1. <rp id="zsypk"></rp>

      2. 高三數(shù)學知識點總結(jié)

        時間:2023-06-08 11:28:54 知識點總結(jié) 我要投稿

        高三數(shù)學知識點總結(jié) (合集20篇)

          總結(jié)是在一段時間內(nèi)對學習和工作生活等表現(xiàn)加以總結(jié)和概括的一種書面材料,它可以提升我們發(fā)現(xiàn)問題的能力,為此要我們寫一份總結(jié)。總結(jié)怎么寫才不會流于形式呢?下面是小編收集整理的高三數(shù)學知識點總結(jié) ,供大家參考借鑒,希望可以幫助到有需要的朋友。

        高三數(shù)學知識點總結(jié) (合集20篇)

          高三數(shù)學知識點總結(jié)1

          等式的性質(zhì):

         、俨坏仁降男再|(zhì)可分為不等式基本性質(zhì)和不等式運算性質(zhì)兩部分。

          不等式基本性質(zhì)有:

          (1)a>bb

          (2)a>b,b>ca>c(傳遞性)

          (3)a>ba+c>b+c(c∈R)

          (4)c>0時,a>bac>bc

          c<0時,a>bac

          運算性質(zhì)有:

          (1)a>b,c>da+c>b+d。

          (2)a>b>0,c>d>0ac>bd。

          (3)a>b>0an>bn(n∈N,n>1)。

          (4)a>b>0>(n∈N,n>1)。

          應(yīng)注意,上述性質(zhì)中,條件與結(jié)論的邏輯關(guān)系有兩種:“”和“”即推出關(guān)系和等價關(guān)系。一般地,證明不等式就是從條件出發(fā)施行一系列的推出變換。解不等式就是施行一系列的等價變換。因此,要正確理解和應(yīng)用不等式性質(zhì)。

         、陉P(guān)于不等式的性質(zhì)的考察,主要有以下三類問題:

          (1)根據(jù)給定的不等式條件,利用不等式的性質(zhì),判斷不等式能否成立。

          (2)利用不等式的性質(zhì)及實數(shù)的性質(zhì),函數(shù)性質(zhì),判斷實數(shù)值的大小。

          (3)利用不等式的性質(zhì),判斷不等式變換中條件與結(jié)論間的充分或必要關(guān)系。

          高中數(shù)學集合復習知識點

          任一A,B,記做AB

          AB,BA ,A=B

          AB={|A|,且|B|}

          AB={|A|,或|B|}

          Card(AB)=card(A)+card(B)-card(AB)

          (1)命題

          原命題若p則q

          逆命題若q則p

          否命題若p則q

          逆否命題若q,則p

          (2)AB,A是B成立的充分條件

          BA,A是B成立的`必要條件

          AB,A是B成立的充要條件

          1.集合元素具有①確定性;②互異性;③無序性

          2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法

          (3)集合的運算

         、貯∩(B∪C)=(A∩B)∪(A∩C)

         、贑u(A∩B)=CuA∪CuB

          Cu(A∪B)=CuA∩CuB

          (4)集合的性質(zhì)

          n元集合的字集數(shù):2n

          真子集數(shù):2n-1;

          非空真子集數(shù):2n-2

          高中數(shù)學集合知識點歸納

          1、集合的概念

          集合是數(shù)學中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。

          集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。

          2、元素與集合的關(guān)系元素與集合的關(guān)系有屬于和不屬于兩種:

          元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。

          3、集合中元素的特性

          (1)確定性:設(shè)A是一個給定的集合,_是某一具體對象,則_或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。

          (2)互異性:“集合張的元素必須是互異的”,就是說“對于一個給定的集合,它的任何兩個元素都是不同的”。

          (3)無序性:集合與其中元素的排列次序無關(guān),如集合{a,b,c}與集合{c,b,a}是同一個集合。

          4、集合的分類

          集合科根據(jù)他含有的元素個數(shù)的多少分為兩類:

          有限集:含有有限個元素的集合。如“方程3_+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個數(shù)是可數(shù)的,因此兩個集合是有限集。

          無限集:含有無限個元素的集合,如“到平面上兩個定點的距離相等于所有點”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無限集。

          特別的,我們把不含有任何元素的集合叫做空集,記錯F,如{|R|+1=0}。

          5、特定的集合的表示

          為了書寫方便,我們規(guī)定常見的數(shù)集用特定的字母表示,下面是幾種常見的數(shù)集表示方法,請牢記。

          (1)全體非負整數(shù)的集合通常簡稱非負整數(shù)集(或自然數(shù)集),記做N。

          (2)非負整數(shù)集內(nèi)排出0的集合,也稱正整數(shù)集,記做N_或N+。

          (3)全體整數(shù)的集合通常簡稱為整數(shù)集Z。

          (4)全體有理數(shù)的集合通常簡稱為有理數(shù)集,記做Q。

          (5)全體實數(shù)的集合通常簡稱為實數(shù)集,記做R。

          高三數(shù)學知識點總結(jié)2

          1、圓柱體:

          表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

          2、圓錐體:

          表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

          3、正方體

          a—邊長,S=6a2,V=a3

          4、長方體

          a—長,b—寬,c—高S=2(ab+ac+bc)V=abc

          5、棱柱

          S—底面積h—高V=Sh

          6、棱錐

          S—底面積h—高V=Sh/3

          7、棱臺

          S1和S2—上、下底面積h—高V=h[S1+S2+(S1S2)^1/2]/3

          8、擬柱體

          S1—上底面積,S2—下底面積,S0—中截面積

          h—高,V=h(S1+S2+4S0)/6

          9、圓柱

          r—底半徑,h—高,C—底面周長

          S底—底面積,S側(cè)—側(cè)面積,S表—表面積C=2πr

          S底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h

          10、空心圓柱

          R—外圓半徑,r—內(nèi)圓半徑h—高V=πh(R^2—r^2)

          11、直圓錐

          r—底半徑h—高V=πr^2h/3

          12、圓臺

          r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/3

          13、球

          r—半徑d—直徑V=4/3πr^3=πd^3/6

          14、球缺

          h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3

          15、球臺

          r1和r2—球臺上、下底半徑h—高V=πh[3(r12+r22)+h2]/6

          16、圓環(huán)體

          R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑

          V=2π2Rr2=π2Dd2/4

          17、桶狀體

          D—桶腹直徑d—桶底直徑h—桶高

          V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)

