1. <rp id="zsypk"></rp>

      2. 高一數(shù)學(xué)知識點總結(jié)

        時間:2024-11-04 16:30:24 知識點總結(jié) 我要投稿

        高一數(shù)學(xué)知識點總結(jié)(精品)

          總結(jié)是對過去一定時期的工作、學(xué)習(xí)或思想情況進行回顧、分析,并做出客觀評價的書面材料,它能使我們及時找出錯誤并改正,不妨坐下來好好寫寫總結(jié)吧。你想知道總結(jié)怎么寫嗎?下面是小編為大家收集的高一數(shù)學(xué)知識點總結(jié),僅供參考,希望能夠幫助到大家。

        高一數(shù)學(xué)知識點總結(jié)(精品)

        高一數(shù)學(xué)知識點總結(jié)1

          集合與元素

          一個東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。

          例如:你所在的班級是一個集合,是由幾十個和你同齡的'同學(xué)組成的集合,你相對于這個班級集合來說,是它的一個元素;

          而整個學(xué)校又是由許許多多個班級組成的集合,你所在的班級只是其中的一分子,是一個元素。

          班級相對于你是集合,相對于學(xué)校是元素,參照物不同,得到的結(jié)論也不同,可見,是集合還是元素,并不是絕對的。

          .解集合問題的關(guān)鍵

          解集合問題的關(guān)鍵:弄清集合是由哪些元素所構(gòu)成的,也就是將抽象問題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;比如用數(shù)軸來表示集合,或是集合的元素為有序?qū)崝?shù)對時,可用平面直角坐標(biāo)系中的圖形表示相關(guān)的集合等。

        高一數(shù)學(xué)知識點總結(jié)2

          (1)再根據(jù)定義判定;

          (2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;

          (3)利用定理,或借助函數(shù)的圖象判定。

          函數(shù)的解析表達式

          (1)函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關(guān)系時,一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域。

          (2)求函數(shù)的解析式的主要方法有:1.湊配法2.待定系數(shù)法3.換元法4.消參法

          函數(shù)(小)值

          1利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的`(小)值

          2利用圖象求函數(shù)的(小)值

          3利用函數(shù)單調(diào)性的判斷函數(shù)的(小)值:

          如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有值f(b);

          如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

        高一數(shù)學(xué)知識點總結(jié)3

          一、圓的方程定義:

          圓的標(biāo)準(zhǔn)方程(x—a)2+(y—b)2=r2中,有三個參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。

          二、直線和圓的位置關(guān)系:

          1、直線和圓位置關(guān)系的判定

          方法一是方程的觀點,即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來討論位置關(guān)系。

         、佴>0,直線和圓相交。

         、讦=0,直線和圓相切。

          方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的'大小加以比較。

          2、直線和圓相切,這類問題主要是求圓的切線方程。求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。

          3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。

          三、切線

          1、性質(zhì)

         、艌A心到切線的距離等于圓的半徑;

         、七^切點的半徑垂直于切線;

         、墙(jīng)過圓心,與切線垂直的直線必經(jīng)過切點;

          ⑷經(jīng)過切點,與切線垂直的直線必經(jīng)過圓心;

          2、當(dāng)一條直線滿足

         。1)過圓心;

         。2)過切點;

         。3)垂直于切線三個性質(zhì)中的兩個時,第三個性質(zhì)也滿足。

          3、切線的判定定理

          經(jīng)過半徑的外端點并且垂直于這條半徑的直線是圓的切線。

          4、切線長定理

          從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線分兩條切線的夾角。

          四、圓錐曲線的定義

          1、橢圓:到兩個定點的距離之和等于定長(定長大于兩個定點間的距離)的動點的軌跡叫做橢圓。

          2、雙曲線:到兩個定點的距離的差的絕對值為定值(定值小于兩個定點的距離)的動點軌跡叫做雙曲線。即。

          3、圓錐曲線的統(tǒng)一定義:到定點的距離與到定直線的距離的比e是常數(shù)的點的軌跡叫做圓錐曲線。當(dāng)01時為雙曲線。

        高一數(shù)學(xué)知識點總結(jié)4

          1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

          注意:2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合;3函數(shù)的定義域、值域要寫成集合或區(qū)間的`形式.

