數(shù)學(xué)廣角鴿巢問題教學(xué)設(shè)計范文
作為一名老師,常常要寫一份優(yōu)秀的教學(xué)設(shè)計,借助教學(xué)設(shè)計可使學(xué)生在單位時間內(nèi)能夠?qū)W到更多的知識。教學(xué)設(shè)計應(yīng)該怎么寫呢?下面是小編收集整理的數(shù)學(xué)廣角鴿巢問題教學(xué)設(shè)計范文,希望對大家有所幫助。
教學(xué)目標:
1、通過猜測、驗證、觀察、分析等數(shù)學(xué)活動,經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會用“鴿巢原理”解決簡單的實際問題。滲透“建模”思想。
2、經(jīng)歷從具體到抽象的探究過程,提高學(xué)生有根據(jù)、有條理地進行思考和推理的能力。
3、通過“鴿巢原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。
教學(xué)重點:
經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢原理”。
教學(xué)難點:
理解“鴿巢問題”,并對一些簡單實際問題加以“模型化”。
教具準備:
相關(guān)課件,相關(guān)學(xué)具(若干筆和筒)
教學(xué)過程:
一、游戲激趣,初步體驗。
游戲規(guī)則是:我給大家表演一個魔術(shù)。一副撲克,去出大小王,還剩52張牌,你們5人每人隨意抽一張,我知道至少有2張牌是同花色的,相信嗎?
[設(shè)計意圖:聯(lián)系學(xué)生的生活實際,激發(fā)學(xué)習(xí)興趣,使學(xué)生積極投入到后面問題的研究中。]
二、操作探究,發(fā)現(xiàn)規(guī)律。
1、具體操作,感知規(guī)律
教學(xué)例1:4支筆,三個筒,可以怎么放?請同學(xué)們運用實物放一放,看有幾種擺放方法?
(1)學(xué)生匯報結(jié)果
。4,0,0)(3,1,0)(2,2,0)(2,1,1)
。2)師生交流擺放的結(jié)果
(3)小結(jié):不管怎么放,總有一個筒里至少放進了2支筆。
。▽W(xué)情預(yù)設(shè):學(xué)生可能不會說,“不管怎么放,總有一個筒里至少放進了2支筆!保
[設(shè)計意圖:鴿巢問題對于學(xué)生來說,比較抽象,特別是“不管怎么放,總有一個筒里至少放進了2支筆。”這句話的理解。所以通過具體的操作,枚舉所有的情況后,引導(dǎo)學(xué)生直接關(guān)注到每種分法中數(shù)量最多的筒,理解“總有一個筒里至少放進了2支筆”。讓學(xué)生初步經(jīng)歷“數(shù)學(xué)證明”的過程,訓(xùn)練學(xué)生的邏輯思維能力。]
質(zhì)疑:我們能不能找到一種更為直接的方法,只擺一次,也能得到這個結(jié)論的方法呢?
2、假設(shè)法,用“平均分”來演繹“鴿巢問題”。
1)思考,同桌討論:要怎么放,只放一次,就能得出這樣的結(jié)論?
學(xué)生思考——同桌交流——匯報
2)匯報想法
預(yù)設(shè)生1:我們發(fā)現(xiàn)如果每個筒里放1支筆,最多放3支,剩下的1支不管放進哪一個筒里,總有一個筒里至少有2支筆。
3)學(xué)生操作演示分法,明確這種分法其實就是“平均分”。
[設(shè)計意圖:鼓勵學(xué)生積極的自主探索,尋找不同的證明方法,在枚舉法的基礎(chǔ)上,學(xué)生意識到了要考慮最少的情況,從而引出假設(shè)法滲透平均分的思想。]
三、探究歸納,形成規(guī)律
1、課件出示第二個例題:5只鴿子飛回2個鴿巢呢?至少有幾只鴿子飛進同一個鴿巢里?應(yīng)該怎樣列式“平均分”。
[設(shè)計意圖:引導(dǎo)學(xué)生用平均分思想,并能用有余數(shù)的除法算式表示思維的過程。]
根據(jù)學(xué)生回答板書:5÷2=2……1
。▽W(xué)情預(yù)設(shè):會有一些學(xué)生回答,至少數(shù)=商+余數(shù),至少數(shù)=商+1)
根據(jù)學(xué)生回答,師邊板書:至少數(shù)=商+余數(shù)?
至少數(shù)=商+1?
2、師依次創(chuàng)設(shè)疑問:7只鴿子飛回5個鴿巢呢?8只鴿子飛回5個鴿巢呢?9只鴿子飛回5個鴿巢呢?(根據(jù)回答,依次板書)
……
7÷5=1……2
8÷5=1……3
9÷5=1……4
觀察板書,同學(xué)們有什么發(fā)現(xiàn)嗎?
得出“物體的數(shù)量大于鴿巢的數(shù)量,總有一個鴿巢里至少放進(商+1)個物體”的`結(jié)論。
板書:至少數(shù)=商+1
[設(shè)計意圖:對規(guī)律的認識是循序漸進的。在初次發(fā)現(xiàn)規(guī)律的基礎(chǔ)上,從“至少2支”得到“至少商+余數(shù)”個,再到得到“商+1”的結(jié)論。]
師過渡語:同學(xué)們的這一發(fā)現(xiàn),稱為“鴿巢問題”,最先是由19世紀的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應(yīng)用。“鴿巢原理”的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。
四、運用規(guī)律解決生活中的問題
課件出示習(xí)題:
1、5個小朋友4把椅子,無論怎么坐總有一把椅子至少坐兩個人,為什么?
2、從電影院中任意找來13個觀眾,至少有兩個人屬相相同。
……
[設(shè)計意圖:讓學(xué)生體會平常事中也有數(shù)學(xué)原理,有探究的成就感,激發(fā)對數(shù)學(xué)的熱情。]
五、課堂總結(jié)
這節(jié)課我們學(xué)習(xí)了什么有趣的規(guī)律?請學(xué)生暢談,師總結(jié)。
板書設(shè)計:
鴿巢問題=抽屜原理
1、枚舉法
2、分解法:4(4、0、0),4(3、1、0),4(2、2、0),4(1、2、1)
3、平均分:商+1
【數(shù)學(xué)廣角鴿巢問題教學(xué)設(shè)計范文】相關(guān)文章:
鴿巢問題教學(xué)反思(通用6篇)05-25
六年級下冊《鴿巢問題》教學(xué)反思04-19
數(shù)學(xué)廣角《烙餅問題》聽課稿范文01-16
《數(shù)學(xué)廣角──集合》教學(xué)設(shè)計7篇03-31
數(shù)學(xué)廣角說課稿11-07
二年級數(shù)學(xué)上冊第八單元數(shù)學(xué)廣角教學(xué)設(shè)計04-04
數(shù)學(xué)教學(xué)設(shè)計05-26
初中數(shù)學(xué)教學(xué)設(shè)計03-03