- 《圓的標(biāo)準(zhǔn)方程》說(shuō)課稿 推薦度:
- 相關(guān)推薦
《圓的標(biāo)準(zhǔn)方程》說(shuō)課稿范文(精選5篇)
作為一位杰出的老師,常常要根據(jù)教學(xué)需要編寫說(shuō)課稿,說(shuō)課稿是進(jìn)行說(shuō)課準(zhǔn)備的文稿,有著至關(guān)重要的作用。那要怎么寫好說(shuō)課稿呢?以下是小編為大家收集的《圓的標(biāo)準(zhǔn)方程》說(shuō)課稿范文,希望能夠幫助到大家。
《圓的標(biāo)準(zhǔn)方程》說(shuō)課稿 1
一、說(shuō)教材:
1.地位及作用:
“橢圓及其標(biāo)準(zhǔn)方程”是高中《解析幾何》第二章第七節(jié)內(nèi)容,是本書的重點(diǎn)內(nèi)容之一,也是歷年高考、會(huì)考的必考內(nèi)容,是在學(xué)完求曲線方程的基礎(chǔ)上,進(jìn)一步研究橢圓的特性,以完成對(duì)圓錐曲線的全面研究,為今后的學(xué)習(xí)打好基礎(chǔ),因此本節(jié)內(nèi)容具有承前啟后的作用。
2.教學(xué)目標(biāo):
根據(jù)《教學(xué)大綱》,《考試說(shuō)明》的要求,并根據(jù)教材的具體內(nèi)容和學(xué)生的實(shí)際情況,確定本節(jié)課的教學(xué)目標(biāo):
。1)知識(shí)目標(biāo):掌握橢圓的定義和標(biāo)準(zhǔn)方程,以及它們的應(yīng)用。
。2)能力目標(biāo):
(a)培養(yǎng)學(xué)生靈活應(yīng)用知識(shí)的能力。
(b)培養(yǎng)學(xué)生全面分析問(wèn)題和解決問(wèn)題的能力。
。╟)培養(yǎng)學(xué)生快速準(zhǔn)確的運(yùn)算能力。
。3)德育目標(biāo):培養(yǎng)學(xué)生數(shù)形結(jié)合思想,類比、分類討論的思想以及確立從感性到理性認(rèn)識(shí)的辯證唯物主義觀點(diǎn)。
3.重點(diǎn)、難點(diǎn)和關(guān)鍵點(diǎn):
因?yàn)闄E圓的定義和標(biāo)準(zhǔn)方程是解決與橢圓有關(guān)問(wèn)題的重要依據(jù),也是研究雙曲線和拋物線的基礎(chǔ),因此,它是本節(jié)教材的重點(diǎn);由于學(xué)生推理歸納能力較低,在推導(dǎo)橢圓的標(biāo)準(zhǔn)方程時(shí)涉及到根式的兩次平方,并且運(yùn)算也較繁,因此它是本節(jié)課的難點(diǎn);坐標(biāo)系建立的好壞直接影響標(biāo)準(zhǔn)方程的推導(dǎo)和化簡(jiǎn),因此建立一個(gè)適當(dāng)?shù)闹苯亲鴺?biāo)系是本節(jié)的關(guān)鍵。
二、說(shuō)教材處理
為了完成本節(jié)課的`教學(xué)目標(biāo),突出重點(diǎn)、分散難點(diǎn)、根據(jù)教材的內(nèi)容和學(xué)生的實(shí)際情況,對(duì)教材做以下的處理:
1.學(xué)生狀況分析及對(duì)策:
2.教材內(nèi)容的組織和安排:
本節(jié)教材的處理上按照人們認(rèn)識(shí)事物的規(guī)律,遵循由淺入深,循序漸進(jìn),層層深入的原則組織和安排如下:
(1)復(fù)習(xí)提問(wèn)
。2)引入新課
。3)新課講解
。4)反饋練習(xí)
(5)歸納總結(jié)
。6)布置作業(yè)
三、說(shuō)教法和學(xué)法
1.為了充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,是學(xué)生變被動(dòng)學(xué)習(xí)為主動(dòng)而愉快的學(xué)習(xí),引導(dǎo)學(xué)生自己動(dòng)手,讓學(xué)生的思維活動(dòng)在教師的引導(dǎo)下層層展開。請(qǐng)學(xué)生參與課堂。加強(qiáng)方程推導(dǎo)的指導(dǎo),是傳授知識(shí)與培養(yǎng)能力有機(jī)的溶為一體,為此,本節(jié)課采用“引導(dǎo)教學(xué)法”。
2.利用電腦所畫圖形的動(dòng)態(tài)演示總結(jié)規(guī)律。同時(shí)利用電腦的動(dòng)態(tài)演示激發(fā)學(xué)生的學(xué)習(xí)興趣。
四、教學(xué)過(guò)程
教學(xué)環(huán)節(jié)