          定義域補充

          能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時列不等式組的主要依據(jù)是:(1)分式的分母不等于零;(2)偶次方根的被開方數(shù)不小于零;(3)對數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零(6)實際問題中的函數(shù)的定義域還要保證實際問題有意義.

          構(gòu)成函數(shù)的三要素:定義域、對應(yīng)關(guān)系和值域

          再注意:(1)構(gòu)成函數(shù)三個要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))(2)兩個函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。相同函數(shù)的判斷方法:①表達式相同;②定義域一致(兩點必須同時具備)

          值域補充

          (1)、函數(shù)的值域取決于定義域和對應(yīng)法則,不論采取什么方法求函數(shù)的值域都應(yīng)先考慮其定義域.(2).應(yīng)熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復(fù)雜函數(shù)值域的基礎(chǔ)。

          3.函數(shù)圖象知識歸納

          (1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.

          C上每一點的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(x,y),均在C上.即記為C={P(x,y)|y=f(x),x∈A}

          圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。

          (2)畫法

          A、描點法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對應(yīng)值并列表,以(x,y)為坐標(biāo)在坐標(biāo)系內(nèi)描出相應(yīng)的點P(x,y),最后用平滑的曲線將這些點連接起來.

          B、圖象變換法(請參考必修4三角函數(shù))

          常用變換方法有三種,即平移變換、伸縮變換和對稱變換

          (3)作用:

          1、直觀的看出函數(shù)的性質(zhì);2、利用數(shù)形結(jié)合的方法分析解題的思路。提高解題的速度。

        高一數(shù)學(xué)知識點總結(jié)5

          圓的方程定義:

          圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2中,有三個參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。

          直線和圓的位置關(guān)系:

          1.直線和圓位置關(guān)系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來討論位置關(guān)系.

         、佴>0,直線和圓相交.②Δ=0,直線和圓相切.③Δ<0,直線和圓相離.

          方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較.

         、賒R,直線和圓相離.

          2.直線和圓相切,這類問題主要是求圓的切線方程.求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況.

          3.直線和圓相交,這類問題主要是求弦長以及弦的中點問題.

          切線的性質(zhì)

         、艌A心到切線的距離等于圓的半徑;

         、七^切點的半徑垂直于切線;

          ⑶經(jīng)過圓心,與切線垂直的直線必經(jīng)過切點;

         、冉(jīng)過切點,與切線垂直的直線必經(jīng)過圓心;

          當(dāng)一條直線滿足

          (1)過圓心;

          (2)過切點;

          (3)垂直于切線三個性質(zhì)中的兩個時,第三個性質(zhì)也滿足.

          切線的判定定理

          經(jīng)過半徑的外端點并且垂直于這條半徑的直線是圓的切線.

          切線長定理

          從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角.

          圓錐曲線性質(zhì):

          一、圓錐曲線的定義

          1.橢圓:到兩個定點的距離之和等于定長(定長大于兩個定點間的距離)的動點的軌跡叫做橢圓.

          2.雙曲線:到兩個定點的.距離的差的絕對值為定值(定值小于兩個定點的距離)的動點軌跡叫做雙曲線.即.

          3.圓錐曲線的統(tǒng)一定義:到定點的距離與到定直線的距離的比e是常數(shù)的點的軌跡叫做圓錐曲線.當(dāng)01時為雙曲線.