          V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

          高三數(shù)學知識點總結(jié)3

          第一部分集合

         。1)含n個元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;

         。2)注意:討論的時候不要遺忘了的情況。

          第二部分函數(shù)與導數(shù)

          1、映射:注意①第一個集合中的元素必須有象;②一對一,或多對一。

          2、函數(shù)值域的求法:①分析法;②配方法;③判別式法;④利用函數(shù)單調(diào)性;⑤換元法;⑥利用均值不等式;⑦利用數(shù)形結(jié)合或幾何意義(斜率、距離、絕對值的意義等);⑧利用函數(shù)有界性(、、等);⑨導數(shù)法

          3、復合函數(shù)的有關(guān)問題

         。1)復合函數(shù)定義域求法:

         、偃鬴(x)的.定義域為〔a,b〕,則復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出

         、谌鬴[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域。

         。2)復合函數(shù)單調(diào)性的判定:

          ①首先將原函數(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);

         、诜謩e研究內(nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;

          ③根據(jù)“同性則增,異性則減”來判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。

          注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。

          4、分段函數(shù):值域(最值)、單調(diào)性、圖象等問題,先分段解決,再下結(jié)論。

          5、函數(shù)的奇偶性

         、藕瘮(shù)的定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要條件;

         、剖瞧婧瘮(shù);

         、鞘桥己瘮(shù);

         、绕婧瘮(shù)在原點有定義,則;

         、稍陉P(guān)于原點對稱的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;

         。6)若所給函數(shù)的解析式較為復雜,應(yīng)先等價變形,再判斷其奇偶性;

          1、對于函數(shù)f(x),如果對于定義域內(nèi)任意一個x,都有f(—x)=—f(x),那么f(x)為奇函數(shù);

          2、對于函數(shù)f(x),如果對于定義域內(nèi)任意一個x,都有f(—x)=f(x),那么f(x)為偶函數(shù);

          3、一般地,對于函數(shù)y=f(x),定義域內(nèi)每一個自變量x,都有f(a+x)=2b—f(a—x),則y=f(x)的圖象關(guān)于點(a,b)成中心對稱;

          4、一般地,對于函數(shù)y=f(x),定義域內(nèi)每一個自變量x都有f(a+x)=f(a—x),則它的圖象關(guān)于x=a成軸對稱。

          5、函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);

          6、由函數(shù)奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內(nèi)的任意一個x,則—x也一定是定義域內(nèi)的一個自變量(即定義域關(guān)于原點對稱)。

          高三數(shù)學知識點總結(jié)4

          三角函數(shù)。

          注意歸一公式、誘導公式的正確性。

          數(shù)列題。

          1、證明一個數(shù)列是等差(等比)數(shù)列時,最后下結(jié)論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;

          2、最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學歸納法(用數(shù)學歸納法時,當n=k+1時,一定利用上n=k時的假設(shè),否則不正確。利用上假設(shè)后,如何把當前的式子轉(zhuǎn)化到目標式子,一般進行適當?shù)姆趴s,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結(jié)論時一定寫上綜上:由①②得證;

          3、證明不等式時,有時構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單

          立體幾何題。

          1、證明線面位置關(guān)系,一般不需要去建系,更簡單;

          2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;

          3、注意向量所成的角的.余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

          概率問題。

          1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數(shù);

          2、搞清是什么概率模型,套用哪個公式;

          3、記準均值、方差、標準差公式;

          4、求概率時,正難則反(根據(jù)p1+p2+……+pn=1);

          5、注意計數(shù)時利用列舉、樹圖等基本方法;

          6、注意放回抽樣,不放回抽樣;

          正弦、余弦典型例題。

          1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

          2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°

          3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°

          4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

          5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點,EF⊥BC,垂足為F,求sin∠EBF的值。

          正弦、余弦解題訣竅。

          1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。

          2、已知三邊,或兩邊及其夾角用余弦定理

          3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負,還是為零,就可以確定是鈍角。直角還是銳角。

          高三數(shù)學知識點總結(jié)5

          1.不等式的定義

          在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學符號連接兩個數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式.

          2.比較兩個實數(shù)的大小

          兩個實數(shù)的大小是用實數(shù)的運算性質(zhì)來定義的,

          有a-b>0?;a-b=0?;a-b<0?.

          另外,若b>0,則有>1?;=1?;<1?.

          概括為:作差法,作商法,中間量法等.

          3.不等式的性質(zhì)

          (1)對稱性:a>b?;

          (2)傳遞性:a>b,b>c?;

          (3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

          (4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

          (5)可乘方:a>b>0?(n∈N,n≥2);

          (6)可開方:a>b>0?(n∈N,n≥2).

          復習指導

          1.“一個技巧”作差法變形的`技巧:作差法中變形是關(guān)鍵,常進行因式分解或配方.

          2.“一種方法”待定系數(shù)法:求代數(shù)式的范圍時,先用已知的代數(shù)式表示目標式,再利用多項式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標式的范圍.

          3.“兩條常用性質(zhì)”

          (1)倒數(shù)性質(zhì):①a>b,ab>0?<;②a<0

         、踑>b>0,0;④0

          (2)若a>b>0,m>0,則

         、僬娣謹(shù)的性質(zhì):<;>(b-m>0);

          高三數(shù)學知識點總結(jié)6

          1、三類角的求法:

          ①找出或作出有關(guān)的角。

         、谧C明其符合定義,并指出所求作的角。

         、塾嬎愦笮。ń庵苯侨切,或用余弦定理)。

          2、正棱柱——底面為正多邊形的直棱柱

          正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。

          正棱錐的計算集中在四個直角三角形中:

          3、怎樣判斷直線l與圓C的位置關(guān)系?

          圓心到直線的距離與圓的半徑比較。

          直線與圓相交時,注意利用圓的“垂徑定理”。

          4、對線性規(guī)劃問題:

          作出可行域,作出以目標函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標函數(shù)的最值。

          培養(yǎng)興趣是關(guān)鍵。學生對數(shù)學產(chǎn)生了興趣,自然有動力去鉆研。如何培養(yǎng)興趣呢?

