1. <rp id="zsypk"></rp>

      2. 高三數(shù)學(xué)的知識點總結(jié)

        時間:2024-06-10 11:59:46 金磊 知識點總結(jié) 我要投稿

        高三數(shù)學(xué)的知識點總結(jié)(精選13章)

          總結(jié)是對過去一定時期的工作、學(xué)習(xí)或思想情況進(jìn)行回顧、分析,并做出客觀評價的書面材料,它可使零星的、膚淺的、表面的感性認(rèn)知上升到全面的、系統(tǒng)的、本質(zhì)的理性認(rèn)識上來,讓我們抽出時間寫寫總結(jié)吧。那么總結(jié)有什么格式呢?下面是小編幫大家整理的高三數(shù)學(xué)知識點總結(jié),希望對大家有所幫助。

        高三數(shù)學(xué)的知識點總結(jié)(精選13章)

          高三數(shù)學(xué)的知識點總結(jié) 1

          任一x=A,x=B,記做AB

          AB,BAA=B

          AB={x|x=A,且x=B}

          AB={x|x=A,或x=B}

          Card(AB)=card(A)+card(B)—card(AB)

         。1)命題

          原命題若p則q

          逆命題若q則p

          否命題若p則q

          逆否命題若q,則p

         。2)AB,A是B成立的充分條件

          BA,A是B成立的必要條件

          AB,A是B成立的.充要條件

          1、集合元素具有

         、俅_定性;

         、诨ギ愋裕

         、蹮o序性

          2、集合表示方法

          ①列舉法;

         、诿枋龇;

         、垌f恩圖;

         、軘(shù)軸法

         。3)集合的運算

         、貯∩(B∪C)=(A∩B)∪(A∩C)

         、贑u(A∩B)=CuA∪CuB

          Cu(A∪B)=CuA∩CuB

          (4)集合的性質(zhì)

          n元集合的字集數(shù):2n

          真子集數(shù):2n—1;

          非空真子集數(shù):2n—2

          高三數(shù)學(xué)的知識點總結(jié) 2

          1.數(shù)列的定義

          按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項.

          (1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.

          (2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….

          (4)數(shù)列的項與它的項數(shù)是不同的,數(shù)列的項是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當(dāng)于f(n),而項數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當(dāng)于f(n)中的n.

          (5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的.數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.

          2.數(shù)列的分類

          (1)根據(jù)數(shù)列的項數(shù)多少可以對數(shù)列進(jìn)行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時,對于有窮數(shù)列,要把末項寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列.

          (2)按照項與項之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動數(shù)列、常數(shù)列.

          3.數(shù)列的通項公式

          數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的,這兩個通項公式形式上雖然不同,但表示同一個數(shù)列,正像每個函數(shù)關(guān)系不都能用解析式表達(dá)出來一樣,也不是每個數(shù)列都能寫出它的通項公式;有的數(shù)列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數(shù)列前面的有限項,無其他說明,數(shù)列是不能確定的,通項公式更非.如:數(shù)列1,2,3,4,…,由公式寫出的后續(xù)項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據(jù)數(shù)列的構(gòu)成規(guī)律,多觀察分析,真正找到數(shù)列的內(nèi)在規(guī)律,由數(shù)列前幾項寫出其通項公式,沒有通用的方法可循.

          再強調(diào)對于數(shù)列通項公式的理解注意以下幾點:

          (1)數(shù)列的通項公式實際上是一個以正整數(shù)集N_或它的有限子集{1,2,…,n}為定義域的函數(shù)的表達(dá)式.

          (2)如果知道了數(shù)列的通項公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個數(shù)列的各項;同時,用數(shù)列的通項公式也可判斷某數(shù)是否是某數(shù)列中的一項,如果是的話,是第幾項.

          (3)如所有的函數(shù)關(guān)系不一定都有解析式一樣,并不是所有的數(shù)列都有通項公式.

          如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構(gòu)成的數(shù)列1,1.4,1.41,1.414,1.4142,…就沒有通項公式.

          (4)有的數(shù)列的通項公式,形式上不一定是的,正如舉例中的:

          (5)有些數(shù)列,只給出它的前幾項,并沒有給出它的構(gòu)成規(guī)律,那么僅由前面幾項歸納出的數(shù)列通項公式并不.

