高二物理知識點精選整理五篇分享
上學的時候,相信大家一定都接觸過知識點吧!知識點有時候特指教科書上或考試的知識。想要一份整理好的知識點嗎?以下是小編為大家整理的高二物理知識點精選整理五篇分享,希望能夠幫助到大家。
高二物理知識點精選整理五篇分享1
交變電流(正弦式交變電流)
1.電壓瞬時值e=Emsinωt電流瞬時值i=Imsinωt;(ω=2πf)
2.電動勢峰值Em=nBSω=2BLv電流峰值(純電阻電路中)Im=Em/R總
3.正(余)弦式交變電流有效值:E=Em/(2)1/2;U=Um/(2)1/2;I=Im/(2)1/2
4.理想變壓器原副線圈中的電壓與電流及功率關系
U1/U2=n1/n2;I1/I2=n2/n2;P入=P出
5.在遠距離輸電中,采用高壓輸送電能可以減少電能在輸電線上的損失損??=(P/U)2R;(P損??:輸電線上損失的功率,P:輸送電能的總功率,U:輸送電壓,R:輸電線電阻)〔見第二冊P198〕;
6.公式1、2、3、4中物理量及單位:ω:角頻率(rad/s);t:時間(s);n:線圈匝數(shù);B:磁感強度(T);S:線圈的面積(m2);U輸出)電壓(V);I:電流強度(A);P:功率(W)。
注:
(1)交變電流的變化頻率與發(fā)電機中線圈的轉動的頻率相同即:ω電=ω線,f電=f線;
(2)發(fā)電機中,線圈在中性面位置磁通量,感應電動勢為零,過中性面電流方向就改變;
(3)有效值是根據(jù)電流熱效應定義的,沒有特別說明的交流數(shù)值都指有效值;
(4)理想變壓器的匝數(shù)比一定時,輸出電壓由輸入電壓決定,輸入電流由輸出電流決定,輸入功率等于輸出功率,當負載的消耗的功率增大時輸入功率也增大,即P出決定P入;
(5)其它相關內容:正弦交流電圖象〔見第二冊P190〕/電阻、電感和電容對交變電流的作用〔見第二冊P193〕。
高二物理知識點精選整理五篇分享2
一、固體
1、晶體:外觀上有規(guī)則的幾何外形,有確定的熔點,一些物理性質表現(xiàn)為各向異
2、非晶體:外觀沒有規(guī)則的幾何外形,無確定的熔點,一些物理性質表現(xiàn)為各向同性
①判斷物質是晶體還是非晶體的主要依據(jù)是有無固定的熔點
、诰w與非晶體并不是絕對的,有些晶體在一定的條件下可以轉化為非晶體(石英→玻璃)
3、單晶體多晶體
如果一個物體就是一個完整的晶體,如食鹽小顆粒,這樣的晶體就是單晶體(單晶硅、單晶鍺)
如果整個物體是由許多雜亂無章的小晶體排列而成,這樣的物體叫做多晶體,多晶體沒有規(guī)則的幾何外形,但同單晶體一樣,仍有確定的熔點。
二、液體
1、表面張力:當表面層的分子比液體內部稀疏時,分子間距比內部大,表面層的分子表現(xiàn)為引力。如露珠
2、液晶
分子排列有序,各向異性,可自由移動,位置無序,具有流動性
各向異性:分子的排列從某個方向上看液晶分子排列是整齊的',從另一方向看去則是雜亂無章的
三:飽和汽與飽和汽壓
、倨
汽化:物質由液態(tài)變成氣態(tài)的過程叫汽化。
1、汽化有兩種方式:蒸發(fā)和沸騰。
2、液體在沸騰過程中要不斷吸熱,但溫度保持不變,這一溫度叫沸點。不同物質的沸點是不同的。而且沸點與大氣壓有關,大氣壓越大,沸點也就越高。
、陲柡推c飽和汽壓
飽和汽:與液體處于動態(tài)平衡的蒸汽叫做飽和汽。沒有達到飽和狀態(tài)的蒸汽叫做未飽和汽。