          (1)欣賞數(shù)學的美感

          比如幾何圖形中的對稱、變換前后的不變量、概念的嚴謹、邏輯的嚴密……

          通過對旋轉(zhuǎn)變換及其不變量的討論,我們可以證明反比例函數(shù)、“對勾函數(shù)”的圖象都是雙曲線——平面上到兩個定點的距離之差的絕對值為定值(小于兩個定點之間的距離)的點的.集合。

          (2)注意到數(shù)學在實際生活中的應(yīng)用。

          例如和日常生活息息相關(guān)的等額本金、等額本息兩種不同的還款方式,用數(shù)列的知識就可以理解、學好數(shù)學,是現(xiàn)代公民的基本素養(yǎng)之一啊

         。3)采用靈活的教學手段,與時俱進。

          利用多種技術(shù)手段,聲、光、電多管齊下,老師可以借此把一些知識講得更具體形象,學生也更容易接受,理解更深。

          (4)適當看一些科普類的書籍和文章。

          比如:學圓錐曲線的時候,可以看看一些建筑物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對此都有介紹;還有圓錐曲線光學性質(zhì)的應(yīng)用,這方面的文章也不少。

          高三數(shù)學知識點總結(jié)7

          1.數(shù)列的定義

          按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項.

          (1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.

          (2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….

          (4)數(shù)列的項與它的項數(shù)是不同的,數(shù)列的項是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當于f(n),而項數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當于f(n)中的n.

          (5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的`次序排列都是同一個集合.

          2.數(shù)列的分類

          (1)根據(jù)數(shù)列的項數(shù)多少可以對數(shù)列進行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時,對于有窮數(shù)列,要把末項寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列.

          (2)按照項與項之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動數(shù)列、常數(shù)列.

          3.數(shù)列的通項公式

          數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的,

          這兩個通項公式形式上雖然不同,但表示同一個數(shù)列,正像每個函數(shù)關(guān)系不都能用解析式表達出來一樣,也不是每個數(shù)列都能寫出它的通項公式;有的數(shù)列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數(shù)列前面的有限項,無其他說明,數(shù)列是不能確定的,通項公式更非.如:數(shù)列1,2,3,4,…,

          由公式寫出的后續(xù)項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據(jù)數(shù)列的構(gòu)成規(guī)律,多觀察分析,真正找到數(shù)列的內(nèi)在規(guī)律,由數(shù)列前幾項寫出其通項公式,沒有通用的方法可循.

          再強調(diào)對于數(shù)列通項公式的理解注意以下幾點:

          (1)數(shù)列的通項公式實際上是一個以正整數(shù)集N_或它的有限子集{1,2,…,n}為定義域的函數(shù)的表達式.

          (2)如果知道了數(shù)列的通項公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個數(shù)列的各項;同時,用數(shù)列的通項公式也可判斷某數(shù)是否是某數(shù)列中的一項,如果是的話,是第幾項.

          (3)如所有的函數(shù)關(guān)系不一定都有解析式一樣,并不是所有的數(shù)列都有通項公式.

          如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構(gòu)成的數(shù)列1,1.4,1.41,1.414,1.4142,…就沒有通項公式.

          (4)有的數(shù)列的通項公式,形式上不一定是的,正如舉例中的:

          (5)有些數(shù)列,只給出它的前幾項,并沒有給出它的構(gòu)成規(guī)律,那么僅由前面幾項歸納出的數(shù)列通項公式并不.

          4.數(shù)列的圖象

          對于數(shù)列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應(yīng)關(guān)系:

          序號:1234567

          項:45678910

          這就是說,上面可以看成是一個序號集合到另一個數(shù)的集合的映射.因此,從映射、函數(shù)的觀點看,數(shù)列可以看作是一個定義域為正整集N(或它的有限子集{1,2,3,…,n})的函數(shù),當自變量從小到大依次取值時,對應(yīng)的一列函數(shù)值.這里的函數(shù)是一種特殊的函數(shù),它的自變量只能取正整數(shù).

          由于數(shù)列的項是函數(shù)值,序號是自變量,數(shù)列的通項公式也就是相應(yīng)函數(shù)和解析式.

          數(shù)列是一種特殊的函數(shù),數(shù)列是可以用圖象直觀地表示的

          數(shù)列用圖象來表示,可以以序號為橫坐標,相應(yīng)的項為縱坐標,描點畫圖來表示一個數(shù)列,在畫圖時,為方便起見,在平面直角坐標系兩條坐標軸上取的單位長度可以不同,從數(shù)列的圖象表示可以直觀地看出數(shù)列的變化情況,但不精確.

          把數(shù)列與函數(shù)比較,數(shù)列是特殊的函數(shù),特殊在定義域是正整數(shù)集或由以1為首的有限連續(xù)正整數(shù)組成的集合,其圖象是無限個或有限個孤立的點.

          5.遞推數(shù)列

          一堆鋼管,共堆放了七層,自上而下各層的鋼管數(shù)構(gòu)成一個數(shù)列:4,5,6,7,8,9,10.①

          數(shù)列①還可以用如下方法給出:自上而下第一層的鋼管數(shù)是4,以下每一層的鋼管數(shù)都比上層的鋼管數(shù)多1。

          高三數(shù)學知識點總結(jié)8

          1.等差數(shù)列的定義

          如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.

          2.等差數(shù)列的'通項公式

          若等差數(shù)列{an}的首項是a1,公差是d,則其通項公式為an=a1+(n-1)d.

          3.等差中項

          如果A=(a+b)/2,那么A叫做a與b的等差中項.

          4.等差數(shù)列的常用性質(zhì)

          (1)通項公式的推廣:an=am+(n-m)d(n,m∈N_).

          (2)若{an}為等差數(shù)列,且m+n=p+q,

          則am+an=ap+aq(m,n,p,q∈N_).

          (3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列.

          (4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列.

          (5)S2n-1=(2n-1)an.

          (6)若n為偶數(shù),則S偶-S奇=nd/2;

          若n為奇數(shù),則S奇-S偶=a中(中間項).

          注意:

          一個推導

          利用倒序相加法推導等差數(shù)列的前n項和公式:

          Sn=a1+a2+a3+…+an,①

          Sn=an+an-1+…+a1,②

         、+②得:Sn=n(a1+an)/2

          兩個技巧

          已知三個或四個數(shù)組成等差數(shù)列的一類問題,要善于設(shè)元.

          (1)若奇數(shù)個數(shù)成等差數(shù)列且和為定值時,可設(shè)為…,a-2d,a-d,a,a+d,a+2d,….

          (2)若偶數(shù)個數(shù)成等差數(shù)列且和為定值時,可設(shè)為…,a-3d,a-d,a+d,a+3d,…,其余各項再依據(jù)等差數(shù)列的定義進行對稱設(shè)元.