          二、圓錐曲線的方程

          1.橢圓:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)

          2.雙曲線:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)

          3.拋物線:y2=±2px(p>0),x2=±2py(p>0)

          三、圓錐曲線的性質(zhì)

          1.橢圓:+=1(a>b>0)

          (1)范圍:|x|≤a,|y|≤b(2)頂點:(±a,0),(0,±b)(3)焦點:(±c,0)(4)離心率:e=∈(0,1)(5)準(zhǔn)線:x=±

          2.雙曲線:-=1(a>0,b>0)(1)范圍:|x|≥a,y∈R(2)頂點:(±a,0)(3)焦點:(±c,0)(4)離心率:e=∈(1,+∞)(5)準(zhǔn)線:x=±(6)漸近線:y=±x

          3.拋物線:y2=2px(p>0)(1)范圍:x≥0,y∈R(2)頂點:(0,0)(3)焦點:(,0)(4)離心率:e=1(5)準(zhǔn)線:x=-

        高一數(shù)學(xué)知識點總結(jié)6

          一、集合相關(guān)概念

          1.集合的含義

          2.集合中元素的三個特征:

          (1)元素的確定性如:世界上最高的山

          (2)元素的互異性,如:由HAPPY由字母組成的集合{H,A,P,Y}

          (3)元素的無序性: 如:{a,b,c}和{a,c,b}表示同一集

          3.集合表示:{ … } 如:{我;@球隊員},{太平洋,大西洋,印度洋,北冰洋}

          (1)用拉丁字母表示集合:A={我;@球隊員},B={1,2,3,4

          (2)集合表示法:列舉法和描述法。

          u注:常用數(shù)集及其記法:

          非負(fù)整數(shù)集(即自然數(shù)集) 記作:N

          正整數(shù)集 N*或 N 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R

          1)列舉法:{a,b,c……}

          2)描述方法:描述集合元素的公共屬性,并在大括號中寫入集合方法。{x?R| x-3>2} ,{x| x-3>2}

          3)語言描述法:例:{不是直角三角形的三角形}

          4)Venn圖:

          4、集合分類:

          (1)有限集 含有有限個元素的集合

          (2)無限集 含有無限元素的集合

          (3)空集 不含任何元素的集合  例:{x|x2=-5}

          二、集合間的基本關(guān)系

          1.包含關(guān)系-子集

          注意:

          (1)有兩種可能性A(2)A與B相同的集合: 集合A不包括在集合中B,或者集合B不包括集合A,記作A

          2.相等關(guān)系:A=B (5≥5,且5≤5,則5=5)

          實例:設(shè) A={x|x2-1=0} B={-1,1} 元素相同,兩集相等。

          即:① 任何一集都是它自己的子集。AíA

         、谡孀蛹喝绻鸄íB,且A1 B也就是說,集合A是集合B的真子集,記錄下來A

         、廴绻 AíB, BíC ,那么 AíC

         、 如果AíB 同時 BíA 那么A=B

          3. 不含任何元素的集合稱為空集,記為Φ

          規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

          u含有2個n個元素的集合n個子集,2n-1個真子集

          二、函數(shù)

          1、函數(shù)定義域、值域求法綜合

          2.、解決函數(shù)奇偶性和單調(diào)性問題的策略

          3.解決恒成立問題的策略

          4.反函數(shù)的幾種題型和方法

          5.二次函數(shù)根問題-一題多解

          &指數(shù)函數(shù)y=a^x

          a^a*a^b=a^a b(a>0,a、b屬于Q)

          (a^a)^b=a^ab(a>0,a、b屬于Q)

          (ab)^a=a^a*b^a(a>0,a、b屬于Q)

          指數(shù)函數(shù)對稱規(guī)律:

          1、函數(shù)y=a^x與y=a^-x關(guān)于y軸對稱

          2、函數(shù)y=a^x與y=-a^xx軸對稱

          3、函數(shù)y=a^x與y=-a^-x坐標(biāo)原點對稱常數(shù).

          2.力函數(shù)性質(zhì)歸納.

