高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
在年少學(xué)習(xí)的日子里,說(shuō)到知識(shí)點(diǎn),大家是不是都習(xí)慣性的重視?知識(shí)點(diǎn)是知識(shí)中的最小單位,最具體的內(nèi)容,有時(shí)候也叫“考點(diǎn)”。為了幫助大家掌握重要知識(shí)點(diǎn),下面是小編整理的高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié),供大家參考借鑒,希望可以幫助到有需要的朋友。
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇1
排列組合
排列P------和順序有關(guān)
組合C-------不牽涉到順序的問(wèn)題
排列分順序,組合不分
例如把5本不同的書(shū)分給3個(gè)人,有幾種分法."排列"
把5本書(shū)分給3個(gè)人,有幾種分法"組合"
1.排列及計(jì)算公式
從n個(gè)不同元素中,任取m(m≤n)個(gè)元素按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有排列的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的排列數(shù),用符號(hào)p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規(guī)定0!=1).
2.組合及計(jì)算公式
從n個(gè)不同元素中,任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有組合的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù).用符號(hào)
c(n,m)表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);
3.其他排列與組合公式
從n個(gè)元素中取出r個(gè)元素的循環(huán)排列數(shù)=p(n,r)/r=n!/r(n-r)!.
n個(gè)元素被分成k類,每類的個(gè)數(shù)分別是n1,n2,...nk這n個(gè)元素的全排列數(shù)為
n!/(n1!_2!_.._k!).
k類元素,每類的個(gè)數(shù)無(wú)限,從中取出m個(gè)元素的組合數(shù)為c(m+k-1,m).
排列(Pnm(n為下標(biāo),m為上標(biāo)))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號(hào));Pnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=n!;0!=1;Pn1(n為下標(biāo)1為上標(biāo))=n
組合(Cnm(n為下標(biāo),m為上標(biāo)))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=1;Cn1(n為下標(biāo)1為上標(biāo))=n;Cnm=Cnn-m
20xx-07-0813:30
公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N-元素的總個(gè)數(shù)R參與選擇的元素個(gè)數(shù)!-階乘,如9!=9________
從N倒數(shù)r個(gè),表達(dá)式應(yīng)該為n_n-1)_n-2)..(n-r+1);
因?yàn)閺膎到(n-r+1)個(gè)數(shù)為n-(n-r+1)=r
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇2
課內(nèi)重視聽(tīng)講,課后及時(shí)復(fù)習(xí)。
新知識(shí)的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時(shí)要緊跟老師的思路,積極展開(kāi)思維預(yù)測(cè)下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識(shí)和基本技能的學(xué)習(xí),課后要及時(shí)復(fù)習(xí)不留疑點(diǎn)。首先要在做各種習(xí)題之前將老師所講的知識(shí)點(diǎn)回憶一遍,正確掌握各類公式的推理過(guò)程,應(yīng)盡量回憶而不采用不清楚立即翻書(shū)之舉。認(rèn)真獨(dú)立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問(wèn)的學(xué)習(xí)作風(fēng),對(duì)于有些題目由于自己的思路不清,一時(shí)難以解出,應(yīng)讓自己冷靜下來(lái)認(rèn)真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識(shí)的點(diǎn)、線、面結(jié)合起來(lái)交織成知識(shí)網(wǎng)絡(luò),納入自己的知識(shí)體系。
適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。
要想學(xué)好數(shù)學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開(kāi)始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開(kāi)拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對(duì)于一些易錯(cuò)題,可備有錯(cuò)題集,寫(xiě)出自己的解題思路和正確的解題過(guò)程兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正。在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無(wú)異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。
調(diào)整心態(tài),正確對(duì)待考試。
首先,應(yīng)把主要精力放在基礎(chǔ)知識(shí)、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對(duì)于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對(duì)自己要有信心,永遠(yuǎn)鼓勵(lì)自己,除了自己,誰(shuí)也不能把我打倒,要有自己不垮,誰(shuí)也不能打垮我的自豪感。
在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開(kāi),切忌考前去在保證正確率的前提下提高解題速度。對(duì)于一些容易的基礎(chǔ)題要有十二分把握拿全分;對(duì)于一些難題,也要盡量拿分,考試中要學(xué)會(huì)嘗試得分,使自己的水平正常甚至超常發(fā)揮。
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇3
一、直線與方程
。1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
。2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即 。斜率反映直線與軸的傾斜程度。
當(dāng) 時(shí), ; 當(dāng) 時(shí), ; 當(dāng) 時(shí), 不存在。
、谶^(guò)兩點(diǎn)的直線的斜率公式:
注意下面四點(diǎn):(1)當(dāng) 時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無(wú)關(guān);(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。
。3)直線方程
①點(diǎn)斜式: 直線斜率k,且過(guò)點(diǎn)
注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。