          四種方法

          等差數(shù)列的判斷方法

          (1)定義法:對于n≥2的任意自然數(shù),驗證an-an-1為同一常數(shù);

          (2)等差中項法:驗證2an-1=an+an-2(n≥3,n∈N_)都成立;

          (3)通項公式法:驗證an=pn+q;

          (4)前n項和公式法:驗證Sn=An2+Bn.

          注:后兩種方法只能用來判斷是否為等差數(shù)列,而不能用來證明等差數(shù)列.

          高三數(shù)學知識點總結(jié)9

          不等式的解集:

         、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。

         、谝粋含有未知數(shù)的不等式的所有解,組成這個不等式的解集。

         、矍蟛坏仁浇饧.過程叫做解不等式。

          不等式的判定:

         、俪R姷牟坏忍栍小>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

         、谠诓坏仁健癮>b”或“a

         、鄄坏忍柕拈_口所對的數(shù)較大,不等號的尖頭所對的數(shù)較小;

         、茉诹胁坏仁綍r,一定要注意不等式關(guān)系的關(guān)鍵字,如:正數(shù)、非負數(shù)、不大于、小于等等。

          任一x?A,x?B,記做AB

          AB,BAA=B

          AB={x|x?A,且x?B}

          AB={x|x?A,或x?B}

          Card(AB)=card(A)+card(B)-card(AB)

          (1)命題

          原命題若p則q

          逆命題若q則p

          否命題若p則q

          逆否命題若q,則p

          (2)AB,A是B成立的充分條件

          BA,A是B成立的必要條件

          AB,A是B成立的充要條件

          1.集合元素具有①確定性;②互異性;③無序性

          2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法

          (3)集合的運算

         、貯∩(B∪C)=(A∩B)∪(A∩C)

         、贑u(A∩B)=CuA∪CuB

          Cu(A∪B)=CuA∩CuB

          (4)集合的性質(zhì)

          n元集合的字集數(shù):2n

          真子集數(shù):2n-1;

          非空真子集數(shù):2n-2

          高三數(shù)學知識點總結(jié)10

          復數(shù)的概念:

          形如a+bi(a,b∈R)的數(shù)叫復數(shù),其中i叫做虛數(shù)單位。全體復數(shù)所成的集合叫做復數(shù)集,用字母C表示。

          復數(shù)的表示:

          復數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數(shù)的代數(shù)形式,其中a叫復數(shù)的實部,b叫復數(shù)的'虛部。

          復數(shù)的幾何意義:

          (1)復平面、實軸、虛軸:

          點Z的橫坐標是a,縱坐標是b,復數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復數(shù)的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)

          (2)復數(shù)的幾何意義:復數(shù)集C和復平面內(nèi)所有的點所成的集合是一一對應(yīng)關(guān)系,即

          這是因為,每一個復數(shù)有復平面內(nèi)惟一的一個點和它對應(yīng);反過來,復平面內(nèi)的每一個點,有惟一的一個復數(shù)和它對應(yīng)。

          這就是復數(shù)的一種幾何意義,也就是復數(shù)的另一種表示方法,即幾何表示方法。

          復數(shù)的模:

          復數(shù)z=a+bi(a、b∈R)在復平面上對應(yīng)的點Z(a,b)到原點的距離叫復數(shù)的模,記為|Z|,即|Z|=

          虛數(shù)單位i:

          (1)它的平方等于-1,即i2=-1;

          (2)實數(shù)可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立

          (3)i與-1的關(guān)系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。

          (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

          復數(shù)模的性質(zhì):

          復數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:

          對于復數(shù)a+bi(a、b∈R),當且僅當b=0時,復數(shù)a+bi(a、b∈R)是實數(shù)a;當b≠0時,復數(shù)z=a+bi叫做虛數(shù);當a=0且b≠0時,z=bi叫做純虛數(shù);當且僅當a=b=0時,z就是實數(shù)0。

          高三數(shù)學知識點總結(jié)11

          高考數(shù)學必考知識點歸納必修一:

          1、集合與函數(shù)的概念(這部分知識抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用(比較抽象,較難理解)

          高考數(shù)學必考知識點歸納必修二:

          1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角。

          這部分知識是高一學生的難點,比如:一個角實際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學生的'立體意識較強。這部分知識高考占22---27分

          2、直線方程:高考時不單獨命題,易和圓錐曲線結(jié)合命題

          3、圓方程

          高考數(shù)學必考知識點歸納必修三:

          1、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計:3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學占到5分。

          高考數(shù)學必考知識點歸納必修四:

          1、三角函數(shù):(圖像、性質(zhì)、高中重難點,)必考大題:15---20分,并且經(jīng)常和其他函數(shù)混合起來考查。

          2、平面向量:高考不單獨命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分。

          高考數(shù)學必考知識點歸納必修五:

          1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學占到13分左右2、數(shù)列:高考必考,17---22分3、不等式:(線性規(guī)劃,聽課時易理解,但做題較復雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨命題,一般和函數(shù)結(jié)合求最值、解集。

          高考數(shù)學必考知識點歸納文科選修:

          選修1--1:重點:高考占30分

          1、邏輯用語:一般不考,若考也是和集合放一塊考2、圓錐曲線:3、導數(shù)、導數(shù)的應(yīng)用(高考必考)

          選修1--2:

          1、統(tǒng)計:2、推理證明:一般不考,若考會是填空題3、復數(shù):(新課標比老課本難的多,高考必考內(nèi)容)。

          高考數(shù)學必考知識點歸納理科選修:

          選修2--1:1、邏輯用語2、圓錐曲線3、空間向量:(利用空間向量可以把立體幾何做題簡便化)選修2--2:1、導數(shù)與微積分2、推理證明:一般不考3、復數(shù)

          選修2--3:1、計數(shù)原理:(排列組合、二項式定理)掌握這部分知識點需要大量做題找規(guī)律,無技巧。高考必考,10分2、隨機變量及其分布:不單獨命題3、統(tǒng)計:

          高考的知識板塊

          集合與簡單邏輯:5分或不考

          函數(shù):高考60分:①、指數(shù)函數(shù)②對數(shù)函數(shù)③二次函數(shù)④三次函數(shù)⑤三角函數(shù)⑥抽象函數(shù)(無函數(shù)表達式,不易理解,難點)

