必修三數(shù)學知識點總結(jié)
總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導性的經(jīng)驗方法以及結(jié)論的書面材料,它是增長才干的一種好辦法,不妨讓我們認真地完成總結(jié)吧。那么總結(jié)有什么格式呢?以下是小編為大家整理的必修三數(shù)學知識點總結(jié),歡迎閱讀與收藏。
一、集合有關(guān)概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1.元素的確定性;
2.元素的互異性;
3.元素的無序性
說明:
(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的',沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法。
注意。撼S脭(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R
關(guān)于“屬于”的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A
列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。
、僬Z言描述法:例:{不是直角三角形的三角形}
、跀(shù)學式子描述法:例:不等式_-3>2的'解集是{_?R_-3>2}或{__-3>2}
4、集合的分類:
1.有限集含有有限個元素的集合
2.無限集含有無限個元素的集合
3.空集不含任何元素的集合例:{__2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系(5≥5,且5≤5,則5=5)
實例:設(shè)A={__2-1=0}B={-1,1}“元素相同”
結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
、偃魏我粋集合是它本身的子集。AíA
、谡孀蛹:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄íB,BíC,那么AíC
、苋绻鸄íB同時BíA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集
反比例函數(shù)
形如y=k/_(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。
自變量_的取值范圍是不等于0的一切實數(shù)。
反比例函數(shù)圖像性質(zhì):
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(-_)=-f(_),圖像關(guān)于原點對稱。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
如圖,上面給出了k分別為正和負(2和-2)時的函數(shù)圖像。
當K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)
當K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)
反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。
知識點:
1.過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。
2.對于雙曲線y=k/_,若在分母上加減任意一個實數(shù)(即y=k/(_±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)
銳角三角函數(shù)公式
sinα=∠α的對邊/斜邊
cosα=∠α的鄰邊/斜邊
tanα=∠α的對邊/∠α的鄰邊
cotα=∠α的鄰邊/∠α的對邊
數(shù)學中什么叫棱
物體上的條狀突起,或不同方向的兩個平面相連接的部分。棱柱是幾何學中的一種常見的三維多面體,指上下底面平行且全等,側(cè)棱平行且相等的封閉幾何體。在正方體和長方體中,具有12個棱長,且棱長在不同的幾何體中有不同的特點。
【必修三數(shù)學知識點總結(jié)】相關(guān)文章:
語文必修三琵琶行知識點09-23
高一政治必修一知識點總結(jié)05-09
語文必修三紅樓夢的知識點11-08
高一物理必修一知識點總結(jié)05-04
高一語文必修一知識點總結(jié)01-12
數(shù)學必修五教學設(shè)計、12-29