當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。
、谛苯厥剑 ,直線斜率為k,直線在y軸上的截距為b
、蹆牲c(diǎn)式: ( )直線兩點(diǎn) ,
、芙鼐厥剑
其中直線 與 軸交于點(diǎn) ,與 軸交于點(diǎn) ,即 與 軸、 軸的截距分別為 。
、菀话闶剑 (A,B不全為0)
注意:各式的適用范圍 特殊的方程如:
平行于x軸的直線: (b為常數(shù)); 平行于y軸的直線: (a為常數(shù));
。5)直線系方程:即具有某一共同性質(zhì)的直線
。ㄒ唬┢叫兄本系
平行于已知直線 ( 是不全為0的常數(shù))的直線系: (C為常數(shù))
。ǘ┐怪敝本系
垂直于已知直線 ( 是不全為0的常數(shù))的直線系: (C為常數(shù))
。ㄈ┻^(guò)定點(diǎn)的直線系
(。┬甭蕿閗的直線系: ,直線過(guò)定點(diǎn) ;
。áⅲ┻^(guò)兩條直線 , 的交點(diǎn)的直線系方程為
。 為參數(shù)),其中直線 不在直線系中。
(6)兩直線平行與垂直
當(dāng) , 時(shí),;
注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。
。7)兩條直線的交點(diǎn)
相交
交點(diǎn)坐標(biāo)即方程組 的一組解。
方程組無(wú)解 ; 方程組有無(wú)數(shù)解 與 重合
(8)兩點(diǎn)間距離公式:設(shè) 是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),
則
(9)點(diǎn)到直線距離公式:一點(diǎn) 到直線 的距離
。10)兩平行直線距離公式
在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。
二、圓的方程
1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。
2、圓的方程
。1)標(biāo)準(zhǔn)方程 ,圓心 ,半徑為r;
。2)一般方程
當(dāng) 時(shí),方程表示圓,此時(shí)圓心為 ,半徑為
當(dāng) 時(shí),表示一個(gè)點(diǎn); 當(dāng) 時(shí),方程不表示任何圖形。
(3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。
3、直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設(shè)直線 ,圓 ,圓心 到l的距離為 ,則有 ; ;
(2)過(guò)圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程
(3)過(guò)圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。
設(shè)圓 ,
兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。
當(dāng) 時(shí)兩圓外離,此時(shí)有公切線四條;
當(dāng) 時(shí)兩圓外切,連心線過(guò)切點(diǎn),有外公切線兩條,內(nèi)公切線一條;
當(dāng) 時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當(dāng) 時(shí),兩圓內(nèi)切,連心線經(jīng)過(guò)切點(diǎn),只有一條公切線;
當(dāng) 時(shí),兩圓內(nèi)含; 當(dāng) 時(shí),為同心圓。
注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)
三、立體幾何初步
1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征
。1)棱柱:
幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
。2)棱錐
幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
(3)棱臺(tái):
幾何特征:①上下底面是相似的平行多邊形;②側(cè)面是梯形;③側(cè)棱交于原棱錐的頂點(diǎn)。
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開(kāi)圖是一個(gè)矩形。
。5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)扇形。
。6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)弓形。
。7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、
俯視圖(從上向下)
注:正視圖反映了物體的高度和長(zhǎng)度;俯視圖反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測(cè)畫(huà)法
斜二測(cè)畫(huà)法特點(diǎn):①原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;
、谠瓉(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。
4、柱體、錐體、臺(tái)體的表面積與體積
(1)幾何體的表面積為幾何體各個(gè)面的面積的和。
。2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高, 為斜高,l為母線)
。3)柱體、錐體、臺(tái)體的體積公式
。4)球體的表面積和體積公式:V = ; S =
4、空間點(diǎn)、直線、平面的位置關(guān)系
公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi)。
應(yīng)用:判斷直線是否在平面內(nèi)
用符號(hào)語(yǔ)言表示公理1:
公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線
符號(hào):平面α和β相交,交線是a,記作α∩β=a。
符號(hào)語(yǔ)言:
公理2的作用:
、偎桥卸▋蓚(gè)平面相交的方法。
、谒f(shuō)明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線必過(guò)公共點(diǎn)。
、鬯梢耘袛帱c(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù)。
公理3:經(jīng)過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。
推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。
公理3及其推論作用:
、偎强臻g內(nèi)確定平面的依據(jù)
、谒亲C明平面重合的依據(jù)
公理4:平行于同一條直線的兩條直線互相平行
空間直線與直線之間的位置關(guān)系
①異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線
、诋惷嬷本性質(zhì):既不平行,又不相交。
、郛惷嬷本判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過(guò)該店的直線是異面直線
、墚惷嬷本所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說(shuō)這兩條異面直線互相垂直。
求異面直線所成角步驟:
A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。
B、證明作出的角即為所求角
C、利用三角形來(lái)求角
(7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ)。
。8)空間直線與平面之間的位置關(guān)系
直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn).