          平面向量與解三角形

          立體幾何:22分左右

          不等式:(線性規(guī)則)5分必考

          數(shù)列:17分(一道大題+一道選擇或填空)易和函數(shù)結(jié)合命題

          平面解析幾何:(30分左右)

          計算原理:10分左右

          概率統(tǒng)計:12分----17分

          復數(shù):5分

          高三數(shù)學知識點總結(jié)12

          Card(AB)=card(A)+card(B)-card(AB)

          (1)命題

          原命題若p則q

          逆命題若q則p

          否命題若p則q

          逆否命題若q,則p

          (2)AB,A是B成立的充分條件

          BA,A是B成立的必要條件

          AB,A是B成立的充要條件

          1.集合元素具有①確定性;②互異性;③無序性

          2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法

          (3)集合的運算

         、貯∩(B∪C)=(A∩B)∪(A∩C)

          ②Cu(A∩B)=CuA∪CuB

          Cu(A∪B)=CuA∩CuB

          (4)集合的性質(zhì)

          n元集合的字集數(shù):2n

          真子集數(shù):2n-1;

          非空真子集數(shù):2n-2

          高三數(shù)學知識點2

          兩個復數(shù)相等的定義:

          如果兩個復數(shù)的實部和虛部分別相等,那么我們就說這兩個復數(shù)相等,即:如果a,b,c,d∈R,那么a+bi=c+di

          a=c,b=d。特殊地,a,b∈R時,a+bi=0

          a=0,b=0.

          復數(shù)相等的充要條件,提供了將復數(shù)問題化歸為實數(shù)問題解決的途徑。

          復數(shù)相等特別提醒:

          一般地,兩個復數(shù)只能說相等或不相等,而不能比較大小。如果兩個復數(shù)都是實數(shù),就可以比較大小,也只有當兩個復數(shù)全是實數(shù)時才能比較大小。

          解復數(shù)相等問題的.方法步驟:

          (1)把給的復數(shù)化成復數(shù)的標準形式;

          (2)根據(jù)復數(shù)相等的充要條件解之。

          高三數(shù)學知識點總結(jié)13

          1、課前預習:首先上課前要做預習,課前預習能提前了解將要學習的知識。

          2、記筆記:指的是課堂筆記,每節(jié)課時間有限,老師一般講的都是精華部分。

          3、課后復習:通預習一樣,也是行之有效的`方法。

          4、涉獵課外習題:多涉獵一些課外習題,學習它們的解題思路和方法。

          5、學會歸類總結(jié):學習數(shù)學記得東西很多,如果單純的記憶每個公式,不但增加記憶量而且容易忘。

          6、建立糾錯本:把經(jīng)常出錯的題目集中在一起。

          7、寫考試總結(jié):考試總結(jié)可以幫助找出學習之中不足之處,以及知識的薄弱環(huán)節(jié)。

          8、培養(yǎng)學習興趣:興趣是最好的老師,只有有了興趣才會自主自發(fā)的進行學習,學習效率才會提高。

          高三數(shù)學知識點總結(jié)14

          高三數(shù)學每輪復習要領(lǐng)

          一、高三數(shù)學復習,大體可分四個階段,每一個階段的復習方法與側(cè)重點都各不相同,要求也層層加深,因此,同學們在每一個階段都應(yīng)該有不同的復習方案,采用不同的方法和策略。

          1.第一階段,即第一輪復習,也稱“知識篇”,大致就是高三第一學期。在這一階段,老師將帶領(lǐng)同學們重溫高一、高二所學課程,但這絕不只是以前所學知識的簡單重復,而是站在更高的角度,對舊知識產(chǎn)生全新認識的重要過程。因為在高一、高二時,老師是以知識點為主線索,依次傳授講解的,由于后面的相關(guān)知識還沒有學到,不能進行縱向聯(lián)系,所以,你學的往往時零碎的、散亂的知識點,而在第一輪復習時,老師的主線索是知識的縱向聯(lián)系與橫向聯(lián)系,以章節(jié)為單位,將那些零碎的、散亂的知識點串聯(lián)起來,并將他們系統(tǒng)化、綜合化,側(cè)重點在于各個知識點之間的融會貫通。所以大家在復習過程中應(yīng)做到: ①立足課本,迅速激活已學過的各個知識點。(建議大家在高三前的一個暑假里通讀高一、高二教材) ②注意所做題目使用知識點覆蓋范圍的變化,有意識地思考、研究這些知識點在課本中所處的地位和相互之間的聯(lián)系。注意到老師選題的綜合性在不斷地加強。 ③明了課本從前到后的知識結(jié)構(gòu),將整個知識體系框架化、網(wǎng)絡(luò)化。能提煉解題所用知識點,并說出其出處。 ④經(jīng)常將使用最多的知識點總結(jié)起來,研究重點知識所在章節(jié),并了解各章節(jié)在課本中的地位和作用。

          2.第二輪復習,通常稱為“方法篇”。大約從第二學期開學到四月中旬結(jié)束。在這一階段,老師將以方法、技巧為主線,主要研究數(shù)學思想方法。老師的復習,不再重視知識結(jié)構(gòu)的先后次序,而是以提高同學們解決問題、分析問題的能力為目的,提出、分析、解決問題的思路用“配方法、待定系數(shù)法、換元法、數(shù)形結(jié)合、分類討論”等方法解決一類問題、一系列問題。同學們應(yīng)做到: ①主動將有關(guān)知識進行必要的拆分、加工重組。找出某個知識點會在一系列題目中出現(xiàn),某種方法可以解決一類問題。 ②分析題目時,由原來的注重知識點,漸漸地向探尋解題的思路、方法轉(zhuǎn)變。 ③從現(xiàn)在開始,解題一定要非常規(guī)范,俗語說:“不怕難題不得分,就怕每題都扣分”,所以大家務(wù)必將解題過程寫得層次分明,結(jié)構(gòu)完整。 ④適當選做各地模擬試卷和以往高考題,逐漸弄清高考考查的范圍和重點。