          4.數(shù)列的圖象

          對于數(shù)列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應(yīng)關(guān)系:

          序號:1234567

          項:45678910

          這就是說,上面可以看成是一個序號集合到另一個數(shù)的集合的映射.因此,從映射、函數(shù)的觀點看,數(shù)列可以看作是一個定義域為正整集N(或它的有限子集{1,2,3,…,n})的函數(shù),當(dāng)自變量從小到大依次取值時,對應(yīng)的一列函數(shù)值.這里的函數(shù)是一種特殊的函數(shù),它的自變量只能取正整數(shù).

          由于數(shù)列的項是函數(shù)值,序號是自變量,數(shù)列的通項公式也就是相應(yīng)函數(shù)和解析式.

          數(shù)列是一種特殊的函數(shù),數(shù)列是可以用圖象直觀地表示的

          數(shù)列用圖象來表示,可以以序號為橫坐標(biāo),相應(yīng)的項為縱坐標(biāo),描點畫圖來表示一個數(shù)列,在畫圖時,為方便起見,在平面直角坐標(biāo)系兩條坐標(biāo)軸上取的單位長度可以不同,從數(shù)列的圖象表示可以直觀地看出數(shù)列的變化情況,但不精確.

          把數(shù)列與函數(shù)比較,數(shù)列是特殊的函數(shù),特殊在定義域是正整數(shù)集或由以1為首的有限連續(xù)正整數(shù)組成的集合,其圖象是無限個或有限個孤立的點.

          5.遞推數(shù)列

          一堆鋼管,共堆放了七層,自上而下各層的鋼管數(shù)構(gòu)成一個數(shù)列:4,5,6,7,8,9,10.①

          數(shù)列①還可以用如下方法給出:自上而下第一層的鋼管數(shù)是4,以下每一層的鋼管數(shù)都比上層的鋼管數(shù)多1。

          高三數(shù)學(xué)的知識點總結(jié) 3

          1.數(shù)列的定義、分類與通項公式

          (1)數(shù)列的定義:

         、贁(shù)列:按照一定順序排列的一列數(shù).

         、跀(shù)列的項:數(shù)列中的每一個數(shù).

          (2)數(shù)列的分類:

          分類標(biāo)準(zhǔn)類型滿足條件

          項數(shù)有窮數(shù)列項數(shù)有限

          無窮數(shù)列項數(shù)無限

          項與項間的大小關(guān)系遞增數(shù)列an+1>an其中n∈N_

          遞減數(shù)列an+1

          常數(shù)列an+1=an

          (3)數(shù)列的通項公式:

          如果數(shù)列{an}的第n項與序號n之間的.關(guān)系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的通項公式.

          2.數(shù)列的遞推公式

          如果已知數(shù)列{an}的首項(或前幾項),且任一項an與它的前一項an-1(n≥2)(或前幾項)間的關(guān)系可用一個公式來表示,那么這個公式叫數(shù)列的遞推公式.

          3.對數(shù)列概念的理解

          (1)數(shù)列是按一定“順序”排列的一列數(shù),一個數(shù)列不僅與構(gòu)成它的“數(shù)”有關(guān),而且還與這些“數(shù)”的排列順序有關(guān),這有別于集合中元素的無序性.因此,若組成兩個數(shù)列的數(shù)相同而排列次序不同,那么它們就是不同的兩個數(shù)列.

          (2)數(shù)列中的數(shù)可以重復(fù)出現(xiàn),而集合中的元素不能重復(fù)出現(xiàn),這也是數(shù)列與數(shù)集的區(qū)別.

          4.數(shù)列的函數(shù)特征

          數(shù)列是一個定義域為正整數(shù)集N_(或它的有限子集{1,2,3,…,n})的特殊函數(shù),數(shù)列的通項公式也就是相應(yīng)的函數(shù)解析式,即f(n)=an(n∈N_).