三種位置關(guān)系的符號(hào)表示:a α a∩α=A a‖α
。9)平面與平面之間的位置關(guān)系:平行——沒(méi)有公共點(diǎn);α‖β
相交——有一條公共直線。α∩β=b
5、空間中的平行問(wèn)題
。1)直線與平面平行的判定及其性質(zhì)
線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。
線線平行 線面平行
線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。線面平行 線線平行
(2)平面與平面平行的判定及其性質(zhì)
兩個(gè)平面平行的判定定理
。1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行
。ň面平行→面面平行),
。2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行。
(線線平行→面面平行),
(3)垂直于同一條直線的兩個(gè)平面平行,
兩個(gè)平面平行的性質(zhì)定理
(1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行。(面面平行→線面平行)
(2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行。(面面平行→線線平行)
7、空間中的垂直問(wèn)題
。1)線線、面面、線面垂直的定義
、賰蓷l異面直線的垂直:如果兩條異面直線所成的角是直角,就說(shuō)這兩條異面直線互相垂直。
、诰面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說(shuō)這條直線和這個(gè)平面垂直。
③平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。
。2)垂直關(guān)系的判定和性質(zhì)定理
、倬面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面。
性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。
、诿婷娲怪钡呐卸ǘɡ砗托再|(zhì)定理
判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。
性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面。
9、空間角問(wèn)題
。1)直線與直線所成的角
①兩平行直線所成的角:規(guī)定為 。
、趦蓷l相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。
、蹆蓷l異面直線所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線 ,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。
。2)直線和平面所成的角
、倨矫娴钠叫芯與平面所成的角:規(guī)定為 。
、谄矫娴拇咕與平面所成的角:規(guī)定為 。
、燮矫娴男本與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角。
求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”。
在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,
在解題時(shí),注意挖掘題設(shè)中兩個(gè)主要信息:
。1)斜線上一點(diǎn)到面的垂線;
(2)過(guò)斜線上的一點(diǎn)或過(guò)斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。
。3)二面角和二面角的平面角
、俣娼堑亩x:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。
、诙娼堑钠矫娼牵阂远娼堑睦馍先我庖稽c(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。
兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角
④求二面角的方法
定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角
垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過(guò)兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇4
一、直線與圓:
1、直線的傾斜角的范圍是
在平面直角坐標(biāo)系中,對(duì)于一條與軸相交的直線,如果把軸繞著交點(diǎn)按逆時(shí)針?lè)较蜣D(zhuǎn)到和直線重合時(shí)所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時(shí),規(guī)定傾斜角為0;
2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.
過(guò)兩點(diǎn)(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。
3、直線方程:⑴點(diǎn)斜式:直線過(guò)點(diǎn)斜率為,則直線方程為,
⑵斜截式:直線在軸上的截距為和斜率,則直線方程為
4、直線與直線的位置關(guān)系:
(1)平行A1/A2=B1/B2注意檢驗(yàn)(2)垂直A1A2+B1B2=0
5、點(diǎn)到直線的距離公式;
兩條平行線與的距離是
6、圓的標(biāo)準(zhǔn)方程:.⑵圓的一般方程:
注意能將標(biāo)準(zhǔn)方程化為一般方程
7、過(guò)圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.
8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長(zhǎng)問(wèn)題.①相離②相切③相交
9、解決直線與圓的關(guān)系問(wèn)題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長(zhǎng)、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長(zhǎng)
二、圓錐曲線方程:
1、橢圓:①方程(a>b>0)注意還有一個(gè);②定義:|PF1|+|PF2|=2a>2c;③e=④長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b,焦距為2c;a2=b2+c2;
2、雙曲線:①方程(a,b>0)注意還有一個(gè);②定義:||PF1|-|PF2||=2a<2c;③e=;④實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b,焦距為2c;漸進(jìn)線或c2=a2+b2
3、拋物線:①方程y2=2px注意還有三個(gè),能區(qū)別開(kāi)口方向;②定義:|PF|=d焦點(diǎn)F(,0),準(zhǔn)線x=-;③焦半徑;焦點(diǎn)弦=x1+x2+p;
4、直線被圓錐曲線截得的弦長(zhǎng)公式:
5、注意解析幾何與向量結(jié)合問(wèn)題:1、,.(1);(2).
2、數(shù)量積的定義:已知兩個(gè)非零向量a和b,它們的夾角為θ,則數(shù)量|a||b|cosθ叫做a與b的數(shù)量積,記作a·b,即
3、模的計(jì)算:|a|=.算?梢韵人阆蛄康钠椒
4、向量的運(yùn)算過(guò)程中完全平方公式等照樣適用:
三、直線、平面、簡(jiǎn)單幾何體:
1、學(xué)會(huì)三視圖的分析:
2、斜二測(cè)畫(huà)法應(yīng)注意的地方:
(1)在已知圖形中取互相垂直的軸Ox、Oy。畫(huà)直觀圖時(shí),把它畫(huà)成對(duì)應(yīng)軸ox、oy、使∠x(chóng)oy=45°(或135°);(2)平行于x軸的線段長(zhǎng)不變,平行于y軸的線段長(zhǎng)減半.(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.