          3.第三輪復習,大約一個月的時間,也稱為“策略篇”。老師主要講述“選擇題的解發(fā)、填空題的解法、應(yīng)用題的解法、探究性命題的解法、綜合題的解法、創(chuàng)新性題的解法”,教給同學們一些解題的特殊方法,特殊技巧,以提高同學們的解題速度和應(yīng)對策略為目的。同學們應(yīng)做到: ①解題時,會從多種方法中選擇最省時、最省事的方法,力求多方位,多角度的思考問題,逐漸適應(yīng)高考對“減縮思維”的要求。 ②注意自己的解題速度,審題要慢,思維要全,下筆要準,答題要快。 ③養(yǎng)成在解題過程中分析命題者的意圖的習慣,思考命題者是怎樣將考查的知識點有機的結(jié)合起來的,有那些思想方法被復合在其中,對命題者想要考我什么,我應(yīng)該會什么,做到心知肚明。

          4.最后,就是沖刺階段,也稱為“備考篇”。在這一階段,老師會將復習的主動權(quán)交給你自己。以前,學習的重點、難點、方法、思路都是以老師的意志為主線,但是,現(xiàn)在你要直接、主動的研讀《考試說明》,研究近年來的高考試題,掌握高考信息、命題動向,并做到: ①檢索自己的知識系統(tǒng),緊抓薄弱點,并針對性地做專門的訓練和突擊措施(可請老師專門為你拎一拎);鎖定重中之重,掌握最重要的知識到爐火純青的地步。 ②抓思維易錯點,注重典型題型。 ③瀏覽自己以前做過的習題、試卷,回憶自己學習相關(guān)知識的歷程,做好“再”糾錯工作。 ④博覽群書,博聞強記,使自己見多識廣,注意那些背景新、方法新,知識具有代表性的問題。 ⑤不做難題、偏題、怪題,保持情緒穩(wěn)定,充滿信心,準備應(yīng)考。

          二、高三數(shù)學復習中的幾個注意點

          1.復習資料要精,不可超過兩套,使用過程中,始終注重其系統(tǒng)性。千萬不要貪多,資料多了,不但使自己身陷題海,不能自拔,而且會因為你的顧此失彼,而使知識體系得不到延續(xù)。

          2.有的同學漠視自己作業(yè)和考試中出現(xiàn)的錯誤,將他們簡單的歸結(jié)為粗心大意。這是很嚴重的錯誤想法,我們的錯誤都有其必然性,一定要究根問底,找出真正的原因,及時改正,并記住這樣的教訓。

          3.千萬不要以為“高考以能力立意”,就是要去鉆難題、偏題、怪題。這里的能力是指:思維能力,對現(xiàn)實生活的觀察分析力,創(chuàng)造性的想象能力,探究性實驗動手能力,理解運用實際問題的能力,分析和解決問題的探究創(chuàng)新能力,處理、運用信息的`能力,新材料、新情景、新問題應(yīng)變理解能力,其重點是概念觀點形成和規(guī)律的認識過程,它往往蘊藏在最簡單、最基礎(chǔ)的題目活事實之中。不是鉆牛角尖能鉆出來的能力。

          4.合理看待來自老師和社會各界的猜題、壓題信息,不可迷信。因為,他們也不是神,我們上了考場只能憑自己的實力,憑自己的智慧去打拼,所以,我們應(yīng)該踏踏實實、認認真真做好復習應(yīng)考工作。

          高中數(shù)學學習方法

          1一本書

          就是教科書,這是基礎(chǔ)的基礎(chǔ),但是被中等生最忽視的。筆者高中時,先看教科書再做題,所以往往同學做到第5題,我才剛開始,但當我做了20題時,反過來發(fā)現(xiàn)同學做到第17題,這就是磨刀不誤砍柴工。最后不僅省時,而且比同學多鞏固了書本知識,然后從書本原理到題目及從題目到原理走了一個來回,培養(yǎng)了以理論解決實際問題的能力,提高了以不變應(yīng)萬變的能力。一句話,省時又高效。為擺脫題海打下了基礎(chǔ)。

          2兩方法

          1)找到已知與求解的“橋梁”。主要針對中等題及難題,利用已知,推一步或幾步,完成轉(zhuǎn)化,從求解往后推幾步,看看還缺什么,再去回憶腦袋里的知識點及解過的經(jīng)典題,把已知與求解的差距補上,這個就是“橋梁”原理。

          2)有些題按上述方法還遇到困難,可能需要另辟蹊徑,如從定義出發(fā)或需要再審視已知條件,可能還未用盡已知條件或有些暗含的已知條件未挖掘出來。

          3三部曲:

          1)先看教科書,真正搞懂課本例題,并做課后練習(雖然看上去很簡單,但是實質(zhì)上就是要你檢查自己是否真的掌握這些基本知識點.),

          2)利用歷年高考真題, 這些題很有價值,先掩著答案,根據(jù)你之前課本學的基礎(chǔ)內(nèi)容,嘗試自己親自動手做一下,再對答案,明白其原理.,真正弄懂它,看看能否舉一反三,可問老師及同學,也可請家教,最后達到觸類旁通。

          3)同步練習,必須緊跟課程,不能賴下來的,一步一個腳印去做.

          數(shù)學知識點較多,容易忘記,但以上的步驟你都能做到的話,那么就不那么容易遺忘,即使忘記,你也可以翻閱以前的內(nèi)容重新鞏固一遍.

          4四層次

          1)

          基本知識點。含概念、定義、定理、公式等,這是基礎(chǔ),這個不過關(guān),其他免談。筆者平時先看教科書,就是這個道理。--這部分,雖然重要,但筆者輔導不作重點,只是檢查與提醒,因為可自學及問自己老師同學。會這個的人太容易找到了。

          2)

          數(shù)學思想與數(shù)學技能。數(shù)學思想如方程函數(shù)思想、數(shù)形結(jié)合思想、對稱思想、分類討論思想,化歸思想;數(shù)學技能如配方、待定系數(shù)法等。筆者由于這方面強,故多年不做題或見到陌生題均不慌,因為這些思想能力是深入骨髓的。

          3)

          數(shù)學模型與中間結(jié)論。數(shù)學模型就是具體題目的解題套路,中間結(jié)論可使學生減少解題步驟,加快解題速度,減少出錯機會。這些有了2數(shù)學思想與數(shù)學技能,就能自己推導出來,但要注意總結(jié)與積累。

          4)

          特殊解題技巧。這個要求以上3方面都較強,聰明加靈感,平時善于總結(jié)與歸納,看透事物本源,熟能生巧,觸類旁通。故對中等生不作過高要求,所謂可遇而不可求。筆者對高考實考試卷的選擇與填空,特別是選擇,有相當部分,有的試卷甚至一半以上可在題讀完后,幾秒得出正確答案。憑的就是這個本事。