          (1)所有功率函數(shù)為(0, ∞)有定義,圖像過點(1,1);

          三、平面向量

          兩個已知的向量從同一點O開始OA、OB,以O(shè)A、OB平行四邊形作為鄰邊OACB,以O(shè)為起點的對角線OC就是向量OA、OB是的,這種計算法被稱為向量加法的平行四邊形法。零向量和任意向量a,有:0 a=a 0=a。|a b|≤|a| |b|。向量加法滿足所有加法操作定律。數(shù)乘運算實數(shù)λ與向量a的積是一個向量,稱為向量數(shù)乘,記錄λa|λa|=|λ||a|,當(dāng)λ > 0時,λa當(dāng)方向與a相同時,λ < 0時,λa當(dāng)方向與a相反時,λ = 0時,λa = 0。設(shè)λ、μ所以:(1)(λμ)a = λ(μa)(2)(λ μ)a = λa μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。加法運算、減法運算、數(shù)乘運算統(tǒng)稱線性運算。兩個非零向量的'數(shù)量積已知a、b,那么|a||b|cos θ叫做a與b記錄數(shù)量積或內(nèi)積a?b,θ是a與b的夾角|a|cos θ(|b|cos θ)稱為向量a在b方向上(b投影方向a)。零向量和任意向量的數(shù)量積為0。a?b幾何意義:數(shù)量積a?b等于a的長度|a|與b在a投影的方向|b|cos θ的乘積。兩個向量的數(shù)量積等于相應(yīng)坐標(biāo)的乘積。

        高一數(shù)學(xué)知識點總結(jié)7

          歸納1

          1、“包含”關(guān)系—子集

          注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

          反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

          2、“相等”關(guān)系(5≥5,且5≤5,則5=5)

          實例:設(shè)A={x|x2—1=0}B={—1,1}“元素相同”

          結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

         、偃魏我粋集合是它本身的子集。AíA

         、谡孀蛹喝绻鸄íB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

         、廴绻鸄íB,BíC,那么AíC

          ④如果AíB同時BíA那么A=B

          3、不含任何元素的集合叫做空集,記為Φ

          規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

          歸納2

          形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

          自變量x的取值范圍是不等于0的一切實數(shù)。

          反比例函數(shù)圖像性質(zhì):

          反比例函數(shù)的圖像為雙曲線。

          由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關(guān)于原點對稱。

          另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標(biāo)軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

          上面給出了k分別為正和負(fù)(2和—2)時的函數(shù)圖像。

          當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

          當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

          反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

          知識點:

          1、過反比例函數(shù)圖象上任意一點作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。

          2、對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

          歸納3

          方程的根與函數(shù)的零點

          1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

          2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標(biāo)。即:方程有實數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點,函數(shù)有零點。

          3、函數(shù)零點的求法:

          (1)(代數(shù)法)求方程的實數(shù)根;

          (2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點。

          4、二次函數(shù)的零點:

         。1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點。

          (2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點。

         。3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點。

          歸納3

          形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

          自變量x的取值范圍是不等于0的一切實數(shù)。

          反比例函數(shù)圖像性質(zhì):

          反比例函數(shù)的圖像為雙曲線。

          由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關(guān)于原點對稱。

          另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標(biāo)軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

          如圖,上面給出了k分別為正和負(fù)(2和—2)時的函數(shù)圖像。

          當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

          當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

          反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

          知識點:

          1、過反比例函數(shù)圖象上任意一點作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。

          2、對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

          歸納4

          冪函數(shù)的性質(zhì):

          對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

          首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時,設(shè)a=—k,則x=1/(x^k),顯然x≠0,函數(shù)的`定義域是(—∞,0)∪(0,+∞)、因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:

          排除了為0與負(fù)數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

          排除了為0這種可能,即對于x<0x="">0的所有實數(shù),q不能是偶數(shù);

          排除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負(fù)數(shù)。

          總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);

          如果a為負(fù)數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。

          在x大于0時,函數(shù)的值域總是大于0的實數(shù)。

          在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。

          而只有a為正數(shù),0才進入函數(shù)的值域。

          由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況、

          可以看到:

         。1)所有的圖形都通過(1,1)這點。

         。2)當(dāng)a大于0時,冪函數(shù)為單調(diào)遞增的,而a小于0時,冪函數(shù)為單調(diào)遞減函數(shù)。

         。3)當(dāng)a大于1時,冪函數(shù)圖形下凹;當(dāng)a小于1大于0時,冪函數(shù)圖形上凸。

         。4)當(dāng)a小于0時,a越小,圖形傾斜程度越大。

         。5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。

         。6)顯然冪函數(shù)無界。

          解題方法:換元法

          解數(shù)學(xué)題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這種方法叫換元法,換元的實質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標(biāo)準(zhǔn)型問題標(biāo)準(zhǔn)化、復(fù)雜問題簡單化,變得容易處理。