3、表(側(cè))面積與體積公式:
、胖w:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h
、棋F體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:
、桥_(tái)體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=
、惹蝮w:①表面積:S=;②體積:V=
4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書(shū)寫(xiě)
(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。
(2)平面與平面平行:①線面平行面面平行。
(3)垂直問(wèn)題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線
5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)
、女惷嬷本所成角的求法:平移法:平移直線,構(gòu)造三角形;
⑵直線與平面所成的角:直線與射影所成的角
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇5
一、導(dǎo)數(shù)的應(yīng)用
1、用導(dǎo)數(shù)研究函數(shù)的最值
確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開(kāi)區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。
學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來(lái)檢驗(yàn)下學(xué)習(xí)成果。
2、生活中常見(jiàn)的函數(shù)優(yōu)化問(wèn)題
1)費(fèi)用、成本最省問(wèn)題
2)利潤(rùn)、收益最大問(wèn)題
3)面積、體積最(大)問(wèn)題
二、推理與證明
1、歸納推理:歸納推理是高二數(shù)學(xué)的一個(gè)重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點(diǎn)是發(fā)現(xiàn)兩類對(duì)象的相似特征,由其中一類對(duì)象的特征得出另一類對(duì)象的特征,的方法是利用已經(jīng)掌握的數(shù)學(xué)知識(shí),分析兩類對(duì)象之間的關(guān)系,通過(guò)兩類對(duì)象已知的相似特征得出所需要的相似特征。
2、類比推理:由兩類對(duì)象具有某些類似特征和其中一類對(duì)象的某些已知特征,推出另一類對(duì)象也具有這些特征的推理稱為類比推理,簡(jiǎn)而言之,類比推理是由特殊到特殊的推理。
三、不等式
對(duì)于含有參數(shù)的一元二次不等式解的討論
1)二次項(xiàng)系數(shù):如果二次項(xiàng)系數(shù)含有字母,要分二次項(xiàng)系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進(jìn)行討論。
2)不等式對(duì)應(yīng)方程的根:如果一元二次不等式對(duì)應(yīng)的方程的根能夠通過(guò)因式分解的方法求出來(lái),則根據(jù)這兩個(gè)根的大小進(jìn)行分類討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類標(biāo)準(zhǔn),如果一元二次不等式對(duì)應(yīng)的方程根不能通過(guò)因式分解的方法求出來(lái),則根據(jù)方程的判別式進(jìn)行分類討論。
通過(guò)不等式練習(xí)題能夠幫助你更加熟練的運(yùn)用不等式的知識(shí)點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過(guò)程中總結(jié)出來(lái)。
四、坐標(biāo)平面上的直線
1、內(nèi)容要目:直線的點(diǎn)方向式方程、直線的點(diǎn)法向式方程、點(diǎn)斜式方程、直線方程的一般式、直線的傾斜角和斜率等。點(diǎn)到直線的距離,兩直線的夾角以及兩平行線之間的距離。
2、基本要求:掌握求直線的方法,熟練轉(zhuǎn)化確定直線方向的不同條件(例如:直線方向向量、法向量、斜率、傾斜角等)。熟練判斷點(diǎn)與直線、直線與直線的不同位置,能正確求點(diǎn)到直線的距離、兩直線的交點(diǎn)坐標(biāo)及兩直線的夾角大小。
3、重難點(diǎn):初步建立代數(shù)方法解決幾何問(wèn)題的觀念,正確將幾何條件與代數(shù)表示進(jìn)行轉(zhuǎn)化,定量地研究點(diǎn)與直線、直線與直線的位置關(guān)系。根據(jù)兩個(gè)獨(dú)立條件求出直線方程。熟練運(yùn)用待定系數(shù)法。
五、圓錐曲線
1、內(nèi)容要目:直角坐標(biāo)系中,曲線C是方程F(x,y)=0的曲線及方程F(x,y)=0是曲線C的方程,圓的標(biāo)準(zhǔn)方程及圓的一般方程。橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程及它們的性質(zhì)。
2、基本要求:理解曲線的方程與方程的曲線的意義,利用代數(shù)方法判斷定點(diǎn)是否在曲線,上及求曲線的交點(diǎn)。掌握?qǐng)A、橢圓、雙曲線、拋物線的定義和求這些曲線方程的基本方法。求曲線的交點(diǎn)之間的距離及交點(diǎn)的中點(diǎn)坐標(biāo)。利用直線和圓、圓和圓的位置關(guān)系的幾何判定,確定它們的位置關(guān)系并利用解析法解決相應(yīng)的幾何問(wèn)題。
3、重難點(diǎn):建立數(shù)形結(jié)合的概念,理解曲線與方程的對(duì)應(yīng)關(guān)系,掌握代數(shù)研究幾何的方法,掌握把已知條件轉(zhuǎn)化為等價(jià)的代數(shù)表示,通過(guò)代數(shù)方法解決幾何問(wèn)題。
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇6
一、不等關(guān)系及不等式知識(shí)點(diǎn)
1.不等式的定義
在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號(hào)、、連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號(hào)的式子,叫做不等式.
