數(shù)列求和教學(xué)反思
篇一:數(shù)列求和的教學(xué)反思
這節(jié)課是高中數(shù)學(xué)必修5第二章數(shù)列的重要的內(nèi)容之一,是在學(xué)習(xí)了等差、等比數(shù)列的前n項和的基礎(chǔ)上,對一些非等差、等比數(shù)列的求和進行探討。
我將從以下幾個方面進行反思:
(一)對課前備課的反思
教學(xué)反思不僅僅只是針對課堂教學(xué)實際的反思,也應(yīng)該包括對備課、教案進行反思。在備課過程中,教學(xué)設(shè)計前后共修改了4次,最后形成完整的一節(jié)課的設(shè)計。為什么反復(fù)修改了4次之多,其中有幾個很關(guān)鍵的地方值得一提。
首先,是備學(xué)生。我所教的是文科普通班,入班前的數(shù)學(xué)平均分僅為44分,在第一次測驗中平均分還不到60分,學(xué)生的基礎(chǔ)知識薄弱,基本的分析問題、解決問題的能力欠缺、對于數(shù)學(xué)的悟性和理解能力都有待提高。因此在選擇教學(xué)內(nèi)容上就考慮到了學(xué)生現(xiàn)有的認知水平。
其次,課程內(nèi)容的選擇。內(nèi)容是數(shù)列的求和是現(xiàn)階段學(xué)習(xí)數(shù)列部分一項很重要的內(nèi)容,在高考題中經(jīng)常出現(xiàn)。等到高三復(fù)習(xí)時再講還是在高一階段就慢慢滲透給學(xué)生還是值得商榷的。我認為高中數(shù)學(xué)的學(xué)習(xí)應(yīng)該是螺旋上升的,而不是直線型。在高一階段學(xué)生能夠掌握的知識是要滲透給學(xué)生,學(xué)生經(jīng)歷過的,形成一定的經(jīng)驗,到了高三復(fù)習(xí)階段就能喚醒這些經(jīng)驗和記憶。關(guān)于數(shù)列的求和的方法有很多,常見的如倒序相加法、并項法、拆項法、分組求和法、裂項相消法、錯位相減法等。在本節(jié)課主要介紹了并項法和分組求和法,其目的是讓學(xué)生先有一個經(jīng)驗,就是能夠認識到一些非等差、等比數(shù)列都能轉(zhuǎn)化為等差、等比數(shù)列后再分別求和。這樣對后繼學(xué)習(xí)裂項相消法、錯位相減法做一些鋪墊。
第三,教學(xué)呈現(xiàn)方式的定位。這是很關(guān)鍵的環(huán)節(jié),直接影響到本節(jié)課的成敗。本節(jié)課設(shè)計上一個難點就是如何設(shè)計例題。不能求全而脫離學(xué)生實際,也不能一味搞成題海戰(zhàn)術(shù),因此結(jié)合本班學(xué)生的特點,選擇設(shè)計的題目在難度和容量上較為側(cè)重基礎(chǔ),以適應(yīng)學(xué)生的認知水平,使學(xué)生在教學(xué)過程中能靈活應(yīng)用,思維得到提高。
。ǘ⿲φn中教學(xué)的反思
這節(jié)課總體上感覺備課比較充分,各個環(huán)節(jié)相銜接,能夠形成一節(jié)完整就為系統(tǒng)的課。本節(jié)課教學(xué)過程分為導(dǎo)入新課、知識回顧、例題講解、變式訓(xùn)練、課堂小結(jié)、布置作業(yè)。本節(jié)課總體上講對于內(nèi)容的把握基本到位,對學(xué)生的定位準(zhǔn)確,教學(xué)過程中留給學(xué)生思考的時間,以學(xué)生為主體。
亮點之處:
學(xué)生創(chuàng)新解答
在例1求100?99?98?97?96?95??4?3?2?1的值問題的解決上學(xué)生觀察式子相鄰兩項之間都是平方差的形式,利用平方差公式,最后轉(zhuǎn)化成一個等差數(shù)列。但是學(xué)生出現(xiàn)了兩種做法。一種是轉(zhuǎn)化成199+195+191+?+7+3,這樣轉(zhuǎn)化是學(xué)生最容易想到的。另一種是轉(zhuǎn)化成了100+99+98+?+2+1,這兩種方法都是值得肯定的,特別是第二種轉(zhuǎn)化方法讓整個課堂變得活躍起來。
