.)
結(jié)論:矩形的四個角都是直角。
(2)探索矩形對角線的性質(zhì):
讓學(xué)生進行如下操作后,思考以下問題:(幻燈片展示)
在一個平行四邊形活動框架上,用兩根橡皮筋分別套在相對的兩個頂點上,拉動一對不相鄰的頂點,改變平行四邊形的形狀.
、匐S著∠α的變化,兩條對角線的長度分別是怎樣變化的?
、诋(dāng)∠α是銳角時,兩條對角線的長度有什么關(guān)系?當(dāng)∠α是鈍角時呢?
、郛(dāng)∠α是直角時,平行四邊形變成矩形,此時兩條對角線的長度有什么關(guān)系?
(學(xué)生操作,思考、交流、歸納。)
結(jié)論:矩形的兩條對角線相等.
(3)議一議:(展示問題,引導(dǎo)學(xué)生討論解決)
、倬匦问禽S對稱圖形嗎?如果是,它有幾條對稱軸?如果不是,簡述你的理由.
、谥苯侨切涡边吷系闹芯等于斜邊長的一半,你能用矩形的有關(guān)性質(zhì)解釋這結(jié)論嗎?
(4)歸納矩形的性質(zhì):(引導(dǎo)學(xué)生歸納,并體會矩形的“對稱美”)
矩形的對邊平行且相等;矩形的四個角都是直角;矩形的對角線相等且互相平分;矩形是軸對稱圖形.
例解:(性質(zhì)的運用,滲透矩形對角線的“化歸”功能)
如圖,在矩形ABCD中,兩條對角線AC,BD相交于點O,AB=OA=4
厘米,求BD與AD的長。
(引導(dǎo)學(xué)生分析、解答)
探索矩形的判別條件:(由修理桌子引出)
(5)想一想:
對角線相等的平行四邊形是怎樣的四邊形?為什么?
結(jié)論:對角線相等的平行四邊形是矩形.
(理由可由師生共同分析,然后用幻燈片展示完整過程.)
(6)歸納矩形的判別方法:(引導(dǎo)學(xué)生歸納)
有一個內(nèi)角是直角的平行四邊形是矩形.
對角線相等的平行四邊形是矩形.
三、課堂練習(xí):
四、新課小結(jié):
通過本節(jié)課的學(xué)習(xí),你有什么收獲?
(師生共同從知識與思想方法兩方面小結(jié)。)
五、作業(yè)設(shè)計:P99習(xí)題4.6第1、2、3題。
板書設(shè)計:
1.矩形
矩形的定義:
矩形的性質(zhì):
前面知識的小系統(tǒng)圖示:
2.矩形的判別條件:
例1
課后反思:
在平行四邊形及菱形的教學(xué)后。學(xué)生已經(jīng)學(xué)會自主探索的方法,自己動手猜想驗證一些矩形的特殊性質(zhì)。一些相關(guān)矩形的計算也學(xué)會應(yīng)用轉(zhuǎn)化為直角三角形的方法來解決?偟目磥磉@節(jié)課學(xué)生掌握的還不錯。當(dāng)然合情推理的能力要慢慢的熟練。不可能一下就掌握熟練。
八年級上冊數(shù)學(xué)教案11
【教學(xué)目標(biāo)】
1.了解分式概念.
2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.
【教學(xué)重難點】
重點:理解分式有意義的條件,分式的值為零的條件.
難點:能熟練地求出分式有意義的條件,分式的值為零的條件.
【教學(xué)過程】
一、課堂導(dǎo)入
1.讓學(xué)生填寫[思考],學(xué)生自己依次填出:,,,.
2.問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?
設(shè)江水的流速為x千米/時.
輪船順流航行100千米所用的時間為小時,逆流航行60千米所用時間小時,所以=.
3.以上的式子,,,,有什么共同點?它們與分?jǐn)?shù)有什么相同點和不同點?可以發(fā)現(xiàn),這些式子都像分?jǐn)?shù)一樣都是A÷B的形式.分?jǐn)?shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母.