          換元法又稱輔助元素法、變量代換法。通過引進新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結(jié)論聯(lián)系起來;蛘咦?yōu)槭煜さ男问,把?fù)雜的計算和推證簡化。

          它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應(yīng)用。

        高一數(shù)學(xué)知識點總結(jié)8

          函數(shù)的值域取決于定義域和對應(yīng)法則,不論采取什么方法求函數(shù)的值域都應(yīng)先考慮其定義域。(2)。應(yīng)熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復(fù)雜函數(shù)值域的基礎(chǔ)。

          函數(shù)圖象知識歸納:

         。1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象。

          C上每一點的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(x,y),均在C上。即記為C={P(x,y)|y=f(x),x∈A}

          圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。

         。2)畫法

          A、描點法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對應(yīng)值并列表,以(x,y)為坐標(biāo)在坐標(biāo)系內(nèi)描出相應(yīng)的點P(x,y),最后用平滑的曲線將這些點連接起來。

          B、圖象變換法(請參考必修4三角函數(shù))

          常用變換方法有三種,即平移變換、伸縮變換和對稱變換

         。3)作用:

          1、直觀的看出函數(shù)的性質(zhì);

          2、利用數(shù)形結(jié)合的方法分析解題的思路。提高解題的速度。

          3、發(fā)現(xiàn)解題中的錯誤。

          2、快去了解區(qū)間的概念

         。1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;

         。2)無窮區(qū)間;

         。3)區(qū)間的數(shù)軸表示。

          什么叫做映射

          一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從集合A到集合B的一個映射。記作“f:AB”

          給定一個集合A到B的映射,如果a∈A,b∈B。且元素a和元素b對應(yīng),那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象

          說明:函數(shù)是一種特殊的映射,映射是一種特殊的對應(yīng):

         、偌螦、B及對應(yīng)法則f是確定的;

         、趯(yīng)法則有“方向性”,即強調(diào)從集合A到集合B的對應(yīng),它與從B到A的對應(yīng)關(guān)系一般是不同的;

         、蹖τ谟成鋐:A→B來說,則應(yīng)滿足:

          (Ⅰ)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;

          (Ⅱ)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個;

         。á螅┎灰蠹螧中的每一個元素在集合A中都有原象。

          常用的函數(shù)表示法及各自的優(yōu)點:

          函數(shù)圖象既可以是連續(xù)的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數(shù)圖象的依據(jù);2解析法:必須注明函數(shù)的定義域;3圖象法:描點法作圖要注意:確定函數(shù)的定義域;化簡函數(shù)的解析式;觀察函數(shù)的特征;4列表法:選取的自變量要有代表性,應(yīng)能反映定義域的特征。

          注意。航馕龇ǎ罕阌谒愠龊瘮(shù)值。列表法:便于查出函數(shù)值。圖象法:便于量出函數(shù)值

          補充一:分段函數(shù)(參見課本P24—25)

          在定義域的不同部分上有不同的'解析表達式的函數(shù)。在不同的范圍里求函數(shù)值時必須把自變量代入相應(yīng)的表達式。分段函數(shù)的解析式不能寫成幾個不同的方程,而就寫函數(shù)值幾種不同的表達式并用一個左大括號括起來,并分別注明各部分的自變量的取值情況。

          (1)分段函數(shù)是一個函數(shù),不要把它誤認(rèn)為是幾個函數(shù);

         。2)分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集。

          補充二:復(fù)合函數(shù)

          如果y=f(u),(u∈M),u=g(x),(x∈A),則y=f[g(x)]=F(x),(x∈A)稱為f、g的復(fù)合函數(shù)。

          例如:y=2sinXy=2cos(X2+1)