2.比較兩個(gè)實(shí)數(shù)的大小
兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來(lái)定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba
3.不等式的性質(zhì)
(1)對(duì)稱性:ab
(2)傳遞性:ab,ba
(3)可加性:aa+cb+c,ab,ca+c
(4)可乘性:ab,cacb0,c0bd;
(5)可乘方:a0bn(nN,n
(6)可開(kāi)方:a0
(nN,n2).
注意:
一個(gè)技巧
作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.
一種方法
待定系數(shù)法:求代數(shù)式的范圍時(shí),先用已知的代數(shù)式表示目標(biāo)式,再利用多項(xiàng)式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇7
1、學(xué)會(huì)三視圖的分析:
2、斜二測(cè)畫(huà)法應(yīng)注意的地方:
。1)在已知圖形中取互相垂直的軸Ox、Oy。畫(huà)直觀圖時(shí),把它畫(huà)成對(duì)應(yīng)軸ox、oy、使∠x(chóng)oy=45°(或135°);(2)平行于x軸的線段長(zhǎng)不變,平行于y軸的線段長(zhǎng)減半。(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度。
3、表(側(cè))面積與體積公式:
、胖w:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h
、棋F體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:
、桥_(tái)體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=
、惹蝮w:①表面積:S=;②體積:V=
4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書(shū)寫(xiě)
。1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。
。2)平面與平面平行:①線面平行面面平行。
(3)垂直問(wèn)題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線
5、求角:(步驟———————Ⅰ、找或作角;Ⅱ、求角)
、女惷嬷本所成角的求法:平移法:平移直線,構(gòu)造三角形;
⑵直線與平面所成的角:直線與射影所成的角
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇8
第一章:解三角形。掌握正弦余弦公式及其變式和推論和三角面積公式即可。
第二章:數(shù)列?荚嚤乜肌5炔畹缺葦(shù)列的通項(xiàng)公式、前n項(xiàng)和及一些性質(zhì)。這一章屬于學(xué)起來(lái)很容易,但做題卻不會(huì)做的類型。考試題中,一般都是要求通項(xiàng)公式、前n項(xiàng)和,所以拿到題目之后要帶有目的的去推導(dǎo)。
第三章:不等式。這一章一般用線性規(guī)劃的形式來(lái)考察。這種題一般是和實(shí)際問(wèn)題聯(lián)系的,所以要會(huì)讀題,從題中找不等式,畫(huà)出線性規(guī)劃圖。然后再根據(jù)實(shí)際問(wèn)題的限制要求求最值。
選修中的簡(jiǎn)單邏輯用語(yǔ)、圓錐曲線和導(dǎo)數(shù):邏輯用語(yǔ)只要弄懂充分條件和必要條件到底指的是前者還是后者,四種命題的真假性關(guān)系,邏輯連接詞,及否命題和命題的否定的區(qū)別,考試一般會(huì)用選擇題考這一知識(shí)點(diǎn),難度不大;圓錐曲線一般作為考試的'壓軸題出現(xiàn)。而且有多問(wèn),一般第一問(wèn)較簡(jiǎn)單,是求曲線方程,只要記住圓錐曲線的表達(dá)式難度就不大。后面兩到三問(wèn)難打一般會(huì)很大,而且較費(fèi)時(shí)間。所以不建議做。
這一章屬于學(xué)的比較難,考試也比較難,但是考試要求不高的內(nèi)容;導(dǎo)數(shù),導(dǎo)數(shù)公式、運(yùn)算法則、用導(dǎo)數(shù)求極值和最值的方法。一般會(huì)考察用導(dǎo)數(shù)求最值,會(huì)用導(dǎo)數(shù)公式就難度不大。
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇9
(1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對(duì)于條件S的確定事件;
(4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;
