1. <rp id="zsypk"></rp>

      2. 《鴿巢問(wèn)題》教學(xué)設(shè)計(jì)

        時(shí)間:2023-03-09 04:33:51 教學(xué)設(shè)計(jì) 我要投稿

        《鴿巢問(wèn)題》教學(xué)設(shè)計(jì)

          教學(xué)目標(biāo):

        《鴿巢問(wèn)題》教學(xué)設(shè)計(jì)

          1、知識(shí)與技能:初步了解鴿巢原理,學(xué)會(huì)簡(jiǎn)單的鴿巢原理分析方法,運(yùn)用鴿巢原理的知識(shí)解決簡(jiǎn)單的實(shí)際問(wèn)題或解釋相關(guān)的現(xiàn)象。

          2、過(guò)程與方法:通過(guò)操作、觀察、比較、說(shuō)理等數(shù)學(xué)活動(dòng),使學(xué)生經(jīng)歷鴿巢原理的形成過(guò)程,體會(huì)和掌握邏輯推理思想和模型思想。

          3、情感 態(tài)度:通過(guò)對(duì)鴿巢原理的靈活運(yùn)用,感受數(shù)學(xué)的魅力,體會(huì)數(shù)學(xué)的價(jià)值,提高學(xué)習(xí)數(shù)學(xué)的興趣。

          教學(xué)重點(diǎn):經(jīng)歷“鴿巢原理”的探究過(guò)程,理解鴿巢原理。

          教學(xué)難點(diǎn):理解“鴿巢原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。

          教學(xué)準(zhǔn)備:多媒體課件、鉛筆、紙杯、合作探究作業(yè)紙。

          教學(xué)過(guò)程:

          一、 喚起與生成

          1、談話:同學(xué)們,你們喜歡魔術(shù)嗎?今天,黃老師給大家表演一個(gè)小魔術(shù)。一副牌,取出大小王,還剩52張牌,請(qǐng)5個(gè)同學(xué)每人隨意抽一張,我知道至少有2張牌是同花色的。相信嗎?來(lái),試試看。

          2、驗(yàn)證: 抽取,統(tǒng)計(jì)。是不是湊巧了,再來(lái)一次。表演成功!

          3、至少2張是什么意思?(也就是最少2張,最起碼2張,反過(guò)來(lái),同一花色的可能有2張,也可能是3張、4張、5張...,一句話概括就是至少2張)。

          確定是哪個(gè)花色了嗎 ?(沒(méi)有)反正總有一個(gè)花色,所以,這個(gè)數(shù)據(jù)不管是在哪個(gè)花色出現(xiàn)都證明表演是成功的。

          4、設(shè)疑:你們想知道這是為什么嗎?其實(shí)這里面蘊(yùn)藏著一個(gè)非常有趣的數(shù)學(xué)原理,這節(jié)課讓我們一起去發(fā)現(xiàn)!

          二、探究與解決

         。ㄒ唬⑿〗M探究:4放3的簡(jiǎn)單鴿巢問(wèn)題

          1、出 示:把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。

          2、審 題:

          ①讀題。

         、趶念}目上你知道了什么?證明什么?

         。ㄎ抑懒税4支鉛筆放進(jìn)3個(gè)筆筒中,證明不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。)

         、勰阍鯓永斫狻安还茉趺捶拧、“總有” 、“至少”的意思?

          “不管怎么放”:就是隨便放、任意放。

          “總有”: 就是一定有,不確定是哪個(gè)筆筒,這個(gè)筆筒沒(méi)有那個(gè)筆筒會(huì)有。

          “至少”: 就是最少,最起碼。至少有2支,就是最少有2支,不能少于2支。也可能是3支、4支、甚至5支。

          3、探 究:

         、僬 話:看來(lái)大家已經(jīng)理解題目的意思了,眼見(jiàn)為實(shí),就讓我們親自動(dòng)手?jǐn)[一擺、放一放,看看有哪幾種放法?

         、诨 動(dòng):小組活動(dòng),四人小組。

          聽(tīng)要求!

          活動(dòng)要求:每個(gè)小組都有筆筒和筆,請(qǐng)四個(gè)人中面對(duì)面的兩人一人扶杯子一人放鉛筆,另外兩人一人口述一人記錄,讓我們齊心協(xié)力,擺出所有情況后,對(duì)照題目,看有什么發(fā)現(xiàn)。

          聽(tīng)明白了嗎?開(kāi)始!