          高三數(shù)學(xué)的知識點總結(jié) 4

          隨機(jī)抽樣

          簡介

          (抽簽法、隨機(jī)樣數(shù)表法)常常用于總體個數(shù)較少時,它的主要特征是從總體中逐個抽取;

          優(yōu)點:操作簡便易行

          缺點:總體過大不易實行

          方法

          (1)抽簽法

          一般地,抽簽法就是把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本。

          (抽簽法簡單易行,適用于總體中的個數(shù)不多時。當(dāng)總體中的個體數(shù)較多時,將總體“攪拌均勻”就比較困難,用抽簽法產(chǎn)生的樣本代表性差的可能性很大)

          (2)隨機(jī)數(shù)法

          隨機(jī)抽樣中,另一個經(jīng)常被采用的方法是隨機(jī)數(shù)法,即利用隨機(jī)數(shù)表、隨機(jī)數(shù)骰子或計算機(jī)產(chǎn)生的隨機(jī)數(shù)進(jìn)行抽樣。

          分層抽樣

          簡介

          分層抽樣主要特征分層按比例抽樣,主要使用于總體中的個體有明顯差異。共同點:每個個體被抽到的概率都相等N/M。

          定義

          一般地,在抽樣時,將總體分成互不交叉的層,然后按照一定的比例,從各層獨立地抽取一定數(shù)量的個體,將各層取出的個體合在一起作為樣本,這種抽樣方法是一種分層抽樣。

          整群抽樣

          定義

          什么是整群抽樣

          整群抽樣又稱聚類抽樣。是將總體中各單位歸并成若干個互不交叉、互不重復(fù)的集合,稱之為群;然后以群為抽樣單位抽取樣本的一種抽樣方式。

          應(yīng)用整群抽樣時,要求各群有較好的代表性,即群內(nèi)各單位的差異要大,群間差異要小。

          優(yōu)缺點

          整群抽樣的優(yōu)點是實施方便、節(jié)省經(jīng)費;

          整群抽樣的.缺點是往往由于不同群之間的差異較大,由此而引起的抽樣誤差往往大于簡單隨機(jī)抽樣。

          實施步驟

          先將總體分為i個群,然后從i個群鐘隨即抽取若干個群,對這些群內(nèi)所有個體或單元均進(jìn)行調(diào)查。抽樣過程可分為以下幾個步驟:

          一、確定分群的標(biāo)注

          二、總體(N)分成若干個互不重疊的部分,每個部分為一群。

          三、據(jù)各樣本量,確定應(yīng)該抽取的群數(shù)。

          四、采用簡單隨機(jī)抽樣或系統(tǒng)抽樣方法,從i群中抽取確定的群數(shù)。

          例如,調(diào)查中學(xué)生患近視眼的情況,抽某一個班做統(tǒng)計;進(jìn)行產(chǎn)品檢驗;每隔8h抽1h生產(chǎn)的全部產(chǎn)品進(jìn)行檢驗等。

          與分層抽樣的區(qū)別

          整群抽樣與分層抽樣在形式上有相似之處,但實際上差別很大。

          分層抽樣要求各層之間的差異很大,層內(nèi)個體或單元差異小,而整群抽樣要求群與群之間的差異比較小,群內(nèi)個體或單元差異大;

          分層抽樣的樣本是從每個層內(nèi)抽取若干單元或個體構(gòu)成,而整群抽樣則是要么整群抽取,要么整群不被抽取。

          系統(tǒng)抽樣

          定義

          當(dāng)總體中的個體數(shù)較多時,采用簡單隨機(jī)抽樣顯得較為費事。這時,可將總體分成均衡的幾個部分,然后按照預(yù)先定出的規(guī)則,從每一部分抽取一個個體,得到所需要的樣本,這種抽樣叫做系統(tǒng)抽樣。

          步驟

          一般地,假設(shè)要從容量為N的總體中抽取容量為n的樣本,我們可以按下列步驟進(jìn)行系統(tǒng)抽樣:

          (1)先將總體的N個個體編號。有時可直接利用個體自身所帶的號碼,如學(xué)號、準(zhǔn)考證號、門牌號等;

          (2)確定分段間隔k,對編號進(jìn)行分段。當(dāng)N/n(n是樣本容量)是整數(shù)時,取k=N/n;

          (3)在第一段用簡單隨機(jī)抽樣確定第一個個體編號l(l≤k);

          (4)按照一定的規(guī)則抽取樣本。通常是將l加上間隔k得到第2個個體編號(l+k),再加k得到第3個個體編號(l+2k),依次進(jìn)行下去,直到獲取整個樣本。

          高三數(shù)學(xué)的知識點總結(jié) 5

          第一部分集合

          (1)含n個元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;

         。2)注意:討論的時候不要遺忘了的情況。

          第二部分函數(shù)與導(dǎo)數(shù)