          高三數(shù)學知識點總結(jié)15

          1.課程內(nèi)容:

          必修課程由5個模塊組成:

          必修1:集合、函數(shù)概念與基本初等函數(shù)(指、對、冪函數(shù))

          必修2:立體幾何初步、平面解析幾何初步。

          必修3:算法初步、統(tǒng)計、概率。

          必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。

          必修5:解三角形、數(shù)列、不等式。

          以上是每一個高中學生所必須學習的。

          上述內(nèi)容覆蓋了高中階段傳統(tǒng)的數(shù)學基礎(chǔ)知識和基本技能的主要部分,其中包括集合、函數(shù)、數(shù)列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎(chǔ)的同時,進一步強調(diào)了這些知識的發(fā)生、發(fā)展過程和實際應(yīng)用,而不在技巧與難度上做過高的要求。

          此外,基礎(chǔ)內(nèi)容還增加了向量、算法、概率、統(tǒng)計等內(nèi)容。

          2.重難點及考點:

          重點:函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導數(shù)

          難點:函數(shù)、圓錐曲線

          高考相關(guān)考點:

         、偶吓c簡易邏輯:集合的概念與運算、簡易邏輯、充要條件

         、坪瘮(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、函數(shù)的應(yīng)用

         、菙(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的應(yīng)用

         、热呛瘮(shù):有關(guān)概念、同角關(guān)系與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應(yīng)用

         、善矫嫦蛄浚河嘘P(guān)概念與初等運算、坐標運算、數(shù)量積及其應(yīng)用

         、什坏仁剑焊拍钆c性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應(yīng)用

          ⑺直線和圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系

         、虉A錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應(yīng)用

          ⑼直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量

          ⑽排列、組合和概率:排列、組合應(yīng)用題、二項式定理及其應(yīng)用

         、细怕逝c統(tǒng)計:概率、分布列、期望、方差、抽樣、正態(tài)分布

         、袑(shù):導數(shù)的概念、求導、導數(shù)的應(yīng)用

          ⒀復數(shù):復數(shù)的概念與運算

         、僬忮F各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).

         、谡忮F的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個直角三角形.

         、翘厥饫忮F的頂點在底面的射影位置:

          ①棱錐的側(cè)棱長均相等,則頂點在底面上的射影為底面多邊形的外心.

         、诶忮F的側(cè)棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心.

         、劾忮F的各側(cè)面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內(nèi)心.

         、芾忮F的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內(nèi)心.

         、萑忮F有兩組對棱垂直,則頂點在底面的射影為三角形垂心.

         、奕忮F的三條側(cè)棱兩兩垂直,則頂點在底面上的射影為三角形的垂心.

         、呙總四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等于球半徑;

         、嗝總四面體都有內(nèi)切球,球心

          是四面體各個二面角的平分面的交點,到各面的距離等于半徑.

          [注]:i.各個側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個側(cè)面的等腰三角形不知是否全等)

          ii.若一個三角錐,兩條對角線互相垂直,則第三對角線必然垂直.

          簡證:AB⊥CD,AC⊥BD

          BC⊥AD.令得,已知則.

          iii.空間四邊形OABC且四邊長相等,則順次連結(jié)各邊的中點的四邊形一定是矩形.

          iv.若是四邊長與對角線分別相等,則順次連結(jié)各邊的中點的四邊是一定是正方形.

          簡證:取AC中點,則平面90°易知EFGH為平行四邊形

          EFGH為長方形.若對角線等,則為正方形.

          立體幾何初步

          (1)棱柱:

          定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

          分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。

          表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱

          幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

          (2)棱錐

          定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

          分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等

          表示:用各頂點字母,如五棱錐

          幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

          (3)棱臺:

          定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

          分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等

          表示:用各頂點字母,如五棱臺

          幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點

          (4)圓柱:

          定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體

          幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。

          (5)圓錐:

          定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體

          幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。

          (6)圓臺:

          定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

          幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。

          (7)球體:

          定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

          幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

          (1)先看“充分條件和必要條件”

          當命題“若p則q”為真時,可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。

          但為什么說q是p的必要條件呢?

          事實上,與“p=>q”等價的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。

          (2)再看“充要條件”

          若有p=>q,同時q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作p<=>q

          (3)定義與充要條件

          數(shù)學中,只有A是B的充要條件時,才用A去定義B,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。

          顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。

          “充要條件”有時還可以改用“當且僅當”來表示,其中“當”表示“充分”。“僅當”表示“必要”。

          (4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。

          1.函數(shù)的.奇偶性

          (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

          (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

          (3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);

          (4)若所給函數(shù)的解析式較為復雜,應(yīng)先化簡,再判斷其奇偶性;

          (5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

          2.復合函數(shù)的有關(guān)問題

          (1)復合函數(shù)定義域求法:若已知的定義域為[a,b],其復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

          (2)復合函數(shù)的單調(diào)性由“同增異減”判定;

          3.函數(shù)圖像(或方程曲線的對稱性)

          (1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;

          (2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

          (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

          (4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

          (5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;

          (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;

          4.函數(shù)的周期性

          (1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

          (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);

          (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);

          (4)若y=f(x)關(guān)于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);

          (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

          (6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

          5.方程k=f(x)有解k∈D(D為f(x)的值域);

          6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

          7.(1)(a>0,a≠1,b>0,n∈R+);

          (2)logaN=(a>0,a≠1,b>0,b≠1);

          (3)logab的符號由口訣“同正異負”記憶;

          (4)alogaN=N(a>0,a≠1,N>0);

          8.判斷對應(yīng)是否為映射時,抓住兩點:

          (1)A中元素必須都有象且;

          (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

          9.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

          10.對于反函數(shù),應(yīng)掌握以下一些結(jié)論:

          (1)定義域上的單調(diào)函數(shù)必有反函數(shù);

          (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

          (3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);

          (4)周期函數(shù)不存在反函數(shù);

          (5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性;

          (6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

          11.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合

          二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系;

          12.依據(jù)單調(diào)性

          利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題;

          13.恒成立問題的處理方法

          (1)分離參數(shù)法;

          (2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

          高三數(shù)學知識點總結(jié)16

          付正軍:高考數(shù)學中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié),主要是考函數(shù)和導數(shù),這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。