          3、反 饋:匯報(bào)結(jié)果

          同學(xué)們辦法真多,有用畫(huà)圖法,有用數(shù)的分解來(lái)表示,都很清晰。誰(shuí)來(lái)匯報(bào)一下你們的成果?

          可以在第一個(gè)筆筒中放4支鉛筆,其他兩個(gè)空著。這種放法可以說(shuō)成(4,0,0),(3,1,0),(2,2,0),(2,1,1)(課件逐一出示)

          追 問(wèn):誰(shuí)還有疑問(wèn)或補(bǔ)充?

          預(yù)設(shè):說(shuō)一說(shuō)你比他多了哪一種放法?

          (2,1,1)和(1,1,2)是一種方法嗎?為什么?)

          只是位置不同,方法相同

          5、驗(yàn)證:觀察這4種擺法,憑什么說(shuō)“總有一個(gè)筆筒中至少有2支鉛筆”?

         。1)逐一驗(yàn)證:

          第一種擺法(4,0,0),是不是總有一個(gè)筆筒至少2支,哪個(gè)?放的最多的筆筒里有4支,比2支多也可以嗎?

          符合總有一個(gè)筆筒里至少有2支鉛筆。

          第二種擺法(3,1,0),符合。哪個(gè)?放的最多的筆筒里有3支,符合總有一個(gè)筆筒里至少有2支鉛筆。

          第三種擺法(2,2,0),放的最多的筆筒里有2支, 符合總有一個(gè)筆筒里至少有2支鉛筆。

          第四種擺法(2,1,1),放的最多的筆筒里有2支, 符合總有一個(gè)筆筒里至少有2支鉛筆。

          符合條件的那個(gè)筆筒在三個(gè)筆筒中都是最多的。

          (2)設(shè)疑:我有一個(gè)疑問(wèn),第一種擺法(4,0,0)放的最多的筆筒里,放有4支,可以說(shuō)總有一個(gè)筆筒至少有4 支鉛筆嗎?說(shuō)成3支也不行嗎?

         。3)小結(jié):哦,原來(lái)是這樣,要考慮所有擺法,然后在所有擺法中,圈出每一種擺法中最多的,再?gòu)淖疃嗟睦锩嬲业街辽贁?shù),就能得出這個(gè)結(jié)論。

          所以,把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。

         。ǘ┳灾魈骄浚5放4的簡(jiǎn)單鴿巢原理

          1、過(guò) 渡:依此推想下去

          2、出 示:把5支鉛筆放進(jìn)4個(gè)筆筒,不管怎么放,總有一個(gè)筆筒至少有( )支鉛筆。

          3、猜 想:同學(xué)們猜猜看,至少數(shù)是幾支?(你說(shuō)、你說(shuō))

          4、驗(yàn) 證:你們的猜測(cè)對(duì)嗎?讓我們來(lái)驗(yàn)證一下。

          活動(dòng)要求:

         。1)思考有幾種擺法?記錄下來(lái)。

          (2)觀察每一種擺法,能不能從中找出答案。有困難的可以同桌合作。

          好,開(kāi)始。(教師參與其中)。

          5、匯 報(bào):把5支鉛筆放進(jìn)4個(gè)筆筒中,共有6種擺法

          分別是:5000 、4100、 3200、 3110 、2200、2111

         。ㄕn件同步播放)

          預(yù)設(shè):我圈出了每種擺法中,放鉛筆最多的那個(gè)筆筒,然后發(fā)現(xiàn),放鉛筆最多的的筆筒里面至少放有2支鉛筆。

          6、訂 正:有補(bǔ)充的嗎?噢,我們來(lái)看,這6種擺法,把每種方法里放的(停頓)最多的鉛筆圈出來(lái)了,分別是5支、4支、3支、2支,從中找到至少數(shù)是2支。

          7、小 結(jié):恭喜答對(duì)的同學(xué)!同學(xué)們可真是厲害!請(qǐng)看,我們研究了這樣的兩個(gè)問(wèn)題:

          ①把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。會(huì)講為什么。

         、诎5支鉛筆放進(jìn)4個(gè)筆筒,不管怎么放,總有一個(gè)筆筒至少有幾支鉛筆?會(huì)求至少數(shù)。

          不管是對(duì)結(jié)論的證明還是求解至少數(shù),我們都采用一一列舉的方法,羅列出所有擺法,再通過(guò)觀察,得出結(jié)論。

         。ㄈ、探究鴿巢原理算式

          1、談 話:哎,如果這里有 100支鉛筆放進(jìn)30個(gè)筆筒,不管怎么放,總有一個(gè)筆筒至少有幾支鉛筆?