          1、映射:注意

         、俚谝粋集合中的元素必須有象;

         、谝粚σ,或多對一。

          2、函數(shù)值域的求法:

         、俜治龇;

          ②配方法;

         、叟袆e式法;

         、芾煤瘮(shù)單調(diào)性;

         、輷Q元法;

          ⑥利用均值不等式;

          ⑦利用數(shù)形結(jié)合或幾何意義(斜率、距離、絕對值的`意義等);

          ⑧利用函數(shù)有界性;

          ⑨導(dǎo)數(shù)法

          3、復(fù)合函數(shù)的有關(guān)問題

         。1)復(fù)合函數(shù)定義域求法:

          ①若f(x)的定義域為〔a,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出。

         、谌鬴[g(x)]的定義域為[a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時,求g(x)的值域。

          (2)復(fù)合函數(shù)單調(diào)性的判定:

         、偈紫葘⒃瘮(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);

         、诜謩e研究內(nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;

         、鄹鶕(jù)“同性則增,異性則減”來判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。

          注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。

          4、分段函數(shù):值域(最值)、單調(diào)性、圖象等問題,先分段解決,再下結(jié)論。

          5、函數(shù)的奇偶性

         。1)函數(shù)的定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要條件;

         。2)是奇函數(shù);

          (3)是偶函數(shù);

          (4)奇函數(shù)在原點有定義,則;

         。5)在關(guān)于原點對稱的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;

         。6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價變形,再判斷其奇偶性;

          高三數(shù)學(xué)的知識點總結(jié) 6

          1、課前預(yù)習(xí):首先上課前要做預(yù)習(xí),課前預(yù)習(xí)能提前了解將要學(xué)習(xí)的知識。

          2、記筆記:指的是課堂筆記,每節(jié)課時間有限,老師一般講的都是精華部分。

          3、課后復(fù)習(xí):通預(yù)習(xí)一樣,也是行之有效的方法。

          4、涉獵課外習(xí)題:多涉獵一些課外習(xí)題,學(xué)習(xí)它們的解題思路和方法。

          5、學(xué)會歸類總結(jié):學(xué)習(xí)數(shù)學(xué)記得東西很多,如果單純的記憶每個公式,不但增加記憶量而且容易忘。

          6、建立糾錯本:把經(jīng)常出錯的題目集中在一起。

          7、寫考試總結(jié):考試總結(jié)可以幫助找出學(xué)習(xí)之中不足之處,以及知識的`薄弱環(huán)節(jié)。

          8、培養(yǎng)學(xué)習(xí)興趣:興趣是最好的老師,只有有了興趣才會自主自發(fā)的進(jìn)行學(xué)習(xí),學(xué)習(xí)效率才會提高。

          高三數(shù)學(xué)的知識點總結(jié) 7

          1、三類角的求法:

         、僬页龌蜃鞒鲇嘘P(guān)的角。

         、谧C明其符合定義,并指出所求作的角。

         、塾嬎愦笮。ń庵苯侨切危蛴糜嘞叶ɡ恚。

          2、正棱柱——底面為正多邊形的直棱柱

          正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。

          正棱錐的計算集中在四個直角三角形中:

          3、怎樣判斷直線l與圓C的位置關(guān)系?

          圓心到直線的距離與圓的半徑比較。

          直線與圓相交時,注意利用圓的“垂徑定理”。

          4、對線性規(guī)劃問題:

          作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的最值。

          培養(yǎng)興趣是關(guān)鍵。學(xué)生對數(shù)學(xué)產(chǎn)生了興趣,自然有動力去鉆研。如何培養(yǎng)興趣呢?

         。1)欣賞數(shù)學(xué)的美感

          比如幾何圖形中的對稱、變換前后的不變量、概念的嚴(yán)謹(jǐn)、邏輯的嚴(yán)密……

          通過對旋轉(zhuǎn)變換及其不變量的討論,我們可以證明反比例函數(shù)、“對勾函數(shù)”的圖象都是雙曲線——平面上到兩個定點的距離之差的絕對值為定值(小于兩個定點之間的距離)的點的'集合。

         。2)注意到數(shù)學(xué)在實際生活中的應(yīng)用。

          例如和日常生活息息相關(guān)的等額本金、等額本息兩種不同的還款方式,用數(shù)列的知識就可以理解、學(xué)好數(shù)學(xué),是現(xiàn)代公民的基本素養(yǎng)之一啊