          第二個是平面向量和三角函數(shù)。重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。

          第三,是數(shù)列,數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。

          第四,空間向量和立體幾何。在里面重點考察兩個方面:一個是證明;一個是計算。

          第五,概率和統(tǒng)計,這一板塊主要是屬于數(shù)學應(yīng)用問題的范疇,當然應(yīng)該掌握下面幾個方面,第一等可能的概率,第二事件,第三是獨立事件,還有獨立重復事件發(fā)生的概率。

          第六,解析幾何,這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量最高的題,當然這一類題,我總結(jié)下面五類常考的題型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容。考生應(yīng)該掌握它的通法,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是20xx年高考已經(jīng)考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當然這里我相等的'是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準確度,這是我們所講的第六大板塊。

          第七,押軸題,考生在備考復習時,應(yīng)該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。

          高三數(shù)學知識點總結(jié)17

          ①正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高)。

         、谡忮F的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個直角三角形。

         、翘厥饫忮F的頂點在底面的射影位置:

         、倮忮F的側(cè)棱長均相等,則頂點在底面上的射影為底面多邊形的外心。

         、诶忮F的側(cè)棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心。

         、劾忮F的各側(cè)面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內(nèi)心。

          ④棱錐的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內(nèi)心。

         、萑忮F有兩組對棱垂直,則頂點在底面的射影為三角形垂心。

          ⑥三棱錐的三條側(cè)棱兩兩垂直,則頂點在底面上的射影為三角形的垂心。

         、呙總四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的.距離等于球半徑;

         、嗝總四面體都有內(nèi)切球,球心是四面體各個二面角的平分面的交點,到各面的距離等于半徑。

          [注]:

          i、各個側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐。(×)(各個側(cè)面的等腰三角形不知是否全等)

          ii、若一個三角錐,兩條對角線互相垂直,則第三對角線必然垂直。

          簡證:AB⊥CD,AC⊥BD

          BC⊥AD。令得,已知則。

          iii、空間四邊形OABC且四邊長相等,則順次連結(jié)各邊的中點的四邊形一定是矩形。

          iv、若是四邊長與對角線分別相等,則順次連結(jié)各邊的中點的四邊是一定是正方形。

          簡證:取AC中點,則平面90°易知EFGH為平行四邊形

          EFGH為長方形。若對角線等,則為正方形。

          高三數(shù)學知識點總結(jié)18

          不等式的解集:

         、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。

         、谝粋含有未知數(shù)的不等式的所有解,組成這個不等式的解集。

          ③求不等式解集的過程叫做解不等式。

          不等式的判定:

         、俪R姷腵不等號有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

         、谠诓坏仁健癮>b”或“a

         、鄄坏忍柕拈_口所對的數(shù)較大,不等號的尖頭所對的數(shù)較小;

         、茉诹胁坏仁綍r,一定要注意不等式關(guān)系的關(guān)鍵字,如:正數(shù)、非負數(shù)、不大于、小于等等。

          高三數(shù)學知識點總結(jié)19

          任一x=A,x=B,記做AB

          AB,BAA=B

          AB={x|x=A,且x=B}

          AB={x|x=A,或x=B}

          Card(AB)=card(A)+card(B)—card(AB)

         。1)命題

          原命題若p則q

          逆命題若q則p

          否命題若p則q

          逆否命題若q,則p

         。2)AB,A是B成立的充分條件

          BA,A是B成立的必要條件

          AB,A是B成立的充要條件

          1、集合元素具有

         、俅_定性;

          ②互異性;

          ③無序性

          2、集合表示方法

          ①列舉法;

         、诿枋龇;

         、垌f恩圖;

         、軘(shù)軸法

         。3)集合的`運算

          ①A∩(B∪C)=(A∩B)∪(A∩C)

         、贑u(A∩B)=CuA∪CuB

          Cu(A∪B)=CuA∩CuB

         。4)集合的性質(zhì)

          n元集合的字集數(shù):2n

          真子集數(shù):2n—1;

          非空真子集數(shù):2n—2

          高三數(shù)學知識點總結(jié)20

          反三角函數(shù)主要是三個:

          y=arcsin(x),定義域[-1,1],值域[-π/2,π/2]圖象用紅色線條;

          y=arccos(x),定義域[-1,1],值域[0,π],圖象用藍色線條;

          y=arctan(x),定義域(-∞,+∞),值域(-π/2,π/2),圖象用綠色線條;

          sin(arcsinx)=x,定義域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx

          其他公式:

          三角函數(shù)其他公式

          arcsin(-x)=-arcsinx

          arccos(-x)=π-arccosx

          arctan(-x)=-arctanx

          arccot(-x)=π-arccotx

          arcsinx+arccosx=π/2=arctanx+arccotx

          sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

          當x∈[—π/2,π/2]時,有arcsin(sinx)=x

          當x∈[0,π],arccos(cosx)=x

          x∈(—π/2,π/2),arctan(tanx)=x

          x∈(0,π),arccot(cotx)=x

          x〉0,arctanx=π/2-arctan1/x,arccotx類似

          若(arctanx+arctany)∈(—π/2,π/2),則arctanx+arctany=arctan(x+y/1-xy)高三數(shù)學必背知識點歸納

          二項式定理:

         、(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

          特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

         、谥饕再|(zhì)和主要結(jié)論:對稱性Cnm=Cnn-m

          二項式系數(shù)在中間。(要注意n為奇數(shù)還是偶數(shù),答案是中間一項還是中間兩項)

          所有二項式系數(shù)的'和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

          奇數(shù)項二項式系數(shù)的和=偶數(shù)項而是系數(shù)的和

          Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

         、弁棡榈趓+1項:Tr+1=Cnran-rbr作用:處理與指定項、特定項、常數(shù)項、有理項等有關(guān)問題。

        【高三數(shù)學知識點總結(jié)】相關(guān)文章:

        高三數(shù)學高考知識點總結(jié)09-24

        高三數(shù)學重要知識點總結(jié)12-28

        高三數(shù)學知識點總結(jié)03-08

        高三數(shù)學知識點總結(jié)09-21

        高三數(shù)學復習知識點總結(jié)12-08

        高三數(shù)學知識點總結(jié)最新10-21

        數(shù)學必考知識點總結(jié)高三五篇08-03

        高三數(shù)學知識點歸納總結(jié)08-13

        高三數(shù)學知識點總結(jié)歸納09-08

        高三數(shù)學知識點總結(jié)歸納01-24

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>