          還是讓求至少數(shù),還用一一列舉的方法來(lái)研究,你覺(jué)得怎么樣?

         。ê寐闊,是啊, 想想都覺(jué)得麻煩。

          2、追 問(wèn):數(shù)學(xué)是一門(mén)簡(jiǎn)潔的科學(xué),那就請(qǐng)同學(xué)們想一想,除了通過(guò)操作一一列舉出來(lái),有沒(méi)有什么方法能一下子找到結(jié)果呢?

          其實(shí),我們剛才已經(jīng)和那一種方法見(jiàn)過(guò)面,以4放3為例,請(qǐng)同學(xué)們認(rèn)真觀察每一種擺法,分別找一找,哪一種擺法最能說(shuō)明:總有一個(gè)筆筒里至少放有2支鉛筆呢?

          3、平均分:為什么這樣分呢?

          生:我是這樣想的,先假設(shè)每個(gè)筆筒中放1支,這樣還有1支,這是無(wú)論放到哪個(gè)筆筒,那個(gè)筆筒中就有2支了,所以我認(rèn)為是對(duì)的。(課件演示)

          師:你為什么要先在每個(gè)筆筒中放1支呢?

          生:因?yàn)榭偣仓挥?支,平均分,每個(gè)筆筒只能分到1支。

          師:為什么一開(kāi)始就要去平均分呢?

          生:平均分,就可以使每個(gè)筆筒中的筆盡可能少一點(diǎn)。也就有可能找到和題目意思不一樣的情況。

          師:我明白了,但這樣能證明總有一個(gè)筆筒中肯定會(huì)有2 支筆,怎么就證明了至少有2支呢?

          生:平均分已經(jīng)使每個(gè)筆筒中的筆盡可能的少了,如果這樣都符合要求,那另外的情況肯定也是符合要求的了。

          師:看來(lái),平均分是保證“至少”數(shù)的關(guān)鍵。

          4、列式:

          ①你能用算式表示嗎?

          4÷3=1……1?? 1+1=2

         、谥v講算式含義。

          a、指名講:假設(shè)把4支鉛筆平均放進(jìn)3個(gè)筆筒中,每個(gè)筆筒放1支,剩下的1支就要放進(jìn)其中的一個(gè)筆筒,1+1=2,所以總有一個(gè)筆筒至少有2支鉛筆。

          b、真棒!講給你的同桌聽(tīng)。

          5、運(yùn) 用:把5支鉛筆放進(jìn)4個(gè)筆筒不管怎么放,總有一個(gè)筆筒至少有幾支鉛筆?? 請(qǐng)用算式表示出來(lái)。

          5÷4=1……1?? 1+1=2

          說(shuō)說(shuō)算式的意思。

          a、同桌齊說(shuō)。

          b、誰(shuí)來(lái)說(shuō)一說(shuō)?

          師:我們會(huì)用除法算式表示平均分的過(guò)程,這種方法更為快捷、簡(jiǎn)明。

         。ㄋ模┨骄可詮(fù)雜的鴿巢問(wèn)題

          1、加深感悟:我們繼續(xù)研究這樣的問(wèn)題,邊計(jì)算邊思考:這樣的題目有什么特點(diǎn)?結(jié)論中的至少數(shù)是怎樣得到的?

          2、題組(開(kāi)火車(chē),口答結(jié)果并口述算式)

         。1)6支鉛筆放進(jìn)5個(gè)筆筒里,總有一個(gè)筆筒里面至少有()支鉛筆

         。2)7支鉛筆放進(jìn)5個(gè)筆筒里,總有一個(gè)筆筒里面至少有()支鉛筆

          7÷5=1…… 2?? 1+2=3?

          7÷5=1…… 2?? 1+1=2

          出現(xiàn)了兩種答案,究竟那種正確?同桌商量商量。不行我再救場(chǎng)(學(xué)生討論)

          你認(rèn)為哪種結(jié)果正確?為什么?