在接下來的練習(xí)中,教師的設(shè)想是學(xué)生能夠想到將相鄰兩項合并成一項結(jié)果是1,這樣很容易就能得到結(jié)果。但是高元順同學(xué)并沒有在我設(shè)想的思路上走,而是給出了一個特別的回答,他的回答是:我是這樣認為的,如果這個數(shù)列是6項的話,那么第5項是-5,第6項是6,用-1+2=1,1+(-3)=-2,-2+4=2,2+(-5)=-3,-3+6=3,因此得到前6項的和就等于項數(shù)的一半。這個數(shù)列是100項,那就等于50。S200 就等于100,所以S201 就等于-101。
他的回答博得聽課的老師的一致贊同。他使用的方法通過找規(guī)律提出猜想,實際上就是使用了數(shù)學(xué)思想方法中一個很重要的方法——遞推法。
。2)學(xué)生成為課堂的主體,教師要甘當(dāng)學(xué)生的綠葉
由于數(shù)學(xué)的抽象、思維嚴(yán)謹?shù)忍攸c,學(xué)生往往對于一些較為復(fù)雜或者變化多樣的題目容易望而生畏,出現(xiàn)懶得動腦思考、動筆去做的現(xiàn)象。教師也常因為時間的限制不可能給學(xué)生過多的時間去做“無用功”。在本節(jié)課上我放手讓學(xué)生去思考,讓學(xué)生去摸索。不怕學(xué)生出錯,就是讓學(xué)生能夠在摸索中增強思維能力、解題技能和計算經(jīng)驗。特別是在例2中,教師針對題目做了簡要的分析和提示,讓學(xué)生去嘗試著解題。朱馨同學(xué)的板書詳盡,將思路方法概括表述出來,過程完整。只是結(jié)果出現(xiàn)了一個小錯誤,教師在點評過程中給予指出,同時也個結(jié)果錯誤也是學(xué)生經(jīng)常犯的。
在這兩個例題教學(xué)過程中我體會到了學(xué)生獲得成功的喜悅,這也說明了給學(xué)生以思考的時間和空間,學(xué)生的回答是不會讓老師感到失望了,而是充滿了驚喜。
。3)從容面對課堂中的偶發(fā)事件
在教學(xué)設(shè)計中我就曾預(yù)設(shè)到學(xué)生會從兩個角度來考慮,一種是得到50個1,另一種就是將奇數(shù)和偶數(shù)分別合并。若是第二種就可以很自然就引出另一種求和方法——分組求和法。但是高元順同學(xué)的回答出乎我的意料,這種做法在我預(yù)想之外,當(dāng)時我面帶微笑鼓勵他說下去,對他的陳述及時做出肯定和鼓勵,同事我的腦子在快速的反應(yīng)怎樣總結(jié)他的解法,等他陳述完了,我首先是對他的做法給予了肯定,并且引導(dǎo)學(xué)生發(fā)現(xiàn)n個正偶數(shù)的和n個正2222222222
奇數(shù)的和只差恰好就等于項數(shù)n。盡管能從容不慌地面對了偶發(fā)事件,但是還是略為顯得處理的'粗糙了一點,對他的表述沒有概括到位。
積極的回答的出來。
(三)課后反思,再設(shè)計
一節(jié)課下來,我摸索出了一節(jié)課的設(shè)計要貼近學(xué)生的實際,符合他們的認知水平,按照學(xué)生的認知規(guī)律來組織教學(xué)。在課堂教學(xué)過程中,要始終把學(xué)生放在第一位,學(xué)生是學(xué)習(xí)的主體,教師充當(dāng)?shù)氖且龑?dǎo)者。學(xué)生總會有“創(chuàng)新的火花”在閃爍,教師應(yīng)當(dāng)充分肯定學(xué)生在課堂上提出的一些獨特的見解,這樣不僅使學(xué)生的好方法、好思路得以推廣,而且對學(xué)生也是一種贊賞和激勵。同時,這些難能可貴的見解也是對課堂教學(xué)的補充與完善,可以拓寬教師的教學(xué)思路,提高教學(xué)水平。