3.設(shè)a(—2,0),b(2,0),三角形abp周長(zhǎng)為10,動(dòng)點(diǎn)p軌跡方程。
例1屬基礎(chǔ),主要反饋學(xué)生掌握基本知識(shí)的程度。
例2可強(qiáng)化基本技能訓(xùn)練和基本知識(shí)的靈活運(yùn)用。
小結(jié)
為使學(xué)生對(duì)本節(jié)內(nèi)容有一個(gè)完整深刻的認(rèn)識(shí),教師引導(dǎo)學(xué)生從以下幾個(gè)方面進(jìn)行小結(jié)。
1.橢圓的定義和標(biāo)準(zhǔn)方程及其應(yīng)用。
2.橢圓標(biāo)準(zhǔn)方程中a,b,c諸關(guān)系。
3.求橢圓方程常用方法和基本思路。
通過(guò)小結(jié)形成知識(shí)體系,加深對(duì)本節(jié)知識(shí)的理解培養(yǎng)學(xué)生的歸納總結(jié)能力,增強(qiáng)學(xué)生學(xué)好圓錐曲線的信心。
布置作業(yè)
。1)77頁(yè)——78頁(yè)1,2,3,79頁(yè)11
。2)預(yù)習(xí)下節(jié)內(nèi)容
鞏固本節(jié)所學(xué)概念,強(qiáng)化基本技能訓(xùn)練,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣和品質(zhì),發(fā)現(xiàn)和彌補(bǔ)教學(xué)中的遺漏和不足。
《圓的標(biāo)準(zhǔn)方程》說(shuō)課稿 2
。ㄒ唬┱f(shuō)教材
1、教材結(jié)構(gòu)編排:
本節(jié)課位于直線方程之后和圓的一般方程之前,學(xué)習(xí)直線方程為后邊學(xué)習(xí)圓的方程奠定了基礎(chǔ),而學(xué)好圓的標(biāo)準(zhǔn)方程是為了進(jìn)一步學(xué)習(xí)圓的一般方程和切線方程打好基礎(chǔ),因此在結(jié)構(gòu)上起承上啟下的作用。
2、教學(xué)目標(biāo)
知識(shí)目標(biāo):
。1)掌握?qǐng)A的標(biāo)準(zhǔn)方程,并能根據(jù)圓的標(biāo)準(zhǔn)方程寫出圓心坐標(biāo)和半徑、
。2)已知圓心和半徑會(huì)寫出圓的標(biāo)準(zhǔn)方程、
能力目標(biāo):
。1)培養(yǎng)學(xué)生數(shù)形結(jié)合能力、
(2)培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力
情感目標(biāo):
。1)培養(yǎng)學(xué)生主動(dòng)探究知識(shí),合作交流的意識(shí)。
。2)在體驗(yàn)數(shù)學(xué)美的過(guò)程中激發(fā)學(xué)生學(xué)習(xí)的興趣。
3、教學(xué)重點(diǎn)
(1)圓的標(biāo)準(zhǔn)方程
。2)已知圓的標(biāo)準(zhǔn)方程會(huì)寫出圓的圓心和半徑
。3)已知圓心坐標(biāo)和半徑會(huì)寫出圓的標(biāo)準(zhǔn)方程
4、教學(xué)難點(diǎn)
(1)圓的標(biāo)準(zhǔn)方程的推導(dǎo)
。2)圓的標(biāo)準(zhǔn)方程的應(yīng)用
(二)說(shuō)教法
本節(jié)課采用講練結(jié)合,啟發(fā)式教學(xué)
。ㄈ┱f(shuō)學(xué)法
1、 主動(dòng)探究學(xué)習(xí)
2、 小組合作學(xué)習(xí)
(四)說(shuō)教學(xué)過(guò)程
1、導(dǎo)入
通過(guò)鐘表的圖片讓學(xué)生了解鐘表的指針頭運(yùn)行的軌跡是一個(gè)圓,第二個(gè)鐘表是讓學(xué)生了解圓是一系列的點(diǎn)來(lái)構(gòu)成的,第三個(gè)圖是抽象出圓是由動(dòng)點(diǎn)運(yùn)行的軌跡有此形成圓的定義。
2、知識(shí)銜接
。1)圓的定義,圓上的點(diǎn)具備的特征性質(zhì)
。2)平面上兩點(diǎn)間的距離公式
通過(guò)復(fù)習(xí)為后邊推導(dǎo)圓的標(biāo)準(zhǔn)方程奠定基礎(chǔ),降低難度。
3、新課學(xué)習(xí)
。1)推導(dǎo)圓的標(biāo)準(zhǔn)方程(化解難點(diǎn))