          函數(shù)單調(diào)性

         。1)增函數(shù)

          設(shè)函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當(dāng)x1

          如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當(dāng)x1

          注意:

          1、函數(shù)的單調(diào)性是在定義域內(nèi)的某個區(qū)間上的性質(zhì),是函數(shù)的局部性質(zhì);

          2、必須是對于區(qū)間D內(nèi)的任意兩個自變量x1,x2;當(dāng)x1

         。2)圖象的特點

          如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的

         。3)。函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

         。ˋ)定義法:

          任取x1,x2∈D,且x1

         。˙)圖象法(從圖象上看升降)

         。–)復(fù)合函數(shù)的單調(diào)性

          復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律如下:

          函數(shù)

          單調(diào)性

          u=g(x)

          增

          增

          減

          減

          y=f(u)

          增

          減

          增

          減

          y=f[g(x)]

          增

          減

          減

          增

          注意:

          1、函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集。

          2、還記得我們在選修里學(xué)習(xí)簡單易行的導(dǎo)數(shù)法判定單調(diào)性嗎?

          函數(shù)的奇偶性

         。1)偶函數(shù)

          一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(—x)=f(x),那么f(x)就叫做偶函數(shù)。

         。2)奇函數(shù)

          一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(—x)=—f(x),那么f(x)就叫做奇函數(shù)。

          注意:

          1、函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);函數(shù)可能沒有奇偶性,也可能既是奇函數(shù)又是偶函數(shù)。

          2、由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內(nèi)的任意一個x,則—x也一定是定義域內(nèi)的一個自變量(即定義域關(guān)于原點對稱)。

         。3)具有奇偶性的函數(shù)的圖象的特征

          偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱。

          總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:

          1、首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點對稱;

          2、確定f(—x)與f(x)的關(guān)系;

          3、作出相應(yīng)結(jié)論:若f(—x)=f(x)或f(—x)—f(x)=0,則f(x)是偶函數(shù);若f(—x)=—f(x)或f(—x)+f(x)=0,則f(x)是奇函數(shù)。

        高一數(shù)學(xué)知識點總結(jié)9

          集合的運算

          1。交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集。

          記作AB(讀作A交B),即AB={x|xA,且xB}。

          2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:AB(讀作A并B),即AB={x|xA,或xB}。

          3、交集與并集的'性質(zhì):AA=A,A=,AB=BA,AA=A,A=A,AB=BA。

          4、全集與補集

          (1)補集:設(shè)S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

          (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

          (3)性質(zhì):

         、臗U(CUA)=A

          ⑵(CUA)

         、(CUA)A=U

        高一數(shù)學(xué)知識點總結(jié)10

          【基本初等函數(shù)】

          一、指數(shù)函數(shù)

          (一)指數(shù)與指數(shù)冪的運算

          1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

          當(dāng)是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負(fù)數(shù)的次方根是一個負(fù)數(shù)。此時,的次方根用符號表示。式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand)。

          當(dāng)是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù)。此時,正數(shù)的正的次方根用符號表示,負(fù)的次方根用符號—表示。正的次方根與負(fù)的.次方根可以合并成±(>0)。由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。

          注意:當(dāng)是奇數(shù)時,當(dāng)是偶數(shù)時,

          2、分?jǐn)?shù)指數(shù)冪

          正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

          0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

          指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。

          3、實數(shù)指數(shù)冪的運算性質(zhì)

         。ǘ┲笖(shù)函數(shù)及其性質(zhì)

          1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R。

          注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1。

          2、指數(shù)函數(shù)的圖象和性質(zhì)

        高一數(shù)學(xué)知識點總結(jié)11

          1、點A在平面α內(nèi),記作A∈α;點B不在平面α內(nèi),記作B不屬于α。

          2、點P在直線l上,記作P∈l;點P在直線l外,記作P不屬于I。

          3、如果直線l上的所有點都在平面α內(nèi),就說直線l在平面α內(nèi),或者平面α經(jīng)過直線l,記作lα,否則說直線l在平面α外,記作l不屬于α。