          (3)采用靈活的教學(xué)手段,與時俱進(jìn)。

          利用多種技術(shù)手段,聲、光、電多管齊下,老師可以借此把一些知識講得更具體形象,學(xué)生也更容易接受,理解更深。

         。4)適當(dāng)看一些科普類的書籍和文章。

          比如:學(xué)圓錐曲線的時候,可以看看一些建筑物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對此都有介紹;還有圓錐曲線光學(xué)性質(zhì)的應(yīng)用,這方面的文章也不少。

          高三數(shù)學(xué)的知識點總結(jié) 8

          三角函數(shù)。

          注意歸一公式、誘導(dǎo)公式的正確性。

          數(shù)列題。

          1、證明一個數(shù)列是等差(等比)數(shù)列時,最后下結(jié)論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;

          2、最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時,當(dāng)n=k+1時,一定利用上n=k時的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)?放縮,這一點是有難度的。簡潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號,得到目標(biāo)式子,下結(jié)論時一定寫上綜上:由①②得證;

          3、證明不等式時,有時構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單

          立體幾何題。

          1、證明線面位置關(guān)系,一般不需要去建系,更簡單;

          2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;

          3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

          概率問題。

          1、搞清隨機(jī)試驗包含的所有基本事件和所求事件包含的基本事件的個數(shù);

          2、搞清是什么概率模型,套用哪個公式;

          3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;

          4、求概率時,正難則反(根據(jù)p1+p2+……+pn=1);

          5、注意計數(shù)時利用列舉、樹圖等基本方法;

          6、注意放回抽樣,不放回抽樣;

          正弦、余弦典型例題。

          1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

          2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°

          3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°

          4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

          5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點,EF⊥BC,垂足為F,求sin∠EBF的值。

          正弦、余弦解題訣竅。

          1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。

          2、已知三邊,或兩邊及其夾角用余弦定理

          3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。

          高三數(shù)學(xué)的知識點總結(jié) 9

          付正軍:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié),主要是考函數(shù)和導(dǎo)數(shù),這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的'分布的問題,這是第一個板塊。

          第二個是平面向量和三角函數(shù)。重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。

          第三,是數(shù)列,數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。

          第四,空間向量和立體幾何。在里面重點考察兩個方面:一個是證明;一個是計算。

          第五,概率和統(tǒng)計,這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,當(dāng)然應(yīng)該掌握下面幾個方面,第一等可能的概率,第二事件,第三是獨立事件,還有獨立重復(fù)事件發(fā)生的概率。

          第六,解析幾何,這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量最高的題,當(dāng)然這一類題,我總結(jié)下面五類?嫉念}型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容?忌鷳(yīng)該掌握它的通法,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是20xx年高考已經(jīng)考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當(dāng)然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。

          第七,押軸題,考生在備考復(fù)習(xí)時,應(yīng)該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。

          高三數(shù)學(xué)的知識點總結(jié) 10

          必修一

          第一章:集合和函數(shù)的基本概念

          這一章的易錯點,都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個不小心就會丟分。次一級的知識點就是集合的韋恩圖、會畫圖,掌握了這些,集合的“并、補、交、非”也就解決了。

          還有函數(shù)的定義域和函數(shù)的單調(diào)性、增減性的概念,這些都是函數(shù)的基礎(chǔ)而且不難理解。在第一輪復(fù)習(xí)中一定要反復(fù)去記這些概念,最好的方法是寫在筆記本上,每天至少看上一遍。

          第二章:基本初等函數(shù)

          ——指數(shù)、對數(shù)、冪函數(shù)三大函數(shù)的運算性質(zhì)及圖像

          函數(shù)的幾大要素和相關(guān)考點基本都在函數(shù)圖像上有所體現(xiàn),單調(diào)性、增減性、極值、零點等等。關(guān)于這三大函數(shù)的運算公式,多記多用,多做一點練習(xí),基本就沒問題。

          函數(shù)圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數(shù)圖像,定義域、值域、零點等等。對于冪函數(shù)還要搞清楚當(dāng)指數(shù)冪大于一和小于一時圖像的不同及函數(shù)值的大小關(guān)系,這也是?键c。另外指數(shù)函數(shù)和對數(shù)函數(shù)的對立關(guān)系及其相互之間要怎樣轉(zhuǎn)化等問題,需要著重回看課本例題。