怎么推出圓的標(biāo)準(zhǔn)方程,為了降低難度,可以把圓看成一個(gè)動(dòng)點(diǎn),既然是動(dòng)點(diǎn),那他的坐標(biāo)是變化的,就用(x,y)表示,既然是圓上的點(diǎn)就應(yīng)具備圓的特征性質(zhì)即|CM|=r接下來(lái)就容易推出圓的標(biāo)準(zhǔn)方程。
(2)圓的.標(biāo)準(zhǔn)方程(突出重點(diǎn))
先分析它的結(jié)構(gòu),圓心的橫縱坐標(biāo)及半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系。為了鞏固這個(gè)知識(shí)安排兩個(gè)練習(xí),練習(xí)一是已知圓心坐標(biāo)及半徑寫出圓的標(biāo)準(zhǔn)方程,練習(xí)二是已知圓的標(biāo)準(zhǔn)方程寫出圓的圓心坐標(biāo)和半徑
。3)為了加強(qiáng)知識(shí)的應(yīng)用,我加了一道用圓的標(biāo)準(zhǔn)方程解決實(shí)際問(wèn)題的例子。這道題也是有難度的,為了降低難度,我給學(xué)生建立坐標(biāo)系,讓學(xué)生寫出圓的標(biāo)準(zhǔn)方程,分組討論,最后得出結(jié)論。
。4)小結(jié)本節(jié)的重點(diǎn)知識(shí)
。5)根據(jù)所學(xué)為了加強(qiáng)鞏固,適當(dāng)?shù)牟贾米鳂I(yè)
。ㄎ澹┱f(shuō)板書設(shè)計(jì)
正中間是題目圓的標(biāo)準(zhǔn)方程,左邊是圓的標(biāo)準(zhǔn)方程,及確定圓的條件,右邊是例子及演板的地方,這樣設(shè)計(jì)的目的是醒目,大家一看就知道本節(jié)課的重要內(nèi)容。
《圓的標(biāo)準(zhǔn)方程》說(shuō)課稿 3
尊敬的各位考官:
大家好,我是xx號(hào)考生,今天我說(shuō)課的題目是《圓的標(biāo)準(zhǔn)方程》。
對(duì)于本節(jié)課,我將以教什么、怎么教、為什么這么教為思路,從教材分析、學(xué)情分析、教學(xué)重難點(diǎn)等幾個(gè)方面加以闡述。
一、說(shuō)教材
首先談一談我對(duì)教材的理解。本節(jié)課選自人教A版實(shí)驗(yàn)版高中數(shù)學(xué)必修二,主要探究圓的標(biāo)準(zhǔn)方程。此前學(xué)生已經(jīng)學(xué)習(xí)了在平面直角坐標(biāo)系中用方程表示直線,起到良好的鋪墊作用。本節(jié)課為后續(xù)學(xué)習(xí)圓的一般方程及進(jìn)一步學(xué)習(xí)平面解析幾何打下基礎(chǔ)。
二、說(shuō)學(xué)情
再來(lái)談?wù)剬W(xué)生的情況。高中生思維能力已經(jīng)非常成熟,能夠有自己獨(dú)立的思考,所以應(yīng)該積極發(fā)揮這種優(yōu)勢(shì),讓學(xué)生獨(dú)立思考探索。
三、說(shuō)教學(xué)目標(biāo)
基于以上分析,我制定了如下三維教學(xué)目標(biāo):
(一)知識(shí)與技能
掌握?qǐng)A的標(biāo)準(zhǔn)方程,能夠在給出基本條件的情況下求出圓的標(biāo)準(zhǔn)方程。
。ǘ┻^(guò)程與方法
經(jīng)歷探究圓的標(biāo)準(zhǔn)方程的.過(guò)程,提升邏輯推理、直觀想象與數(shù)學(xué)運(yùn)算能力。
(三)情感、態(tài)度與價(jià)值觀
獲得成功的體驗(yàn),增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣與信心。
四、說(shuō)教學(xué)重難點(diǎn)
在教學(xué)目標(biāo)的實(shí)現(xiàn)過(guò)程中,教學(xué)重點(diǎn)是圓的標(biāo)準(zhǔn)方程,教學(xué)難點(diǎn)是圓的標(biāo)準(zhǔn)方程的探究過(guò)程。
五、說(shuō)教法學(xué)法
現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過(guò)程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者、合作者。根據(jù)這一教學(xué)理念,本節(jié)課我將采用自主探究為主,輔以教師講解、小組討論等教學(xué)方法,層層遞進(jìn)進(jìn)行展開。
六、說(shuō)教學(xué)過(guò)程
下面重點(diǎn)談?wù)勎覍?duì)教學(xué)過(guò)程的設(shè)計(jì)。
(一)導(dǎo)入新課