          4、平面α、β相交于直線l,記作α∩β=l。

          5、直線a在平面α內(nèi)記作 aα

          公理

          公理一 如果一條直線上的兩點在一個平面內(nèi),那么這條直線上所有的點都在這個平面內(nèi)。

          公理二 如果不重合的兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線。

          公理三 經(jīng)過不在同一條直線上的三點,有且只有一個平面。

          推論

          推論一 經(jīng)過一條直線和這條直線外的一點,有且只有一個平面。

          推論二 經(jīng)過兩條相交直線,有且只有一個平面。

          推論三 經(jīng)過兩條平行直線,有且只有一個平面。

          平面相交的判定

          如果兩個平面有一個公共點,就說這兩個平面相交。

          線面平行的判定

          平面外的一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。

          平面平行的`判定

          一 如果一個平面內(nèi)有兩條相交直線都平行于另一個平面,那么這兩個平面平行。

          二 垂直于同一條直線的兩個平面平行。

          線面平行的性質(zhì)

          一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線平行。

          平面平行的性質(zhì)

          一 如果兩個平行平面同時與第三個平面相交,那么它們的交線平行。

          二 如果一條直線在一個平面內(nèi),那么與此平面平行的平面與該直線平行。

          線面垂直的判定

          一 一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。

          二 如果一條直線垂直于一個平面,那么與這條直線平行的直線垂直于該平面。

          平面垂直的判定

          一個平面過另一個平面的垂線,則這兩個平面垂直。

          線面垂直的性質(zhì)

          一 垂直于同一個平面的兩條直線平行。

          二 若直線垂直于平面,則直線垂直于這個平面的所有直線。

          三平行于同一條直線的兩條直線互相平行。

          平面垂直的性質(zhì)

          兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直。

        高一數(shù)學(xué)知識點總結(jié)12

          函數(shù)圖象

         。1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象。C上每一點的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(x,y),均在C上。即記為C={P(x,y)|y=f(x),x∈A}圖象C一般的`是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。

         。2)畫法

          A、描點法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對應(yīng)值并列表,以(x,y)為坐標(biāo)在坐標(biāo)系內(nèi)描出相應(yīng)的點P(x,y),最后用平滑的曲線將這些點連接起來。

          B、圖象變換法

          常用變換方法有三種,即平移變換、伸縮變換和對稱變換

         。3)作用:

          直觀的看出函數(shù)的性質(zhì);

          利用數(shù)形結(jié)合的方法分析解題的思路。提高解題的速度。

        高一數(shù)學(xué)知識點總結(jié)13

          1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標(biāo)及對稱軸如下表:

          解析式

          頂點坐標(biāo)

          對稱軸

          y=ax^2

          (0,0)

          x=0

          y=a(x-h)^2

          (h,0)

          x=h

          y=a(x-h)^2+k

          (h,k)

          x=h

          y=ax^2+bx+c

          (-b/2a,[4ac-b^2]/4a)

          x=-b/2a

          當(dāng)h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

          當(dāng)h<0時,則向左平行移動|h|個單位得到.

          當(dāng)h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;

          當(dāng)h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

          當(dāng)h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

          當(dāng)h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

          因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標(biāo)、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

          2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時,開口向上,當(dāng)a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

          3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時,y隨x的增大而減小;當(dāng)x≥-b/2a時,y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時,y隨x的增大而增大;當(dāng)x≥-b/2a時,y隨x的增大而減小.

          4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點:

          (1)圖象與y軸一定相交,交點坐標(biāo)為(0,c);

          (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

          (a≠0)的兩根.這兩點間的.距離AB=|x?-x?|

          當(dāng)△=0.圖象與x軸只有一個交點;

          當(dāng)△<0.圖象與x軸沒有交點.當(dāng)a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當(dāng)a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0.

          5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

          頂點的橫坐標(biāo),是取得最值時的自變量值,頂點的縱坐標(biāo),是最值的取值.