若是再教這部分內(nèi)容時我應(yīng)該重新調(diào)整一下我的教學(xué)順序,如在復(fù)習(xí)完公式后,可以先提出1+2+3+?+100=?在此基礎(chǔ)上進行變式1-2+3-4?-99+100=?,這樣再給出練習(xí)1,學(xué)生有了經(jīng)驗自然很容易就解決了。在例題2問題中,可以再降低一下難度,因此可以將后面的練習(xí)3作為例題。而將原例2作為練習(xí)的題目。這樣的做更體現(xiàn)了知識的循序漸進和螺旋上升,學(xué)生容易理解和接受。
(四)感受
上一屆的“鳳凰杯”讓我印象深刻,同時也期盼著也能參加“成長杯”。當(dāng)李加莉老師宣布由我來參加這屆的“成長杯”我感覺我的壓力好大了。經(jīng)過一段時間的精心選題和反復(fù)修改教學(xué)設(shè)計,我終于站在了“成長杯”的講臺了,心情復(fù)雜——激動、興奮、緊張…… 直到下課的鈴聲想起我的一顆心才算踏實下來。
東北師范大學(xué)的孔凡哲教授曾在給我們講座時說過:沒有精心的預(yù)設(shè),就沒有精彩的生成。我一直都是深刻記得這句話,也在教學(xué)中實踐它。但是我仍然感覺自己做不到“精彩”而更多的是“平淡無奇”。是這節(jié)課我有了深刻的體會,讓我開始審視我前面幾個月所走過了路,才發(fā)現(xiàn)教學(xué)真的是需要智慧,做到用心去體會,用心去設(shè)計,用心去聆聽學(xué)生的聲音……
感謝這次參賽機會,讓我在失敗中磨練,在挫折中不斷完善自己,最終堅強地站在講臺上,讓我感受到了“成長”的喜悅。希望在今后的教學(xué)中我能總結(jié)經(jīng)驗,不斷的完善自己,增強專業(yè)知識和技能,有效教學(xué)和創(chuàng)新教學(xué),讓自己盡快“成長
篇二:數(shù)列求和的教學(xué)反思
這節(jié)課是高二數(shù)學(xué)第七章數(shù)列的重要的內(nèi)容之一,是在學(xué)習(xí)了等差、等比數(shù)列的前n項和的基礎(chǔ)上,對一些非等差、等比數(shù)列的求和進行探討。
(一)對課前備課的反思
首先,是備學(xué)生。學(xué)生的基礎(chǔ)知識薄弱,基本的分析問題、解決問題的能力欠缺、對于數(shù)學(xué)的悟性和理解能力都有待提高,因此在選擇教學(xué)內(nèi)容上就考慮到了學(xué)生現(xiàn)有的認知水平。
其次,課程內(nèi)容的選擇。內(nèi)容是數(shù)列求和,是現(xiàn)階段學(xué)習(xí)數(shù)列部分一項很重要的內(nèi)容,在高考題中經(jīng)常出現(xiàn)。關(guān)于數(shù)列求和的方法有很多,常見的如倒序相加法、分組求和法、裂項相消法、錯位相減法等。在本節(jié)課主要介紹了裂項相消法和錯位相減法,其目的是讓學(xué)生先有一個經(jīng)驗,就是能夠認識到一些非等差、等比數(shù)列都能轉(zhuǎn)化為等差、等比數(shù)列后再分別求和。
第三,教學(xué)呈現(xiàn)方式的定位。這是很關(guān)鍵的環(huán)節(jié),直接影響到本節(jié)課的成敗。本節(jié)課設(shè)計上一個難點就是如何設(shè)計例題。不能求全而脫離學(xué)生實際,也不能一味搞成題海戰(zhàn)術(shù),因此結(jié)合本班學(xué)生的特點,選擇設(shè)計的題目在難度和容量上較為側(cè)重基礎(chǔ),以適應(yīng)學(xué)生的認知水平,使學(xué)生在教學(xué)過程中能靈活應(yīng)用,思維得到提高。
(二)對課中教學(xué)的反思