[思考]引發(fā)學(xué)生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分?jǐn)?shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個條件,分式才有意義.即當(dāng)B≠0時,分式才有意義.
二、例題講解
例1:當(dāng)x為何值時,分式有意義.
【分析】已知分式有意義,就可以知道分式的分母不為零,進一步解出字母x的取值范圍.
(補充)例2:當(dāng)m為何值時,分式的值為0?
(1);(2);(3).
【分析】分式的值為0時,必須同時滿足兩個條件:①分母不能為零;②分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.
三、隨堂練習(xí)
1.判斷下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2.當(dāng)x取何值時,下列分式有意義?
3.當(dāng)x為何值時,分式的值為0?
四、小結(jié)
談?wù)勀愕氖斋@.
五、布置作業(yè)
課本128~129頁練習(xí).
八年級上冊數(shù)學(xué)教案12
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
三角形中相關(guān)元素的概念、按邊分類及三角形的三邊關(guān)系.
2.內(nèi)容解析
三角形是一種最基本的幾何圖形,是認(rèn)識其他圖形的基礎(chǔ),在本章中,學(xué)好了三角形的有關(guān)概念和性質(zhì),為進一步學(xué)習(xí)多邊形的相關(guān)內(nèi)容打好基礎(chǔ),本節(jié)主要介紹與三角形的的概念、按邊分類和三角形三邊關(guān)系,使學(xué)生對三角形的有關(guān)知識有更為深刻的理解.
本節(jié)課的教學(xué)重點:三角形中的相關(guān)概念和三角形三邊關(guān)系.
本節(jié)課的教學(xué)難點:三角形的三邊關(guān)系.
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)了解三角形中的相關(guān)概念,學(xué)會用符號語言表示三角形中的對應(yīng)元素.
(2)理解并且靈活應(yīng)用三角形三邊關(guān)系.
2.教學(xué)目標(biāo)解析
(1)結(jié)合具體圖形,識三角形的概念及其基本元素.
(2)會用符號、字母表示三角形中的相關(guān)元素,并會按邊對三角形進行分類.
(3)理解三角形兩邊之和大于第三邊這一性質(zhì),并會運用這一性質(zhì)來解決問題.
三、教學(xué)問題診斷分析
在探索三角形三邊關(guān)系的過程中,讓學(xué)生經(jīng)歷觀察、探究、推理、交流等活動過程,培養(yǎng)學(xué)生的和推理能力和合作學(xué)習(xí)的精神.
四、教學(xué)過程設(shè)計
1.創(chuàng)設(shè)情境,提出問題
問題回憶生活中的三角形實例,結(jié)合你以前對三角形的了解,請你給三角形下一個定義.
師生活動:先讓學(xué)生分組討論,然后各小組派代表發(fā)言,針對學(xué)生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學(xué)生對三角形概念的理解.
【設(shè)計意圖】三角形概念的獲得,要讓學(xué)生經(jīng)歷其描述的過程,借此培養(yǎng)學(xué)生的語言表述能力,加深學(xué)生對三角形概念的理解.
2.抽象概括,形成概念
動態(tài)演示“首尾順次相接”這個的動畫,歸納出三角形的定義.
師生活動:
三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.
【設(shè)計意圖】讓學(xué)生體會由抽象到具體的過程,培養(yǎng)學(xué)生的語言表述能力.
補充說明:要求學(xué)生學(xué)會三角形、三角形的頂點、邊、角的概念以及幾何表達(dá)方法.
師生活動:結(jié)合具體圖形,教師引導(dǎo)學(xué)生分析,讓學(xué)生學(xué)會由文字語言向幾何語言的過渡.
【設(shè)計意圖】進一步加深學(xué)生對三角形中相關(guān)元素的認(rèn)知,并進一步熟悉幾何語言在學(xué)習(xí)中的應(yīng)用.
3.概念辨析,應(yīng)用鞏固
如圖,不重復(fù),且不遺漏地識別所有三角形,并用符號語言表示出來.