課堂伊始,為了鋪墊用方程表示平面圖形的思路,也為了幫助學(xué)生完善知識(shí)體系,我會(huì)帶領(lǐng)學(xué)生簡(jiǎn)單回顧之前所學(xué)內(nèi)容——在平面直角坐標(biāo)系中用坐標(biāo)、用方程的方法表示一些點(diǎn)、直線,由確定直線的幾何要素推導(dǎo)出直線的方程。
進(jìn)而提出能不能在平面直角坐標(biāo)系中表示其他圖形。用大屏幕展示一些圓形物品,請(qǐng)學(xué)生舉例更多圓形物品。然后提問(wèn):能否用方程的思想在平面直角坐標(biāo)系中表示圓?由此引出課題。
(二)講解新知
《圓的標(biāo)準(zhǔn)方程》說(shuō)課稿 4
【一】教學(xué)背景分析
1. 教材結(jié)構(gòu)分析
《圓的方程》安排在高中數(shù)學(xué)第二冊(cè)(上)第七章第六節(jié).圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用.圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識(shí),是研究二次曲線的開始,對(duì)后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無(wú)論在知識(shí)上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個(gè)解析幾何中起著承前啟后的作用.
2.學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的. 但由于學(xué)生學(xué)習(xí)解析幾何的時(shí)間還不長(zhǎng)、學(xué)習(xí)程度較淺,且對(duì)坐標(biāo)法的運(yùn)用還不夠熟練,在學(xué)習(xí)過(guò)程中難免會(huì)出現(xiàn)困難.另外學(xué)生在探究問(wèn)題的能力,合作交流的意識(shí)等方面有待加強(qiáng).
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):
3.教學(xué)目標(biāo)
(1) 知識(shí)目標(biāo):①掌握?qǐng)A的標(biāo)準(zhǔn)方程;
、跁(huì)由圓的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;
、劾脠A的標(biāo)準(zhǔn)方程解決簡(jiǎn)單的實(shí)際問(wèn)題.
(2) 能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問(wèn)題的能力;
、诩由顚(duì)數(shù)形結(jié)合思想的理解和加強(qiáng)對(duì)待定系數(shù)法的運(yùn)用;
、墼鰪(qiáng)學(xué)生用數(shù)學(xué)的意識(shí).
(3) 情感目標(biāo):①培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí);
、谠隗w驗(yàn)數(shù)學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習(xí)興趣.
根據(jù)以上對(duì)教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):
4. 教學(xué)重點(diǎn)與難點(diǎn)
(1)重點(diǎn): 圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.
(2)難點(diǎn): ①會(huì)根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;
②選擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問(wèn)題.
為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再?gòu)慕谭ê蛯W(xué)法上進(jìn)行分析:
【二】教法學(xué)法分析
1.教法分析 為了充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上.另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過(guò)程.