          第三章:函數(shù)的應(yīng)用

          這一章主要考是函數(shù)與方程的結(jié)合,其實就是函數(shù)的零點,也就是函數(shù)圖像與X軸的交點。這三者之間的轉(zhuǎn)化關(guān)系是這一章的重點,要學(xué)會在這三者之間靈活轉(zhuǎn)化,以求能最簡單的解決問題。關(guān)于證明零點的方法,直接計算加得必有零點,連續(xù)函數(shù)在x軸上方下方有定義則有零點等等,這些難點對應(yīng)的證明方法都要記住,多練習(xí)。二次函數(shù)的零點的`Δ判別法,這個需要你看懂定義,多畫多做題。

          必修二

          第一章:空間幾何

          三視圖和直觀圖的繪制不算難,但是從三視圖復(fù)原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物,這就要求學(xué)生特別是空間感弱的學(xué)生多看書上的例圖,把實物圖和平面圖結(jié)合起來看,先熟練地正推,再慢慢的逆推(建議用紙做一個立方體來找感覺)。

          在做題時結(jié)合草圖是有必要的,不能單憑想象。后面的錐體、柱體、臺體的表面積和體積,把公式記牢問題就不大。

          第二章:點、直線、平面之間的位置關(guān)系

          這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學(xué)生多看圖。自己畫草圖的時候要嚴(yán)格注意好實線虛線,這是個規(guī)范性問題。

          關(guān)于這一章的內(nèi)容,牢記直線與直線、面與面、直線與面相交、垂直、平行的幾大定理及幾大性質(zhì),同時能用圖形語言、文字語言、數(shù)學(xué)表達(dá)式表示出來。只要這些全部過關(guān)這一章就解決了一大半。這一章的難點在于二面角這個概念,大多同學(xué)即使知道有這個概念,也無法理解怎么在二面里面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什么捷徑可走。

          第三章:直線與方程

          這一章主要講斜率與直線的位置關(guān)系,只要搞清楚直線平行、垂直的斜率表示問題就錯不了。需要注意的是當(dāng)直線垂直時斜率不存在的情況是考試中的?键c。另外直線方程的幾種形式所涉及到的一般公式,會用就行,要求不高。點與點的距離、點與直線的距離、直線與直線的距離,只要直接套用公式就行,沒什么難點。

          第四章:圓與方程

          能熟練地把一般式方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時就要注意開方后定義域或值域的限制。通過點到點的距離、點到直線的距離、圓半徑的大小關(guān)系來判斷點與圓、直線與圓、圓與圓的位置關(guān)系。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。

          必修三

          總的來說這一本書難度不大,只是比較繁瑣,需要有耐心的去畫圖去計算。

          程序框圖與三種算法語句的結(jié)合,及框圖的算法表示,不要用常規(guī)的語言來理解,否則你會在這樣的題型中栽跟頭。

          秦九韶算法是重點,要牢記算法的公式。

          統(tǒng)計就是對一堆數(shù)據(jù)的處理,考試也是以計算為主,會從條形圖中計算出中位數(shù)等數(shù)字特征,對于回歸問題,只要記住公式,也就是個計算問題。

          概率,主要就只幾何概型、古典概型。幾何概型只要會找表示所求事件的長度面積等,古典概型只要能表示出全部事件就可以。

          必修四

          第一章:三角函數(shù)

          考試必在這一塊出題,且題量不小!誘導(dǎo)公式和基本三角函數(shù)圖像的一些性質(zhì),沒有太大難度,只要會畫圖就行。難度都在三角函數(shù)形函數(shù)的振幅、頻率、周期、相位、初相上,及根據(jù)最值計算A、B的值和周期,及恒等變化時的圖像及性質(zhì)變化,這部分的知識點內(nèi)容較多,需要多花時間,不要再定義上死扣,要從圖像和例題入手。

          第二章:平面向量

          向量的運算性質(zhì)及三角形法則、平行四邊形法則的難度都不大,只要在計算的時候記住要“同起點的向量”這一條就OK了。向量共線和垂直的數(shù)學(xué)表達(dá),是計算當(dāng)中經(jīng)常用到的公式。向量的共線定理、基本定理、數(shù)量積公式。分點坐標(biāo)公式是重點內(nèi)容,也是難點內(nèi)容,要花心思記憶。