          質(zhì) 疑:為什么第二次還要平均分?(保證“至少”)

          把鉛筆平均分才是解決問(wèn)題的關(guān)鍵啊。

         。3)把筆的數(shù)量進(jìn)一步增加:

          8支鉛筆放5個(gè)筆筒里,至少數(shù)是多少?

          8÷5=1……3?? 1+1=2

         。4)9支鉛筆放5個(gè)筆筒里,至少數(shù)是多少?

          9÷5=1……4?? 1+1=2

          (5)好,再增加一支鉛筆?至少數(shù)是多少?

          還用加嗎?為什么?? 10÷5=2?? 正好分完, 至少數(shù)是商

         。6)好再增加一支鉛筆,,你來(lái)說(shuō)

          11÷5=2……1?? 2+1=3?? 3個(gè)

         、倌銇(lái)說(shuō)說(shuō)現(xiàn)在至少數(shù)為什么變成3個(gè)了?(因?yàn)樯套兞,所以至少?shù)變成了3.)

          ②那同學(xué)們?cè)傧胂,鉛筆的支數(shù)到多少支時(shí),至少數(shù)還是3?

         、坫U筆的支數(shù)到多少支的時(shí)候,至少數(shù)就變成了4了呢?

         。7)把28支鉛筆放進(jìn)5個(gè)筆筒里,總有一個(gè)筆筒里面至少放進(jìn)(? )支鉛筆。28÷5=5……3?? 5+1=6??

         。8)算的這么快,你一定有什么竅門(mén)?(比比至少數(shù)和商)

         。9) 把m支鉛筆放進(jìn)n個(gè)筆筒里,總有一個(gè)筆筒里面至少放進(jìn)(? )支鉛筆。(商+1)

          3、觀察算式,同桌討論,發(fā)現(xiàn)規(guī)律。

          鉛筆數(shù)÷筆筒數(shù)=商……余數(shù)” “至少數(shù)=商+1”

          你和他們的發(fā)現(xiàn)相同嗎?出示:商+1

          4、質(zhì)疑:和余數(shù)有沒(méi)有關(guān)系?

         。鞔_:與余數(shù)無(wú)關(guān),因?yàn)椴还苡喽嗌,都要再平均分,所以就用“?1”)

         。ㄎ澹w納概括鴿巢原理

          1、解答:那現(xiàn)在會(huì)求100支鉛筆放進(jìn)30個(gè)筆筒中的至少數(shù)了嗎?

          100÷30=3…… 10?? 3+1=4 至少數(shù)是4個(gè)

          (因?yàn)榘?00支鉛筆平均放進(jìn)30個(gè)筆筒中,每個(gè)筆筒屜放3支,剩下的10支在平均再放進(jìn)其中10個(gè)筆筒中。所以,不管怎么放,總有一個(gè)筆筒里至少放進(jìn)4支鉛筆。)

          2、推廣:

          剛才我們研究了鉛筆放入筆筒的問(wèn)題,其他還有很多問(wèn)題和它有相同之處。請(qǐng)看:

         。1)書(shū)本放進(jìn)抽屜

          把8本書(shū)放進(jìn)3個(gè)抽屜,不管怎么放,總有一個(gè)抽屜里至少放進(jìn)3本書(shū)。為什么?

          8÷3=2……2? 2+1=3

          (因?yàn)榘?本書(shū)平均放進(jìn)3個(gè)抽屜,每個(gè)抽屜放2本,剩下的2本就要放進(jìn)其中的2個(gè)抽屜。所以,不管怎么放,總有一個(gè)抽屜里至少放進(jìn)3本書(shū)。)

          (2)鴿子飛進(jìn)鴿巢

          11只鴿子飛進(jìn)4個(gè)鴿籠,至少有幾只鴿子飛進(jìn)同一只鴿籠?