2.學(xué)法分析 通過(guò)推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對(duì)用坐標(biāo)法求軌跡方程的理解.通過(guò)求圓的標(biāo)準(zhǔn)方程,理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓.通過(guò)應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過(guò)程.
下面我就對(duì)具體的教學(xué)過(guò)程和設(shè)計(jì)加以說(shuō)明:
【三】教學(xué)過(guò)程與設(shè)計(jì)
整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅(qū)動(dòng)的,共分為五個(gè)環(huán)節(jié):
創(chuàng)設(shè)情境 啟迪思維
深入探究 獲得新知
應(yīng)用舉例 鞏固提高
反饋訓(xùn)練 形成方法
小結(jié)反思 拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計(jì)意圖.
首先:縱向敘述教學(xué)過(guò)程
(一)創(chuàng)設(shè)情境——啟迪思維
問(wèn)題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?
通過(guò)對(duì)這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線段CD的長(zhǎng)度轉(zhuǎn)移為用曲線的方程來(lái)解決.一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過(guò)的結(jié)論的同時(shí)學(xué)生自己推導(dǎo)出了圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題.用實(shí)際問(wèn)題創(chuàng)設(shè)問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應(yīng)用于實(shí)際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望.這樣獲取的知識(shí),不但易于保持,而且易于遷移.
通過(guò)對(duì)問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節(jié).
(二)深入探究——獲得新知
問(wèn)題二 1.根據(jù)問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為幾的圓的方程?
2.如果圓心在,半徑為xx時(shí)又如何呢?
這一環(huán)節(jié)我首先讓學(xué)生對(duì)問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標(biāo)準(zhǔn)方程.然后再讓學(xué)生對(duì)圓心不在原點(diǎn)的情況進(jìn)行探究.我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法.
得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計(jì)了由淺入深的三個(gè)應(yīng)用平臺(tái),進(jìn)入第三環(huán)節(jié).
(三)應(yīng)用舉例——鞏固提高
I.直接應(yīng)用 內(nèi)化新知
問(wèn)題三 1.寫出下列各圓的標(biāo)準(zhǔn)方程:
(1)圓心在原點(diǎn),半徑為3;
(2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn)
2.寫出圓的圓心坐標(biāo)和半徑.
我設(shè)計(jì)了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握?qǐng)A心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的.切線問(wèn)題作準(zhǔn)備.
II.靈活應(yīng)用 提升能力
問(wèn)題四
1.求以點(diǎn)為圓心,并且和直線相切的圓的方程.
2.求過(guò)點(diǎn),圓心在直線上且與軸相切的圓的方程.
3.已知圓的方程為,求過(guò)圓上一點(diǎn)的切線方程.你能歸納出具有一般性的結(jié)論嗎?已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線的方程是什么?
我設(shè)計(jì)了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎(chǔ),學(xué)生會(huì)很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程.第二個(gè)小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓.第三個(gè)小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間.最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線方程的過(guò)程中,又一次模擬了真理發(fā)現(xiàn)的過(guò)程,使探究氣氛達(dá)到高潮.
III.實(shí)際應(yīng)用 回歸自然
問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(zhǎng)度(精確到0.01m).
我選用了教材的例3,它是待定系數(shù)法求出圓的三個(gè)參數(shù)的又一次應(yīng)用,同時(shí)也與引例相呼應(yīng),使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識(shí).
(四)反饋訓(xùn)練——形成方法
問(wèn)題六
1.求過(guò)原點(diǎn)和點(diǎn),且圓心在直線上的圓的標(biāo)準(zhǔn)方程.
2.求圓過(guò)點(diǎn)的切線方程.
3.求圓過(guò)點(diǎn)的切線方程.
接下來(lái)是第四環(huán)節(jié)——反饋訓(xùn)練.這一環(huán)節(jié)中,我設(shè)計(jì)三個(gè)小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心.另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識(shí)進(jìn)行判斷,這樣的設(shè)計(jì)對(duì)培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果.
(五)小結(jié)反思——拓展引申
1.課堂小結(jié)
把圓的標(biāo)準(zhǔn)方程與過(guò)圓上一點(diǎn)圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法
①圓心為,半徑為r 的圓的標(biāo)準(zhǔn)方程為;圓心在原點(diǎn)時(shí),半徑為r 的圓的標(biāo)準(zhǔn)方程為:
、谝阎獔A的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線的方程是:
2.分層作業(yè) (A)鞏固型作業(yè):教材P81-82:(習(xí)題7.6)1,2,4.