這節(jié)課總體上感覺備課比較充分,各個環(huán)節(jié)相銜接,能夠形成一節(jié)完整并且系統(tǒng)的課。本節(jié)課教學(xué)過程分為導(dǎo)入新課、知識回顧、例題講解、變式訓(xùn)練、課堂小結(jié)、布置作業(yè)。本節(jié)課總體上講對于內(nèi)容的把握基本到位,對學(xué)生的定位準(zhǔn)確,教學(xué)過程中留給學(xué)生思考的時間,以學(xué)生為主體。
。1)學(xué)生的創(chuàng)新解答
在例1求1002-992+982-972+962-952L+42-32+22-12的值問題的解決上學(xué)生觀察式子相鄰兩項之間都是平方差的形式,利用平方差公式,最后轉(zhuǎn)化成一個等差數(shù)列。但是學(xué)生出現(xiàn)了兩種做法。一種是轉(zhuǎn)化成
199+195+191+L+7+3,這樣轉(zhuǎn)化是學(xué)生最容易想到的。另一種是轉(zhuǎn)化成了
100+99+98+L+2+1,這兩種方法都是值得肯定的,特別是第二種轉(zhuǎn)化方法讓整個課堂變得活躍起來。
。2)課堂中的偶發(fā)事件
在例2教學(xué)設(shè)計中我就曾預(yù)設(shè)到學(xué)生會從兩個角度來考慮,一種是得到50個1,另一種就是將奇數(shù)和偶數(shù)分別合并。若是第二種就可以很自然就引出另一種求和方法——分組求和法。但是一位同學(xué)的回答出乎我的意料,這種做法在我預(yù)想之外,當(dāng)時我對他的陳述及時做出肯定和鼓勵,同時我的腦子在快速地反應(yīng)怎樣總結(jié)他的解法,等他講完了,我首先是對他的做法給予了肯定,并且引導(dǎo)學(xué)生發(fā)現(xiàn)n個正偶數(shù)的和n個正奇數(shù)的和之差恰好就等于項數(shù)n。盡管能從容不慌地面對了偶發(fā)事件,但是還是略為顯得處理的粗糙了一點,對他的表述沒有概括到位。
(三)課后反思,再設(shè)計
一節(jié)課下來,我摸索出了一節(jié)課的設(shè)計要貼近學(xué)生的實際,符合他們的認知水平,按照學(xué)生的認知規(guī)律來組織教學(xué)。在課堂教學(xué)過程中,要始終把學(xué)生放在第一位,學(xué)生是學(xué)習(xí)的主體,教師充當(dāng)?shù)氖且龑?dǎo)者。學(xué)生總會有“創(chuàng)新的火花”在閃爍,教師應(yīng)當(dāng)充分肯定學(xué)生在課堂上提出的一些獨特的見解,這樣不僅使學(xué)生的好方法、好思路得以推廣,而且對學(xué)生也是一種贊賞和激勵。同時,這些難能可貴的見解也是對課堂教學(xué)的補充與完善,可以拓寬教師的教學(xué)思路,提高教學(xué)水平。
篇三:數(shù)列求和教學(xué)反思
針對數(shù)列問題的考試重點及學(xué)生的薄弱環(huán)節(jié),《數(shù)列求和》的系列專題復(fù)習(xí)課《數(shù)列求和1》的教學(xué)重點放在了數(shù)列求和的前兩種重要方法:
1、公式法求和(即直接利用等差數(shù)列和等比數(shù)列的求和公式進行求和);
2、利用疊加法、疊乘法將已知數(shù)列轉(zhuǎn)化為等差數(shù)列或等比數(shù)列再行求和。 從實際教學(xué)效果看教學(xué)內(nèi)容安排得符合學(xué)生實際,由淺入深,比較合理,基本達到了這節(jié)課預(yù)期的教學(xué)目標(biāo)及要求。結(jié)合自我感覺、工作室評課、學(xué)生反饋,這節(jié)課比較突出的有以下幾個優(yōu)點。
1、 注重“三基”的訓(xùn)練與落實