1.以AB為一邊的三角形有哪些?
2.以∠D為一個內(nèi)角的三角形有哪些?
3.以E為一個頂點的三角形有哪些?
4.說出ΔBCD的三個角.
師生活動:引導(dǎo)學(xué)生從概念出發(fā)進行思考,加深學(xué)生對三角形中相關(guān)元素概念的理解.
4.拓廣延伸,探究分類
我們知道,按照三個內(nèi)角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關(guān)系對三角形進行分類,又應(yīng)該如何分呢?小組之間同學(xué)進行交流并說說你們的想法.
師生活動:通過討論,學(xué)生類比按角的分類方法按邊對三角形進行分類,接著引出等腰三角形及等邊三角形的概念,引導(dǎo)學(xué)生了解等腰三角形與等邊三角形的聯(lián)系,強化學(xué)生對三角形按邊分類的理解.
八年級上冊數(shù)學(xué)教案13
【教學(xué)目標(biāo)】
知識目標(biāo):
解單項式乘以多項式的意義,理解單項式與多項式的乘法法則,會進行單項式與多項式的乘法運算。
能力目標(biāo):
。1)經(jīng)歷探索乘法運算法則的過程,發(fā)展觀察、歸納、猜測、驗證等能力;
(2)體會乘法分配律的作用與轉(zhuǎn)化思想,發(fā)展有條理的思考及語言表達(dá)能力。
情感目標(biāo):
充分調(diào)動學(xué)生學(xué)習(xí)的積極性、主動性
【教學(xué)重點】
單項式與多項式的乘法運算
【教學(xué)難點】
推測整式乘法的運算法則。
【教學(xué)過程】
一、復(fù)習(xí)引入
通過對已學(xué)知識的復(fù)習(xí)引入課題(學(xué)生作答)
1.請說出單項式與單項式相乘的法則:
單項式與單項式相乘,把它們的系數(shù)、相同字母的冪分別相乘,對于只在一個單項式里出現(xiàn)的字母,則連同它的指數(shù)作為積的一個因式。
。ㄏ禂(shù)×系數(shù))×(同字母冪相乘)×單獨的冪
例如:( 2a2b3c) (-3ab)
解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c
= -6a3b4c
2.說出多項式2x2-3x-1的項和各項的系數(shù)項分別為:2x2、-3x、-1系數(shù)分別為:2、-3、-1
問:如何計算單項式與多項式相乘?例如:2a2· (3a2 - 5b)該怎樣計算?
這便是我們今天要研究的問題。
二、新知探究
已知一長方形長為(a+b+c),寬為m,則面積為:m(a+b+c)
現(xiàn)將這個長方形分割為寬為m,長分別為a、b、c的三個小長方形,其面積之和為ma+mb+mc因為分割前后長方形沒變所以m(a+b+c)=ma+mb+mc
上一等式根據(jù)什么規(guī)律可以得到?從中可以得出單項式與多項式相乘的運算法則該如何表述?(學(xué)生分組討論:前后座為一組;找個別同學(xué)作答,教師作評)
結(jié)論單項式與多項式相乘的運算法則:
用單項式分別去乘多項式的每一項,再把所得的積相加。
用字母表示為:m(a+b+c)=ma+mb+mc
運算思路:單×多
轉(zhuǎn)化
分配律
單×單
三、例題講解
例計算:(1)(-2a2)· (3ab2– 5ab3)
。2)(- 4x) ·(2x2+3x-1)
解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②
(2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①
八年級上冊數(shù)學(xué)教案14
一、教學(xué)目標(biāo):
1、加深對加權(quán)平均數(shù)的理解
2、會根據(jù)頻數(shù)分布表求加權(quán)平均數(shù),從而解決一些實際問題
3、會用計算器求加權(quán)平均數(shù)的值
二、重點、難點和難點的突破方法:
1、重點:根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)
2、難點:根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)
3、難點的突破方法:
首先應(yīng)先復(fù)習(xí)組中值的定義,在七年級下教材P72中已經(jīng)介紹過組中值定義。因為在根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值過程中要用到組中值去代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,所以有必要在這里復(fù)習(xí)組中值定義。