(B)思維拓展型作業(yè):
試推導(dǎo)過(guò)圓上一點(diǎn)的切線方程.
3.激發(fā)新疑
問(wèn)題七
1.把圓的標(biāo)準(zhǔn)方程展開后是什么形式?
2.方程表示什么圖形?
在本課的結(jié)尾設(shè)計(jì)這兩個(gè)問(wèn)題,作為對(duì)這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會(huì)知識(shí)的起點(diǎn)與終點(diǎn)都蘊(yùn)涵著問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了.在知識(shí)的拓展中再次掀起學(xué)生探究的熱情.另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備.
以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設(shè)計(jì)意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計(jì):
橫向闡述教學(xué)設(shè)計(jì)
(一)突出重點(diǎn) 抓住關(guān)鍵 突破難點(diǎn)
求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個(gè)參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn).
第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應(yīng)用問(wèn)題,這是學(xué)生固有的難題,主要是因?yàn)閼?yīng)用問(wèn)題的題目冗長(zhǎng),學(xué)生很難根據(jù)問(wèn)題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心.最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實(shí)際問(wèn)題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個(gè)應(yīng)用問(wèn)題——問(wèn)題五.這樣的設(shè)計(jì),使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破。
(二)學(xué)生主體 教師主導(dǎo) 探究主線
本節(jié)課的設(shè)計(jì)用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終.從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問(wèn)題的指引、我的指導(dǎo)下,由學(xué)生探究完成的.另外,我重點(diǎn)設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗(yàn)了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅(qū)動(dòng)下,高效的完成本節(jié)的學(xué)習(xí)任務(wù).
(三)培養(yǎng)思維 提升能力 激勵(lì)創(chuàng)新
為了培養(yǎng)學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力.在問(wèn)題的設(shè)計(jì)中,我利用一題多解的探究,縱向挖掘知識(shí)深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對(duì)所學(xué)知識(shí)和方法產(chǎn)生有意注意,使能力與知識(shí)的形成相伴而行。
以上是我對(duì)這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過(guò)程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變.最后我以赫爾巴特的一句名言結(jié)束我的說(shuō)課,發(fā)揮我們的創(chuàng)造性,力爭(zhēng)“使教育過(guò)程成為一種藝術(shù)的事業(yè)”。
《圓的標(biāo)準(zhǔn)方程》說(shuō)課稿 5
我說(shuō)課的題目是上海教育出版社中職教材試用本數(shù)學(xué)第二冊(cè),第四章第一節(jié)《圓的標(biāo)準(zhǔn)方程》,說(shuō)課內(nèi)容分成教材分析、教法分析、學(xué)法分析、教學(xué)過(guò)程四個(gè)部分。