飽和汽壓:在一定溫度下,飽和汽的壓強是一定的,叫做飽和汽壓。未飽和汽的壓強小于飽和汽壓。
1、飽和汽壓只是指空氣中這種液體蒸汽的分氣壓,與其它氣體的壓強無關。
2、飽和汽壓與溫度和物質種類有關。
四:物態(tài)變化中的能量交換
、偃刍療
1、熔化:物質從固態(tài)變成液態(tài)的過程叫熔化(而從液態(tài)變成固態(tài)的過程叫凝固)。
注意:晶體在熔化和凝固的過程中溫度不變,同一種晶體的熔點和凝固點相同;而非晶體在熔化過程中溫度不斷升高,凝固的過程中溫度不斷降低。
2、熔化熱:某種晶體熔化過程中所需的能量(Q)與其質量(m)之比叫做這種晶體的熔化熱。
I、用λ表示晶體的熔化熱,則λ=Q/m,在國際單位中熔化熱的單位是焦爾/千克(J/Kg)。
II、晶體在熔化過程中吸收熱量增大分子勢能,破壞晶體結構,變?yōu)橐簯B(tài)。所以熔化熱與晶體的質量無關,只取決于晶體的種類。
III、一定質量的晶體,熔化時吸收的熱量與凝固時放出的熱量相等。
注意:非晶體在熔化的過程中溫度會不斷變化,而不同溫度下非晶體由固態(tài)變?yōu)橐簯B(tài)時吸收的熱量是不同的,所以非晶體沒有確定的熔化熱。
、谄療
1、汽化:物質從液態(tài)變成氣態(tài)的過程叫汽化(而從氣態(tài)變成液態(tài)的過程叫液化)。
2、汽化熱:某種液體汽化成同溫度的氣體時所需要的能量(Q)與其質量(m)之比叫這種物質在這一溫度下的汽化熱。用L表示汽化熱,則L=Q/m,在國際單位制中汽化熱的單位是焦爾/千克(J/Kg)。
I、液體汽化時,液體分子離開液體表面成為氣體分子,要克服其它分子的吸引而做功,因此要吸收能量。
II、一定質量的物質,在一定的溫度和壓強下,汽化時吸收的熱量與液化時放出的熱量相等。
III、液體的汽化熱與液體的物質種類、液體的溫度、外界壓強均有關。
高二物理知識點精選整理五篇分享3
感應電流產生的磁場,總是在阻礙引起感應電流的原磁場的磁通量的變化。
楞次定律的核心,也是最需要大家記住的是“阻礙”二字。
在高中物理利用楞次定律解題,我們可以用十二個字來形象記憶:“增反減同,來拒去留,增縮減擴”。
楞次定律(Lenzlaw)是一條電磁學的定律,從電磁感應得出感應電動勢的方向。其可確定由電磁感應而產生之電動勢的方向。它是由物理學家海因里!だ愦(HeinrichFriedrichLenz)在1834年發(fā)現(xiàn)的。
楞次定律是能量守恒定律在電磁感應現(xiàn)象中的具體體現(xiàn)。楞次定律還可表述為:感應電流的效果總是反抗引起感應電流的原因。
對楞次定律的正確理解與使用分析:
第一,電磁感應楞次定律的核心內容是“阻礙”二字,這恰恰表明楞次定律實質上就是能的轉化和守恒定律在電磁感應現(xiàn)象中的特殊表達形式;
第二,這里的“阻礙”,并非是阻礙引起感應電流的原磁場,而是阻礙(更確切來描述應該是“減緩”)原磁場磁通量的變化;
第三,正因阻礙是的是“變化”,所以,當原磁場的磁通量增加(或減少)而引起感應電流時,則感應電流的磁場必與原磁場反向(或同向)而阻礙其磁通量的增加(或減少),概括起來就是,增加則反向,減少則同向。這就是老師總結的做題應用定律“增反減同”四字要領的由來。
楞次定律阻礙的表現(xiàn)有哪些方式?