(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=nnA為事件A出現(xiàn)的概率:對(duì)于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率;
(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值nnA,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率。
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇10
一、集合、簡(jiǎn)易邏輯(14課時(shí),8個(gè))
1、集合;
2、子集;
3、補(bǔ)集;
4、交集;
5、并集;
6、邏輯連結(jié)詞;
7、四種命題;
8、充要條件。
二、函數(shù)(30課時(shí),12個(gè))
1、映射;
2、函數(shù);
3、函數(shù)的單調(diào)性;
4、反函數(shù);
5、互為反函數(shù)的函數(shù)圖象間的關(guān)系;
6、指數(shù)概念的擴(kuò)充;
7、有理指數(shù)冪的運(yùn)算;
8、指數(shù)函數(shù);
9、對(duì)數(shù);
10、對(duì)數(shù)的運(yùn)算性質(zhì);
11、對(duì)數(shù)函數(shù)。
12、函數(shù)的應(yīng)用舉例。
三、數(shù)列(12課時(shí),5個(gè))
1、數(shù)列;
2、等差數(shù)列及其通項(xiàng)公式;
3、等差數(shù)列前n項(xiàng)和公式;
4、等比數(shù)列及其通頂公式;
5、等比數(shù)列前n項(xiàng)和公式。
四、三角函數(shù)(46課時(shí),17個(gè))
1、角的概念的推廣;
2、弧度制;
3、任意角的三角函數(shù);
4、單位圓中的三角函數(shù)線;
5、同角三角函數(shù)的基本關(guān)系式;
6、正弦、余弦的誘導(dǎo)公式;
7、兩角和與差的正弦、余弦、正切;
8、二倍角的正弦、余弦、正切;
9、正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);
10、周期函數(shù);
11、函數(shù)的奇偶性;
12、函數(shù)的圖象;
13、正切函數(shù)的圖象和性質(zhì);
14、已知三角函數(shù)值求角;
15、正弦定理;
16、余弦定理;
17、斜三角形解法舉例。
五、平面向量(12課時(shí),8個(gè))
1、向量;
2、向量的加法與減法;
3、實(shí)數(shù)與向量的積;
4、平面向量的坐標(biāo)表示;
5、線段的定比分點(diǎn);
6、平面向量的數(shù)量積;
7、平面兩點(diǎn)間的距離;
8、平移。
六、不等式(22課時(shí),5個(gè))
1、不等式;
2、不等式的基本性質(zhì);
3、不等式的證明;
4、不等式的解法;
5、含絕對(duì)值的不等式。
七、直線和圓的方程(22課時(shí),12個(gè))
1、直線的傾斜角和斜率;
2、直線方程的點(diǎn)斜式和兩點(diǎn)式;
3、直線方程的一般式;
4、兩條直線平行與垂直的條件;
5、兩條直線的交角;
6、點(diǎn)到直線的距離;
7、用二元一次不等式表示平面區(qū)域;
8、簡(jiǎn)單線性規(guī)劃問(wèn)題;
9、曲線與方程的概念;
10、由已知條件列出曲線方程;
11、圓的標(biāo)準(zhǔn)方程和一般方程;
12、圓的參數(shù)方程。
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇11
(1)總體和樣本:
、僭诮y(tǒng)計(jì)學(xué)中,把研究對(duì)象的全體叫做總體.
②把每個(gè)研究對(duì)象叫做個(gè)體.
、郯芽傮w中個(gè)體的總數(shù)叫做總體容量.
、転榱搜芯靠傮w的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,....,_研究,我們稱它為樣本.其中個(gè)體的個(gè)數(shù)稱為樣本容量.
(2)簡(jiǎn)單隨機(jī)抽樣,也叫純隨機(jī)抽樣。
就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無(wú)一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。
。3)簡(jiǎn)單隨機(jī)抽樣常用的方法:
、俪楹灧
、陔S機(jī)數(shù)表法
、塾(jì)算機(jī)模擬法
在簡(jiǎn)單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:
、倏傮w變異情況;
、谠试S誤差范圍;
、鄹怕时WC程度。
。4)抽簽法:
、俳o調(diào)查對(duì)象群體中的每一個(gè)對(duì)象編號(hào);
、跍(zhǔn)備抽簽的工具,實(shí)施抽簽;