          6.用待定系數(shù)法求二次函數(shù)的解析式

          (1)當(dāng)題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應(yīng)值時,可設(shè)解析式為一般形式:

          y=ax^2+bx+c(a≠0).

          (2)當(dāng)題給條件為已知圖象的頂點坐標(biāo)或?qū)ΨQ軸時,可設(shè)解析式為頂點式:y=a(x-h)^2+k(a≠0).

          (3)當(dāng)題給條件為已知圖象與x軸的兩個交點坐標(biāo)時,可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

          7.二次函數(shù)知識很容易與其它知識綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn).

        高一數(shù)學(xué)知識點總結(jié)14

          1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù)。記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域。

          注意:2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合;3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式。

          定義域補充

          能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時列不等式組的主要依據(jù)是:(1)分式的分母不等于零;(2)偶次方根的被開方數(shù)不小于零;(3)對數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的。那么,它的定義域是使各部分都有意義的x的值組成的集合。(6)指數(shù)為零底不可以等于零(6)實際問題中的函數(shù)的定義域還要保證實際問題有意義。

          構(gòu)成函數(shù)的三要素:定義域、對應(yīng)關(guān)系和值域

          再注意:(1)構(gòu)成函數(shù)三個要素是定義域、對應(yīng)關(guān)系和值域。由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))(2)兩個函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。相同函數(shù)的'判斷方法:①表達式相同;②定義域一致(兩點必須同時具備)

          值域補充

          (1)、函數(shù)的值域取決于定義域和對應(yīng)法則,不論采取什么方法求函數(shù)的值域都應(yīng)先考慮其定義域。(2).應(yīng)熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復(fù)雜函數(shù)值域的基礎(chǔ)。

          3.函數(shù)圖象知識歸納

          (1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象。

          C上每一點的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(x,y),均在C上。即記為C={P(x,y)|y=f(x),x∈A}

          圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。

          (2)畫法

          A、描點法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對應(yīng)值并列表,以(x,y)為坐標(biāo)在坐標(biāo)系內(nèi)描出相應(yīng)的點P(x,y),最后用平滑的曲線將這些點連接起來。

          B、圖象變換法(請參考必修4三角函數(shù))

          常用變換方法有三種,即平移變換、伸縮變換和對稱變換

          (3)作用:

          1、直觀的看出函數(shù)的性質(zhì);

          2、利用數(shù)形結(jié)合的方法分析解題的思路。提高解題的速度。

        高一數(shù)學(xué)知識點總結(jié)15

          二次函數(shù)

          I.定義與定義表達式

          一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

          (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a則稱y為x的二次函數(shù)。

          二次函數(shù)表達式的右邊通常為二次三項式。

          II.二次函數(shù)的三種表達式

          一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

          頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

          交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]

          注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

          h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

          III.二次函數(shù)的圖像

          在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

          IV.拋物線的.性質(zhì)

          1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線的交點為拋物線的頂點P。

          特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)

          2.拋物線有一個頂點P,坐標(biāo)為

          P(-b/2a,(4ac-b^2)/4a)

          當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ=b^2-4ac=0時,P在x軸上。

          3.二次項系數(shù)a決定拋物線的開口方向和大小。

          當(dāng)a>0時,拋物線向上開口;當(dāng)a

          |a|越大,則拋物線的開口越小。

        【高一數(shù)學(xué)知識點總結(jié)】相關(guān)文章:

        高一數(shù)學(xué)知識點總結(jié)11-09

        高一數(shù)學(xué)知識點總結(jié)06-06

        高一數(shù)學(xué)函數(shù)知識點總結(jié)12-01

        高一數(shù)學(xué)知識點總結(jié)06-10

        高一數(shù)學(xué)必修知識點總結(jié)12-15

        高一數(shù)學(xué)必修知識點總結(jié)08-01

        高一數(shù)學(xué)集合知識點總結(jié)12-01

        高一數(shù)學(xué)的知識點歸納總結(jié)07-11

        高一數(shù)學(xué)函數(shù)的知識點總結(jié)05-28

        高一數(shù)學(xué)必修知識點總結(jié)08-30

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>