          11÷4=2……3? 2+1=3

          答:至少有 3只鴿子飛進(jìn)同一只鴿籠。

          (3)車(chē)輛過(guò)高速路收費(fèi)口(圖)

         。4)搶凳子

          書(shū)、鴿子、同學(xué)就相當(dāng)于鉛筆,稱為要放的物體,抽屜、鴿籠、凳子就相當(dāng)于筆筒,統(tǒng)稱為抽屜。物體數(shù)量大于抽屜數(shù)量,類(lèi)似的問(wèn)題我們都可以用這種方法解答。

          3、建立模型:鴿巢原理:

          同學(xué)們發(fā)現(xiàn)的這個(gè)原理和一位數(shù)學(xué)家發(fā)現(xiàn)的一模一樣,讓我們追溯到150多年以前:

          知識(shí)鏈接:(課件)最早指出這個(gè)數(shù)學(xué)原理的,是十九世紀(jì)的德國(guó)數(shù)學(xué)家“狄利克雷”,后來(lái)人們?yōu)榱思o(jì)念他從這么平凡的事情中發(fā)現(xiàn)的規(guī)律,就把這個(gè)規(guī)律用他的名字命名,叫“狄利克雷原理”。以上這些問(wèn)題有相同之處,其實(shí)鴿巢、抽屜就相當(dāng)于筆筒,鴿子、書(shū)就相當(dāng)于鉛筆。人們對(duì)鴿子飛回鴿巢這個(gè)事例記憶猶新,所以像這樣的數(shù)學(xué)問(wèn)題就叫做鴿巢問(wèn)題或抽屜問(wèn)題,它被廣泛地應(yīng)用于現(xiàn)實(shí)生活中。運(yùn)用這一規(guī)律能解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。

          揭示課題:這是我們今天學(xué)習(xí)的第五單元數(shù)學(xué)廣角——鴿巢問(wèn)題,它們里面蘊(yùn)含的這種數(shù)學(xué)原理,我們就叫做鴿巢原理或抽屜原理。

          5、小結(jié):分析這類(lèi)問(wèn)題時(shí),要想清楚誰(shuí)是鴿子,誰(shuí)是鴿巢?

          有信心用我們發(fā)現(xiàn)的原理繼續(xù)接受挑戰(zhàn)嗎?

          3、鞏固與應(yīng)用

          那我們回頭看看課前小魔術(shù),你明白它的秘密了嗎?

          1、 揭秘魔術(shù):一副牌,取出大小王,還剩52張牌,你們5 人每人隨意抽一張,我知道至少有2張牌是同花色的。

          答:因?yàn)榘?張牌,平均分在4個(gè)花色里,每個(gè)花色有1張,剩下的1張無(wú)論是什么花色,總有一個(gè)花色至少是2張。

          正確應(yīng)用鴿巢原理是表演成功的秘密武器!

          2、飛鏢運(yùn)動(dòng)

          同學(xué)們玩過(guò)投飛鏢嗎?飛鏢運(yùn)動(dòng)是一種集競(jìng)技、健身及娛樂(lè)于一體的紳士運(yùn)動(dòng)。

          課件:張叔叔參加飛鏢運(yùn)動(dòng)比賽,投了5鏢,成績(jī)是41環(huán),張叔叔至少有一鏢不低于(? )環(huán)。

          在練習(xí)本上算一算,講給你的同桌聽(tīng)聽(tīng)。

          誰(shuí)來(lái)給大家說(shuō)說(shuō)你是怎么想的?(5相當(dāng)于鴿巢,41相當(dāng)于鴿子。把......)

          41÷5=8……1? 8+1=9

          在我們同學(xué)身上也有鴿巢問(wèn)題,讓我們先了解一下六年級(jí)的情況。

          3、我們六年級(jí)共有367名學(xué)生,其中六(2班)有49名學(xué)生。

         。1)六年級(jí)里至少有兩人的生日是同一天。

          (2)六(2)班中至少有5人的生日是在同一個(gè)月。

          他們說(shuō)的對(duì)嗎?為什么?

          同桌討論一下。

          誰(shuí)來(lái)說(shuō)說(shuō)你們的想法?

         。1、367人相當(dāng)于鴿子,365、或366天相當(dāng)于鴿巢......

          ? 2、49人相當(dāng)于鴿子,12個(gè)月相當(dāng)于鴿巢......)

          真理是越辯越明!

          3、星座測(cè)試命運(yùn)

          說(shuō)起生日,我想起了現(xiàn)在非常流行的星座。采訪幾位同學(xué),你是什么星座?

          你用星座測(cè)試過(guò)命運(yùn)嗎?你相信星座測(cè)試的命運(yùn)嗎?