、蹖(duì)樣本中的每一個(gè)個(gè)體進(jìn)行測(cè)量或調(diào)查
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇12
考點(diǎn)一:向量的概念、向量的基本定理
【內(nèi)容解讀】了解向量的實(shí)際背景,掌握向量、零向量、平行向量、共線向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。
注意對(duì)向量概念的理解,向量是可以自由移動(dòng)的,平移后所得向量與原向量相同;兩個(gè)向量無(wú)法比較大小,它們的?杀容^大小。
考點(diǎn)二:向量的運(yùn)算
【內(nèi)容解讀】向量的運(yùn)算要求掌握向量的加減法運(yùn)算,會(huì)用平行四邊形法則、三角形法則進(jìn)行向量的加減運(yùn)算;掌握實(shí)數(shù)與向量的積運(yùn)算,理解兩個(gè)向量共線的含義,會(huì)判斷兩個(gè)向量的平行關(guān)系;掌握向量的數(shù)量積的運(yùn)算,體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系,并理解其幾何意義,掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量積的運(yùn)算,能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用向量積判斷兩個(gè)平面向量的垂直關(guān)系。
【命題規(guī)律】命題形式主要以選擇、填空題型出現(xiàn),難度不大,考查重點(diǎn)為模和向量夾角的定義、夾角公式、向量的坐標(biāo)運(yùn)算,有時(shí)也會(huì)與其它內(nèi)容相結(jié)合。
考點(diǎn)三:定比分點(diǎn)
【內(nèi)容解讀】掌握線段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,并能熟練應(yīng)用,求點(diǎn)分有向線段所成比時(shí),可借助圖形來(lái)幫助理解。
【命題規(guī)律】重點(diǎn)考查定義和公式,主要以選擇題或填空題型出現(xiàn),難度一般。由于向量應(yīng)用的廣泛性,經(jīng)常也會(huì)與三角函數(shù),解析幾何一并考查,若出現(xiàn)在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。
考點(diǎn)四:向量與三角函數(shù)的綜合問(wèn)題
【內(nèi)容解讀】向量與三角函數(shù)的綜合問(wèn)題是高考經(jīng)常出現(xiàn)的問(wèn)題,考查了向量的知識(shí),三角函數(shù)的知識(shí),達(dá)到了高考中試題的覆蓋面的要求。
【命題規(guī)律】命題以三角函數(shù)作為坐標(biāo),以向量的坐標(biāo)運(yùn)算或向量與解三角形的內(nèi)容相結(jié)合,也有向量與三角函數(shù)圖象平移結(jié)合的問(wèn)題,屬中檔偏易題。
考點(diǎn)五:平面向量與函數(shù)問(wèn)題的交匯
【內(nèi)容解讀】平面向量與函數(shù)交匯的問(wèn)題,主要是向量與二次函數(shù)結(jié)合的問(wèn)題為主,要注意自變量的取值范圍。
【命題規(guī)律】命題多以解答題為主,屬中檔題。
考點(diǎn)六:平面向量在平面幾何中的應(yīng)用
【內(nèi)容解讀】向量的坐標(biāo)表示實(shí)際上就是向量的代數(shù)表示.在引入向量的坐標(biāo)表示后,使向量之間的運(yùn)算代數(shù)化,這樣就可以將“形”和“數(shù)”緊密地結(jié)合在一起.因此,許多平面幾何問(wèn)題中較難解決的問(wèn)題,都可以轉(zhuǎn)化為大家熟悉的代數(shù)運(yùn)算的論證.也就是把平面幾何圖形放到適當(dāng)?shù)淖鴺?biāo)系中,賦予幾何圖形有關(guān)點(diǎn)與平面向量具體的坐標(biāo),這樣將有關(guān)平面幾何問(wèn)題轉(zhuǎn)化為相應(yīng)的代數(shù)運(yùn)算和向量運(yùn)算,從而使問(wèn)題得到解決.
【命題規(guī)律】命題多以解答題為主,屬中等偏難的試題。
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇13
平面向量
戴氏航天學(xué)校老師總結(jié)加法與減法的代數(shù)運(yùn)算:
(1)若a=(x1,y1 ),b=(x2,y2 )則a b=(x1+x2,y1+y2 ).
向量加法與減法的幾何表示:平行四邊形法則、三角形法則。
戴氏航天學(xué)校老師總結(jié)向量加法有如下規(guī)律:+= +(交換律); +( +c)=( + )+c (結(jié)合律);
兩個(gè)向量共線的充要條件:
(1)向量b與非零向量共線的充要條件是有且僅有一個(gè)實(shí)數(shù),使得b= .
(2)若=(),b=()則‖b .