應(yīng)給學(xué)生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,以及這樣代替的好處、不妨舉一個例子,在一組中如果數(shù)據(jù)分布較為均勻時,比如教材P140探究問題的表格中的第三組數(shù)據(jù),它的范圍是41≤X≤61,共有20個數(shù)據(jù),若分布較為平均,41、42、43、44…60個出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010。而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當(dāng)數(shù)據(jù)分布較為平均時組中值恰好近似等于它的平均數(shù)。所以利用組中值X頻數(shù)去代替這組數(shù)據(jù)的和還是比較合理的,而且這樣做的好處是簡化了計算量。
為了更好的理解這種近似計算的方法和合理性,可以讓學(xué)生去讀統(tǒng)計表,體會表格的實際意義。
三、例習(xí)題的意圖分析
1、教材P140探究欄目的意圖。
(1)、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計算方法。
(2)、加深了對“權(quán)”意義的理解:當(dāng)利用組中值近似取代替一組數(shù)據(jù)中的平均值時,頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán)。
這個探究欄目也可以幫助學(xué)生去回憶、復(fù)習(xí)七年級下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義。
2、教材P140的思考的意圖。
(1)、使學(xué)生通過思考這兩個問題過程中體會利用統(tǒng)計知識可以解決生活中的許多實際問題
(2)、幫助學(xué)生理解表中所表達(dá)出來的信息,培養(yǎng)學(xué)生分析數(shù)據(jù)的能力。
3、P141利用計算器計算平均值
這部分篇幅較小,與傳統(tǒng)教材那種詳細(xì)介紹計算器使用方法產(chǎn)生明顯對比。一則由于學(xué)校中學(xué)生使用計算器不同,其操作過程有差別亦不同,再者,各種計算器的使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計算器。所以本節(jié)課的重點內(nèi)容不是利用計算器求加權(quán)平均數(shù),但是掌握其使用方法確實可以運算變得簡單。統(tǒng)計中一些數(shù)據(jù)較大、較多的計算也變得容易些了。
四、課堂引入
采用教材原有的引入問題,設(shè)計的幾個問題如下:
(1)、請同學(xué)讀P140探究問題,依據(jù)統(tǒng)計表可以讀出哪些信息
(2)、這里的組中值指什么,它是怎樣確定的?
(3)、第二組數(shù)據(jù)的頻數(shù)5指什么呢?
(4)、如果每組數(shù)據(jù)在本組中分布較為均勻,比組數(shù)據(jù)的平均值和組中值有什么關(guān)系。
五、隨堂練習(xí)
1、某校為了了解學(xué)生作課外作業(yè)所用時間的情況,對學(xué)生作課外作業(yè)所用時間進行調(diào)查,下表是該校初二某班50名學(xué)生某一天做數(shù)學(xué)課外作業(yè)所用時間的情況統(tǒng)計表
所用時間t(分鐘)人數(shù)
0 0<≤ 6 20 30 40 50 (1)、第二組數(shù)據(jù)的組中值是多少? (2)、求該班學(xué)生平均每天做數(shù)學(xué)作業(yè)所用時間 2、某班40名學(xué)生身高情況如下圖, 請計算該班學(xué)生平均身高 答案1.(1).15. (2)28. 2. 165 六、課后練習(xí): 1、某公司有15名員工,他們所在的部門及相應(yīng)每人所創(chuàng)的年利潤如下表 部門A B C D E F G 人數(shù)1 1 2 4 2 2 5 每人創(chuàng)得利潤20 5 2.5 2 1.5 1.5 1.2 該公司每人所創(chuàng)年利潤的平均數(shù)是多少萬元? 2、下表是截至到20xx年費爾茲獎得主獲獎時的年齡,根據(jù)表格中的信息計算獲費爾茲獎得主獲獎時的平均年齡? 