          我們用鴿巢原理來(lái)說(shuō)說(shuō)你的想法。

          全中國(guó)13億人,12個(gè)星座,總有至少一億以上的人命運(yùn)相同。盡管他們的出身、經(jīng)歷、天資、機(jī)遇各不相同,但他們卻具有完全相同的命,可能嗎?這真的很荒謬。用星座測(cè)試命運(yùn),充其量是一種游戲娛樂(lè)一下而已,命運(yùn)掌握在自己手中。

          4、柯南破案:

          ?? “鴿巢問(wèn)題”的原理不僅在數(shù)學(xué)中有用,在現(xiàn)實(shí)生活中也隨處可見(jiàn),看,誰(shuí)來(lái)了?

         。ㄕn件)有一次,小柯南走在大街上,無(wú)意間聽(tīng)到了一位老大爺和一個(gè)年輕人的對(duì)話:

          年輕人:大爺,我最近急用錢(qián),想把我的一個(gè)手機(jī)號(hào)賣(mài)掉,價(jià)格500元,請(qǐng)問(wèn)您要嗎?

          大爺:是什么手機(jī)號(hào)呢?這么貴?

          年輕人:我的手機(jī)號(hào)很特別,它所有的數(shù)字中沒(méi)有一個(gè)數(shù)字重復(fù)......所以才這么貴的!

          老大爺:哦!

          聽(tīng)到這里,柯南馬上跑過(guò)去悄悄提醒老大爺:“大爺,這是一個(gè)騙子,您要小心!”并且馬上報(bào)了警,警察趕到后調(diào)查發(fā)現(xiàn)這個(gè)人果真是個(gè)騙子。

          聰明的你,知道柯南是根據(jù)什么判斷那個(gè)年輕人是騙子的嗎?

          (手機(jī)號(hào)11位數(shù)字相當(dāng)于鴿子。0-9這十個(gè)數(shù)字相當(dāng)于鴿巢,11÷10=1…1? 1+1=2,總有至少一個(gè)數(shù)字重復(fù)出現(xiàn)。)

          4、 回顧與整理。

          這節(jié)課我們認(rèn)識(shí)了“鴿巢問(wèn)題”,其實(shí)生活中還有許多的類(lèi)似于“鴿巢問(wèn)題”這樣的知識(shí)等待我們?nèi)グl(fā)現(xiàn),去挖掘。只要你留心觀察加上細(xì)心思考,一定會(huì)在平凡的事件中有不平凡的發(fā)現(xiàn),也能創(chuàng)造一條真正屬于你自己的原理!

          下 課!

          板書(shū)設(shè)計(jì):

          鴿? 巢? 問(wèn)? 題

          ?? 物體? 抽屜  至少數(shù)

          4?   ÷ 3  =? 1……1?? ?? 1+1=2?

          5? ? ÷ 4? =? 1……1? ? ? 1+1=2?

          7? ? ÷ 5? =? 1……2? ? ? 1+1=2??

          9 ?? ÷ 5? =? 1……4?  ?? 1+1=2??

          11 ? ÷?  5? =? 2……1 ?? ? 2+1=3??

          28?? ?? ÷ 5? =? 5……3?  ?? 5+1=6??

          100?? ? ÷  30? =? 3……1   3+1=4?

          m   ÷ n = 商……余數(shù)? 商+1

        【《鴿巢問(wèn)題》教學(xué)設(shè)計(jì)】相關(guān)文章:

        鴿巢問(wèn)題教學(xué)設(shè)計(jì)06-30

        鴿巢問(wèn)題教學(xué)設(shè)計(jì)05-22

        鴿巢問(wèn)題教學(xué)設(shè)計(jì)(通用11篇)10-13

        鴿巢問(wèn)題教學(xué)設(shè)計(jì)范文(精選12篇)03-31

        鴿巢問(wèn)題教學(xué)設(shè)計(jì)(通用10篇)03-07

        《鴿巢問(wèn)題》教學(xué)設(shè)計(jì)(通用8篇)02-27

        鴿巢問(wèn)題的教學(xué)反思(精選11篇)04-19

        鴿巢問(wèn)題教學(xué)反思(精選11篇)04-13

        “鴿巢”問(wèn)題教學(xué)課后反思(通用11篇)04-25

        《鴿巢問(wèn)題》優(yōu)秀教學(xué)反思(通用21篇)01-11

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>