平面向量基本定理:
若e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量,戴氏航天學(xué)校老師提醒有且只 有一對(duì)實(shí)數(shù),使得= e1+ e2
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇14
一、理解集合中的有關(guān)概念
(1)集合中元素的特征: 確定性 , 互異性 , 無(wú)序性 。
(2)集合與元素的關(guān)系用符號(hào)=表示。
(3)常用數(shù)集的符號(hào)表示:自然數(shù)集 ;正整數(shù)集 ;整數(shù)集 ;有理數(shù)集 、實(shí)數(shù)集 。
(4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。
(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
二、函數(shù)
一、映射與函數(shù):
(1)映射的概念: (2)一一映射:(3)函數(shù)的概念:
二、函數(shù)的三要素:
相同函數(shù)的判斷方法:①對(duì)應(yīng)法則 ;②定義域 (兩點(diǎn)必須同時(shí)具備)
(1)函數(shù)解析式的求法:
、俣x法(拼湊):②換元法:③待定系數(shù)法:④賦值法:
(2)函數(shù)定義域的求法:
①含參問(wèn)題的定義域要分類討論;
、趯(duì)于實(shí)際問(wèn)題,在求出函數(shù)解析式后;必須求出其定義域,此時(shí)的定義域要根據(jù)實(shí)際意義來(lái)確定。
(3)函數(shù)值域的求法:
①配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來(lái)求值;常轉(zhuǎn)化為型如: 的形式;
、谀媲蠓(反求法):通過(guò)反解,用 來(lái)表示 ,再由 的取值范圍,通過(guò)解不等式,得出 的取值范圍;常用來(lái)解,型如: ;
、軗Q元法:通過(guò)變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;
、萑怯薪绶:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運(yùn)用三角函數(shù)有界性來(lái)求值域;
⑥基本不等式法:轉(zhuǎn)化成型如: ,利用平均值不等式公式來(lái)求值域;
⑦單調(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。
、鄶(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來(lái)求值域。
三、函數(shù)的性質(zhì)
函數(shù)的單調(diào)性、奇偶性、周期性
單調(diào)性:定義:注意定義是相對(duì)與某個(gè)具體的區(qū)間而言。
判定方法有:定義法(作差比較和作商比較)
導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))
復(fù)合函數(shù)法和圖像法。
應(yīng)用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區(qū)間是否關(guān)于原點(diǎn)對(duì)稱,比較f(x) 與f(-x)的關(guān)系。f(x) -f(-x)=0 f(x) =f(-x) f(x)為偶函數(shù);
f(x)+f(-x)=0 f(x) =-f(-x) f(x)為奇函數(shù)。
判別方法:定義法, 圖像法 ,復(fù)合函數(shù)法
應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。
周期性:定義:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
其他:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
應(yīng)用:求函數(shù)值和某個(gè)區(qū)間上的函數(shù)解析式。
四、圖形變換
函數(shù)圖像變換:(重點(diǎn))要求掌握常見(jiàn)基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。
常見(jiàn)圖像變化規(guī)律:(注意平移變化能夠用向量的語(yǔ)言解釋,和按向量平移聯(lián)系起來(lái)思考)
平移變換 y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過(guò) 平移得到函數(shù)y=f(2x+4)的圖象。
(ⅱ)會(huì)結(jié)合向量的平移,理解按照向量 (m,n)平移的意義。
對(duì)稱變換 y=f(x)→y=f(-x),關(guān)于y軸對(duì)稱
y=f(x)→y=-f(x) ,關(guān)于x軸對(duì)稱
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對(duì)稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對(duì)稱。(注意:它是一個(gè)偶函數(shù))
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。
一個(gè)重要結(jié)論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關(guān)于直線x=a對(duì)稱;
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇15
一、 導(dǎo)數(shù)的應(yīng)用
1.用導(dǎo)數(shù)研究函數(shù)的最值
確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開(kāi)區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來(lái)檢驗(yàn)下學(xué)習(xí)成果。
2.生活中常見(jiàn)的函數(shù)優(yōu)化問(wèn)題
1)費(fèi)用、成本最省問(wèn)題
2)利潤(rùn)、收益最大問(wèn)題
3)面積、體積最(大)問(wèn)題
二、推理與證明
1.歸納推理:歸納推理是高二數(shù)學(xué)的一個(gè)重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,破解的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點(diǎn)是發(fā)現(xiàn)兩類對(duì)象的相似特征,由其中一類對(duì)象的特征得出另一類對(duì)象的特征,破解的方法是利用已經(jīng)掌握的數(shù)學(xué)知識(shí),分析兩類對(duì)象之間的關(guān)系,通過(guò)兩類對(duì)象已知的相似特征得出所需要的相似特征。
2.類比推理:由兩類對(duì)象具有某些類似特征和其中一類對(duì)象的某些已知特征,推出另一類對(duì)象也具有這些特征的推理稱為類比推理,簡(jiǎn)而言之,類比推理是由特殊到特殊的推理。
三、不等式
對(duì)于含有參數(shù)的一元二次不等式解的討論
1)二次項(xiàng)系數(shù):如果二次項(xiàng)系數(shù)含有字母,要分二次項(xiàng)系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進(jìn)行討論。
2)不等式對(duì)應(yīng)方程的根:如果一元二次不等式對(duì)應(yīng)的方程的根能夠通過(guò)因式分解的方法求出來(lái),則根據(jù)這兩個(gè)根的大小進(jìn)行分類討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類標(biāo)準(zhǔn),如果一元二次不等式對(duì)應(yīng)的方程根不能通過(guò)因式分解的方法求出來(lái),則根據(jù)方程的判別式進(jìn)行分類討論。通過(guò)不等式練習(xí)題能夠幫助你更加熟練的運(yùn)用不等式的知識(shí)點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過(guò)程中總結(jié)出來(lái)。
【高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
高二化學(xué)知識(shí)點(diǎn)總結(jié)01-14
高二物理知識(shí)點(diǎn)總結(jié)08-30
數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)02-17
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)09-03
高二生物知識(shí)點(diǎn)總結(jié)12-12
小學(xué)數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)整理02-14
高二地理知識(shí)點(diǎn)總結(jié)07-22
高二數(shù)學(xué)下學(xué)期總結(jié)大全02-18