一、教材分析
1、教材的地位:解析幾何是通過(guò)建立直角坐標(biāo)系把幾何問(wèn)題用代數(shù)方法解決的學(xué)科。圓是同學(xué)們已經(jīng)熟悉的幾何圖形,有許多幾何性質(zhì),這些性質(zhì)在日常生活、生產(chǎn)和科學(xué)技術(shù)中有著廣泛的應(yīng)用。圓也是體現(xiàn)數(shù)形結(jié)合思想的重要素材。推導(dǎo)圓的標(biāo)準(zhǔn)方程需要在直線的學(xué)習(xí)基礎(chǔ)上進(jìn)行,基本模式和理論基礎(chǔ)從直線引入。同時(shí)和今后的直線與圓等課程有重要聯(lián)系。因此本節(jié)課具有承前啟后的作用,是本章的關(guān)鍵內(nèi)容。在本單元的地位和作用,結(jié)合職一年級(jí)學(xué)生的特點(diǎn),我從以下三個(gè)角度制定教學(xué)目標(biāo):
2.教學(xué)目標(biāo)
根據(jù)教學(xué)大綱和學(xué)生已有的認(rèn)知基礎(chǔ),我將本節(jié)課的教學(xué)目標(biāo)確定如下:
知識(shí)目標(biāo):經(jīng)歷圓的標(biāo)準(zhǔn)方程的推導(dǎo)過(guò)程,學(xué)會(huì)點(diǎn)與圓的位置關(guān)系的判定方法。
掌握?qǐng)A的標(biāo)準(zhǔn)方程及其求法;能根據(jù)圓心、半徑寫出圓的標(biāo)準(zhǔn)方程。
能力目標(biāo):體會(huì)用解析法研究幾何問(wèn)題的方法,理解數(shù)形結(jié)合思想。
情感目標(biāo):運(yùn)用圓的相關(guān)知識(shí)解決實(shí)際問(wèn)題,提高觀察問(wèn)題、發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的能力,以及學(xué)習(xí)數(shù)學(xué)的熱情和民族自豪感。
3.教學(xué)重點(diǎn)、難點(diǎn)及關(guān)鍵
我將本課的教學(xué)重點(diǎn)、難點(diǎn)確定為:
①重點(diǎn):掌握?qǐng)A的標(biāo)準(zhǔn)方程及其推導(dǎo)方法
、陔y點(diǎn):圓的標(biāo)準(zhǔn)方程的應(yīng)用。
二、教學(xué)方法分析
在教法上,主要采用研究性和啟發(fā)式教學(xué)法。以啟發(fā)、引導(dǎo)為主,采用提問(wèn)啟發(fā)的形式,逐步讓學(xué)生進(jìn)行研究性學(xué)習(xí)。結(jié)合圓的定義自己推導(dǎo)圓的標(biāo)準(zhǔn)方程。
讓學(xué)生根據(jù)教學(xué)目標(biāo)的要求和題目中的.已知條件,主動(dòng)地去分析問(wèn)題、討論問(wèn)題、解決問(wèn)題。例題安排由易至難,采用變式題形式,形變神不便,層層遞進(jìn),深入分析。在應(yīng)用問(wèn)題的安排上,啟發(fā)討論的同時(shí),體會(huì)我國(guó)古代勞動(dòng)人民的智慧和才干,從而激發(fā)學(xué)生的民族自豪感。
三、學(xué)法分析
我所任教的班級(jí)是金融一年級(jí),學(xué)生已具備了直線的相關(guān)知識(shí)。學(xué)生的基本運(yùn)算過(guò)關(guān),可是主動(dòng)思考問(wèn)題能力較薄弱。因此本堂課我主要運(yùn)用引導(dǎo)、啟發(fā)、情感暗示等隱性形式來(lái)影響學(xué)生,多提供機(jī)會(huì)讓學(xué)生去想、去做,給學(xué)生參與教學(xué)過(guò)程、發(fā)現(xiàn)問(wèn)題、討論問(wèn)題提供了很好的機(jī)會(huì)。這不僅讓學(xué)生對(duì)所學(xué)內(nèi)容留下了深刻的印象,而且能力得到培養(yǎng),素質(zhì)得以提高,充分地調(diào)動(dòng)學(xué)生學(xué)習(xí)的熱情,讓學(xué)生學(xué)會(huì)學(xué)習(xí),學(xué)會(huì)探索問(wèn)題的方法,培養(yǎng)學(xué)生的能力。
四、教學(xué)程序
1、創(chuàng)設(shè)情境,激發(fā)興趣。
問(wèn)題一:直線學(xué)習(xí)過(guò)程中已經(jīng)借助平面直角坐標(biāo)系體會(huì)用代數(shù)法研究幾何問(wèn)題,圓如何用代數(shù)法研究?