(1)產生一個反變化的磁場。
(2)導致物體運動。
(3)導致圍成閉合電路的邊框發(fā)生形變。
楞次定律的應用步驟
具體應用包括以下四步:
第一,明確引起感應電流的原磁場在被感應的回路上的方向;
第二,搞清原磁場穿過被感應的回路中的磁通量增減情況;
第三,根據(jù)楞次定律確定感應電流的磁場的方向;
第四,運用安培定則判斷出感生電流的方向。
高中物理網(wǎng)編輯提醒大家,楞次定律要靈活運用,有些題可以通過“感應電流的磁場阻礙相對運動”出發(fā)來判斷。
在一些由于某種相對運動而引起感應電流的電磁感應現(xiàn)象中,如運用楞次定律從“感應電流的磁場總是阻礙引起感應電流的原磁場的磁通量變化”出發(fā)來判斷感應電流方向,往往會比較困難。
對于這樣的問題,在運用楞次定律時,一般可以靈活處理,考慮到原磁場的磁通量變化又是由相對運動而引起的,于是可以從“感應電流的磁場阻礙相對運動”出發(fā)來判斷。
高二物理知識點精選整理五篇分享4
一、牛頓第一定律(慣性定律):一切物體總保持勻速直線運動狀態(tài)或靜止狀態(tài),直到有外力迫使它改變這種做狀態(tài)為止。
1、只有當物體所受合外力為零時,物體才能處于靜止或勻速直線運動狀態(tài);
2、力是該變物體速度的原因;
3、力是改變物體運動狀態(tài)的原因(物體的速度不變,其運動狀態(tài)就不變)
4、力是產生加速度的原因;
二、慣性:物體保持勻速直線運動或靜止狀態(tài)的性質叫慣性。
1、一切物體都有慣性;
2、慣性的大小由物體的質量決定;
3、慣性是描述物體運動狀態(tài)改變難易的物理量;
三、牛頓第二定律:物體的加速度跟所受的合外力成正比,跟物體的質量成反比,加速度的方向跟物體所受合外力的方向相同。
1、數(shù)學表達式:a=F合/m;
2、加速度隨力的產生而產生、變化而變化、消失而消失;
3、當物體所受力的方向和運動方向一致時,物體加速;當物體所受力的方向和運動方向相反時,物體減速。
4、力的單位牛頓的定義:使質量為1kg的物體產生1m/s2加速度的力,叫1N;
四、牛頓第三定律:物體間的作用力和反作用總是等大、反向、作用在同一條直線上的;
1、作用力和反作用力同時產生、同時變化、同時消失;
2、作用力和反作用力與平衡力的根本區(qū)別是作用力和反作用力作用在兩個相互作用的物體上,平衡力作用在同一物體上。
高二物理知識點精選整理五篇分享5
1.庫侖定律:F=kQ1Q2/r2(在真空中){F:點電荷間的作用力(N),k:靜電力常量k=9.0×109N?m2/C2,Q1、Q2:兩點電荷的電量(C),r:兩點電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引}
2.兩種電荷、電荷守恒定律、元電荷:(e=1.60×10-19C);帶電體電荷量等于元電荷的整數(shù)倍
3.電場強度:E=F/q(定義式、計算式){E:電場強度(N/C),是矢量(電場的疊加原理),q:檢驗電荷的電量(C)}
4.真空點(源)電荷形成的電場E=kQ/r2{r:源電荷到該位置的距離(m),Q:源電荷的電量}
5.電場力:F=qE{F:電場力(N),q:受到電場力的電荷的電量(C),E:電場強度(N/C)}
6.勻強電場的場強E=UAB/d{UAB:AB兩點間的電壓(V),d:AB兩點在場強方向的距離(m)}
7.電勢與電勢差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.電場力做功:WAB=qUAB=Eqd{WAB:帶電體由A到B時電場力所做的功(J),q:帶電量(C),UAB:電場中A、B兩點間的電勢差(V)(電場力做功與路徑無關),E:勻強電場強度,d:兩點沿場強方向的距離(m)}
9.電場力做功與電勢能變化ΔEAB=-WAB=-qUAB(電勢能的增量等于電場力做功的負值)
10.電勢能:EA=qφA{EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)}
11.電勢能的變化ΔEAB=EB-EA{帶電體在電場中從A位置到B位置時電勢能的差值}
12.電容C=Q/U(定義式,計算式){C:電容(F),Q:電量(C),U:電壓(兩極板電勢差)(V)}
13.平行板電容器的電容C=εS/4πkd(S:兩極板正對面積,d:兩極板間的垂直距離,ω:介電常數(shù))
14.帶電粒子在電場中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.帶電粒子沿垂直電場方向以速度Vo進入勻強電場時的偏轉(不考慮重力作用的情況下)
類平垂直電場方向:勻速直線運動L=Vot(在帶等量異種電荷的平行極板中:E=U/d)
拋運動平行電場方向:初速度為零的勻加速直線運動d=at2/2,a=F/m=qE/m
【高二物理知識點精選整理五篇分享】相關文章: