多邊形的內(nèi)角和教學(xué)設(shè)計(jì)范文
1.教材分析
(1)知識(shí)結(jié)構(gòu):
(2)重點(diǎn)和難點(diǎn)分析:
重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理.因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用。
難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說(shuō),三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。
2.教法建議
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過(guò)這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見(jiàn)圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過(guò)類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長(zhǎng)等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。
(3)因?yàn)樵谌切沃袥](méi)有對(duì)角線,所以四邊形的對(duì)角線是一個(gè)新概念,它是解決四邊形問(wèn)題時(shí)常用的輔助線,通過(guò)它可以把四邊形問(wèn)題轉(zhuǎn)化為三角形問(wèn)題來(lái)解決.結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對(duì)角線,并觀察四邊形的一條對(duì)角線把它分成幾個(gè)三角形?兩條對(duì)角線呢?使學(xué)生加深對(duì)對(duì)角線的作用的認(rèn)識(shí)。
(4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問(wèn)題要轉(zhuǎn)化為簡(jiǎn)單的、已知的問(wèn)題。
教學(xué)目標(biāo):
1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
2.通過(guò)引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;
3.通過(guò)推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;
4.講解四邊形的有關(guān)概念時(shí),聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
教學(xué)重點(diǎn):
四邊形的內(nèi)角和定理.
教學(xué)難點(diǎn):
四邊形的概念
教學(xué)過(guò)程:
(一)復(fù)習(xí)
在小學(xué)里,我們學(xué)過(guò)長(zhǎng)方形、正方形、平行四邊形和梯形的有關(guān)知識(shí).請(qǐng)同學(xué)們回憶一下這些圖形的概念.找學(xué)生說(shuō)出四種幾何圖形的概念,教師作評(píng)價(jià).
(二)提出問(wèn)題,引入新課
利用這些圖形的定義,你能在下圖中找出長(zhǎng)方形、正方形、平行四邊形和梯形嗎?教師說(shuō)完就打開(kāi)多媒體課件.(先看畫面一)
問(wèn)題:你能類比三角形的`概念,說(shuō)出四邊形的概念嗎?
(三)理解概念
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個(gè)條件,或?yàn)閷W(xué)生稍微說(shuō)明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念.
3.四邊形的記法:對(duì)照?qǐng)D形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書寫,可以按順時(shí)針或逆時(shí)針的順序.
練習(xí):課本124頁(yè)1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會(huì)辨認(rèn)一個(gè)四邊形是不是凸四邊形就可以了.
5.四邊形的對(duì)角線:
(四)四邊形的內(nèi)角和定理
定理:四邊形的內(nèi)角和等于 .
注意:在研究四邊形時(shí),常常通過(guò)作它的對(duì)角線,把關(guān)于四邊形的問(wèn)題化成關(guān)于三角形的問(wèn)題來(lái)解決.
(五)應(yīng)用、反思
例1 已知:如圖,直線 ,垂足為B, 直線 , 垂足為C.
求證:(1) ;(2)
證明:(1) (四邊形的內(nèi)角和等于 ),
(2)
練習(xí):
1.課本124頁(yè)3題.
2.如果四邊形有一個(gè)角是直角,另外三個(gè)角之比是1:3:6,那么這三個(gè)角的度數(shù)分別是多少?
小結(jié):
知識(shí):四邊形的有關(guān)概念及其內(nèi)角和定理.
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
作業(yè): 課本130頁(yè) 2、3、4題.
【多邊形的內(nèi)角和教學(xué)設(shè)計(jì)】相關(guān)文章:
多邊形的內(nèi)角和教學(xué)設(shè)計(jì)02-09
《多邊形的內(nèi)角和》的教學(xué)設(shè)計(jì)10-10
多邊形的內(nèi)角和教學(xué)設(shè)計(jì)07-16
《多邊形的內(nèi)角和》教學(xué)設(shè)計(jì)11-24
《多邊形的內(nèi)角和》教學(xué)設(shè)計(jì)范文11-19
多邊形的內(nèi)角教學(xué)設(shè)計(jì)12-07
多邊形的內(nèi)角教學(xué)設(shè)計(jì)12-07