問(wèn)題二:在我們現(xiàn)實(shí)生活中有許多蘊(yùn)含圓方程的實(shí)例,比如趙州橋,它的圓方程是什么樣的?通過(guò)本堂課的學(xué)習(xí)我們就能得到答案。
通過(guò)提出這兩個(gè)問(wèn)題,打開學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識(shí)的創(chuàng)新做好了準(zhǔn)備;同時(shí)打下鋪墊,在我們生活中,有許多實(shí)例蘊(yùn)含著圓方程,設(shè)計(jì)意圖:數(shù)學(xué)來(lái)源于生活,有趣的生活情境,激發(fā)學(xué)生好奇心和強(qiáng)烈的求知欲,讓學(xué)生在生動(dòng)具體的情境中學(xué)習(xí)數(shù)學(xué),從而使教材與學(xué)生之間建立相互包容、相互激發(fā)的關(guān)系。讓學(xué)生既認(rèn)識(shí)了生活中的數(shù)學(xué),又大膽而自然地提出猜想。
2、探索實(shí)踐,推導(dǎo)方程。
讓學(xué)生觀察幾何畫板畫圓的過(guò)程,抽象得出圓的定義。讓學(xué)生總結(jié)出圓的定義并結(jié)合兩點(diǎn)間的距離公式,逐步推導(dǎo)出圓的標(biāo)準(zhǔn)方程。
圓心是C(a,b),半徑是r,求圓的標(biāo)準(zhǔn)方程:
注:當(dāng)圓心在原點(diǎn)時(shí),圓的標(biāo)準(zhǔn)方程為:
3、實(shí)踐應(yīng)用,鞏固提高。
復(fù)習(xí):點(diǎn)P與圓:的位置關(guān)系(由點(diǎn)與圓心C(a,b)的距離判定)
(1)點(diǎn)P在圓內(nèi),則|PC|<r
(2)點(diǎn)P在圓上,則|PC|=r
(3)點(diǎn)P在圓外,則|PC|>r
設(shè)計(jì)意圖:從基本入手,熟悉圓的標(biāo)準(zhǔn)方程,以及點(diǎn)與圓位置關(guān)系等基本性質(zhì)。
穿插課堂練習(xí),反復(fù)鞏固新知。
1.口答下列各圓的標(biāo)準(zhǔn)方程
(1)圓心在(8,-3),半徑為6 _______________________
(2)圓心在(0, 2),半徑為 ________________________
(3)圓心在原點(diǎn),半徑為4 ________________________
2.判斷下列方程是否表示圓,如果是,寫出圓心坐標(biāo)和半徑,并判斷原點(diǎn)
(0,0)與圓的位置關(guān)系。
設(shè)計(jì)意圖:第一題是直接給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握?qǐng)A心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問(wèn)題作準(zhǔn)備。
設(shè)計(jì)意圖:3道變式例題,形變神不變。通過(guò)鞏固練習(xí),讓學(xué)生自己體會(huì)出本堂課的重點(diǎn)求圓標(biāo)準(zhǔn)方程的關(guān)鍵條件。
例3如圖為著稱于世的趙州橋的示意圖,圓拱跨徑AB(橋孔寬)為37.0m,拱高OP=7.2m,如以AB為x軸,線段AB的垂直平分線為y軸,建立平面直角坐標(biāo)系,求趙州橋圓拱所在的圓的方程。
設(shè)計(jì)意圖:與情境引入時(shí)相呼應(yīng),聯(lián)系到生活實(shí)例,使學(xué)生進(jìn)一步體會(huì)圓方程的應(yīng)用。同時(shí)趙州橋是中國(guó)古代勞動(dòng)人民智慧的結(jié)晶,提升學(xué)生的民族自豪感。
4、課堂小結(jié),回味無(wú)窮。
。1)圓心為C(a,b),半徑為r的圓的標(biāo)準(zhǔn)方程為:
。2)當(dāng)圓心在原點(diǎn)時(shí),圓的標(biāo)準(zhǔn)方程為:
。3)數(shù)形結(jié)合的思想方法
5、回家作業(yè),課后鞏固。
練習(xí)冊(cè)P7.習(xí)題7.3(1)/1、2、3、4
6、課后思考,擴(kuò)展延伸。
1.把圓的標(biāo)準(zhǔn)方程展開后是什么形式?
2.方程:
7、板書設(shè)計(jì)
【《圓的標(biāo)準(zhǔn)方程》說(shuō)課稿】相關(guān)文章:
《圓的標(biāo)準(zhǔn)方程》說(shuō)課稿(精選10篇)11-02
《圓標(biāo)準(zhǔn)方程》說(shuō)課稿(精選10篇)12-27
高中數(shù)學(xué)說(shuō)課稿:《圓的標(biāo)準(zhǔn)方程》12-16
圓的標(biāo)準(zhǔn)方程教學(xué)反思04-08
《橢圓及其標(biāo)準(zhǔn)方程》說(shuō)課稿02-27
圓與方程教案圓與方程課件03-23
雙曲線及其標(biāo)準(zhǔn)方程的說(shuō)課稿07-21