數(shù)列部分中兩種最基本最重要的數(shù)列就是等差數(shù)列和等比數(shù)列,很多數(shù)列問題包括數(shù)列求和都是圍繞這兩種特殊數(shù)列展開的,即使不能直接利用等差數(shù)列和等比數(shù)列公式求和,也可根據(jù)所給數(shù)列的不同特點,合理恰當(dāng)?shù)剡x擇不同方法轉(zhuǎn)化為等差數(shù)列或等比數(shù)列再行求和。因此上課伊始做為本節(jié)課的知識必備,就要求學(xué)生強化等差數(shù)列和等比數(shù)列求和公式的記憶。其次本節(jié)課充分滲透了轉(zhuǎn)化的數(shù)學(xué)思想方法,并且通過典型例題使學(xué)生體會并掌握根據(jù)所給求和數(shù)列的不同特點,分別采用疊加法或疊乘法將所給數(shù)列轉(zhuǎn)化為等差數(shù)列或等比數(shù)列再行求和的基本技能。
2、 例、習(xí)題的選配典型,有層次
一方面精選近年典型的高考試題、模擬題做為例、習(xí)題,使學(xué)生通過體會和掌握,達到舉一反三的目的;另一方面結(jié)合學(xué)生實際,自行編纂或改編了一些題目,或在原題基礎(chǔ)上降低了難度,設(shè)計出了層次,或在學(xué)生易錯的地方設(shè)置了陷阱,提醒學(xué)生留意。同時所配的課堂練習(xí)也充分注意了題目的難易梯度,把握了層次性,由具體數(shù)字運算到字母運算,由直接給出數(shù)列各項到用分段函數(shù)形式抽象表述數(shù)列,由單一方法適用到能夠一題多解等等。
3、 對學(xué)生可能出現(xiàn)的問題有預(yù)見性,并能有針對性地對癥下藥進行設(shè)計
對于直接利用公式求和的等差數(shù)列或等比數(shù)列求和問題,預(yù)見到學(xué)生的關(guān)鍵問題應(yīng)該出在搞不清求和的項數(shù)上,因而在求和的項數(shù)上做了文章,有意設(shè)計了求和而非求,并且通過這兩道題特別強調(diào)了算清項數(shù)、如何算清項數(shù)等問題,抓住了學(xué)生解決這類問題的軟肋。
4、 教學(xué)過程中充分關(guān)注到了學(xué)生的反應(yīng)和狀態(tài)
在解題教學(xué)中比較注意啟發(fā)引導(dǎo)學(xué)生,通過自然習(xí)得,從而順理成章達到水到渠成。從題目的設(shè)計到解題思路的分析都考慮到了學(xué)生的接受能力,從具體到抽象,通常是把問題擺出來、提一句、點一下,盡量不包辦代替,努力引發(fā)學(xué)生的體驗和思考,比較注重知識形成過程的教學(xué)。同時注意通過多種途徑,多種角度,一題多解解決問題,杜絕直接把結(jié)果強加給學(xué)生,使學(xué)生不知所云。
當(dāng)然這節(jié)課的教學(xué)也存在著這樣那樣的不足,比較典型的有以下兩點。
1、對于基本公式的掌握仍需加強落實
部分同學(xué)公式的記憶仍成問題,本以為課上可以一帶而過,不成想主動舉手、信心滿滿、自以為可以完美表現(xiàn)的同學(xué)站起來仍然把等比數(shù)列的公式說錯了,可想而知其他同學(xué)的情況了,恐怕也不容樂觀,可見連基本公式的強化記憶都是需要老師不厭其煩加以督促的。
2、由于課堂時間容量的限制,學(xué)生們的思維活動展現(xiàn)得還不夠充分,問題也沒有完全暴露出來。
【數(shù)列求和教學(xué)反思】相關(guān)文章:
數(shù)列求和教學(xué)反思06-03
數(shù)列求和復(fù)習(xí)教學(xué)反思05-24
數(shù)列求和教學(xué)反思范文12-25
數(shù)列求和的聽課反思01-25
數(shù)列求和教學(xué)反思7篇11-12
《高考總復(fù)習(xí)數(shù)列求和問題》教學(xué)反思01-01