年齡頻數(shù) 28≤X<30 4 30≤X<32 3 32≤X<34 8 34≤X<36 7 36≤X<38 9 38≤X<40 11 40≤X<42 2 3、為調(diào)查居民生活環(huán)境質(zhì)量,環(huán)保局對所轄的50個居民區(qū)進行了噪音(單位:分貝)水平的調(diào)查,結(jié)果如下圖,求每個小區(qū)噪音的平均分貝數(shù)。 答案:1.約2.95萬元2.約29歲3.60.54分貝 學(xué)習(xí)目標(biāo) 1、通過運算多項式乘法,來推導(dǎo)平方差公式,學(xué)生的認(rèn)識由一般法則到特殊法則的能力。 2、通過親自動手、觀察并發(fā)現(xiàn)平方差公式的結(jié)構(gòu)特征,并能從廣義上理解公式中字母的含義。 3、初步學(xué)會運用平方差公式進行計算。 學(xué)習(xí)重難點重點: 平方差公式的推導(dǎo)及應(yīng)用。 難點是對公式中a,b的廣泛含義的理解及正確運用。 自學(xué)過程設(shè)計教學(xué)過程設(shè)計 看一看 認(rèn)真閱讀教材,記住以下知識: 文字?jǐn)⑹銎椒讲罟剑篲________________ 用字母表示:________________ 做一做: 1、完成下列練習(xí): ①(m+n)(p+q) 、(a+b)(x-y) ③(2x+3y)(a-b) 、(a+2)(a-2) 、(3-x)(3+x) 、(2m+n)(2m-n) 想一想 你還有哪些地方不是很懂?請寫出來。 _______________________________ _______________________________ ________________________________、 1、下列計算對不對?若不對,請在橫線上寫出正確結(jié)果、 (1)(x-3)(x+3)=x2-3( ),__________; (2)(2x-3)(2x+3)=2x2-9( ),_________; (3)(-x-3)(x-3)=x2-9( ),_________; (4)(2xy-1)(2xy+1)=2xy2-1( ),________、 2、(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2; (3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________、 3、計算:50×49=_________、 應(yīng)用探究 1、幾何解釋平方差公式 展示:邊長a的大正方形中有一個邊長為b的小正方形。 (1)請計算圖的陰影部分的面積(讓學(xué)生用正方形的面積公式計算)。 (2)小明將陰影部分拼成一個長方形,這個長方形長與寬是多少?你能表示出它的面積嗎? 2、用平方差公式計算 (1)103×93 (2)59、8×60、2 拓展提高 1、閱讀題: 我們在計算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)時,發(fā)現(xiàn)直接運算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個算式能用乘法公式計算、解答過程如下: 原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1) =(22-1)(22+1)(24+1)(28+1)(216+1)(232+1) =(24-1)(24+1)(28+1)(216+1)(232+1) =……=264-1 你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值嗎?請試試看! 2、仔細(xì)觀察,探索規(guī)律: (x-1)(x+1)=x2-1 (x-1)(x2+x+1)=x3-1 (x-1)(x3+x2+x+1)=x4-1 (x-1)(x4+x3+x2+x+1)=x5-1 …… (1)試求25+24+23+22+2+1的值; (2)寫出22006+22005+22004+…+2+1的個位數(shù)、 堂堂清 一、選擇題 1、下列各式中,能用平方差公式計算的是( ) (1)(a-2b)(-a+2b); (2)(a-2b)(-a-2b); (3)(a-2b)(a+2b); (4)(a-2b)(2a+b)、 【八年級上冊數(shù)學(xué)教案】相關(guān)文章: 八年級上冊數(shù)學(xué)教案07-26 八年級上冊數(shù)學(xué)教案12-23 八年級上冊數(shù)學(xué)教案12-23 初一數(shù)學(xué)教案上冊09-26 八年級的數(shù)學(xué)教案10-11八年級上冊數(shù)學(xué)教案15