          第三章:三角恒等變換

          這一章公式特別多,像差倍半角公式這類內(nèi)容常會出現(xiàn),所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫好后貼在桌子上,天天都要看。要提一點,就是三角恒等變換是有一定規(guī)律的,記憶的時候可以集合三角函數(shù)去記。

          必修五

          第一章:解三角形

          掌握正弦、余弦公式及其變式、推論、三角面積公式即可。

          第二章:數(shù)列

          等差、等比數(shù)列的通項公式、前n項及一些性質(zhì)常出現(xiàn)于填空、解答題中,這部分內(nèi)容學(xué)起來比較簡單,但考驗對其推導(dǎo)、計算、活用的層面較深,因此要仔細(xì)?荚囶}中,通項公式、前n項和的內(nèi)容出現(xiàn)頻次較多,這類題看到后要帶有目的的去推導(dǎo)就沒問題了。

          第三章:不等式

          這一章一般用線性規(guī)劃的形式來考察學(xué)生,這種題通常是和實際問題聯(lián)系的,所以要會讀題,從題中找不等式,畫出線性規(guī)劃圖,然后再根據(jù)實際問題的限制要求來求最值。

          高三數(shù)學(xué)的知識點總結(jié) 11

          1、函數(shù)的奇偶性

          (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

          (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

          (3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);

          (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;

          (5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

          2、復(fù)合函數(shù)的有關(guān)問題

          (1)復(fù)合函數(shù)定義域求法:若已知的定義域為[a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

          (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

          3、函數(shù)圖像(或方程曲線的對稱性)

          (1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;

          (2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

          (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

          (4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

          (5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;

          (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;

          4、函數(shù)的周期性

          (1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

          (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);

          (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);

          (4)若y=f(x)關(guān)于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);

          (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

          (6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

          5、方程k=f(x)有解k∈D(D為f(x)的值域);

          6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

          7、(1)(a>0a≠1,b>0,n∈R+);

          (2)logaN=(a>0,a≠1,b>0,b≠1);

          (3)logab的符號由口訣“同正異負(fù)”記憶;

          (4)alogaN=N(a>0,a≠1,N>0);

          8、判斷對應(yīng)是否為映射時,抓住兩點:

          (1)A中元素必須都有象且;

          (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

          9、能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

          10、對于反函數(shù),應(yīng)掌握以下一些結(jié)論:

          (1)定義域上的單調(diào)函數(shù)必有反函數(shù);

          (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

          (3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);

          (4)周期函數(shù)不存在反函數(shù);

          (5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性;

          (6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

          11、處理二次函數(shù)的問題勿忘數(shù)形結(jié)合

          二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系;

          12、依據(jù)單調(diào)性

          利用一次函數(shù)在區(qū)間上的.保號性可解決求一類參數(shù)的范圍問題;

          13、恒成立問題的處理方法

          (1)分離參數(shù)法;

          (2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

          a(1)=a,a(n)為公差為r的等差數(shù)列

          通項公式:

          a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r、

          可用歸納法證明。

          n=1時,a(1)=a+(1-1)r=a。成立。

          假設(shè)n=k時,等差數(shù)列的通項公式成立。a(k)=a+(k-1)r

          則,n=k+1時,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r、

          通項公式也成立。

          因此,由歸納法知,等差數(shù)列的通項公式是正確的。

          求和公式:

          S(n)=a(1)+a(2)+...+a(n)

          =a+(a+r)+...+[a+(n-1)r]

          =na+r[1+2+...+(n-1)]

          =na+n(n-1)r/2

          同樣,可用歸納法證明求和公式。

          a(1)=a,a(n)為公比為r(r不等于0)的等比數(shù)列

          通項公式:

          a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1)、

          可用歸納法證明等比數(shù)列的通項公式。

          求和公式:

          S(n)=a(1)+a(2)+...+a(n)

          =a+ar+...+ar^(n-1)

          =a[1+r+...+r^(n-1)]

          r不等于1時,S(n)=a[1-r^n]/[1-r]

          r=1時,S(n)=na、

          同樣,可用歸納法證明求和公式。

          高三數(shù)學(xué)的知識點總結(jié) 12

          1、上、下

          (1)在具體場景中理解上、下的含義及其相對性。

          (2)能比較準(zhǔn)確地確定物體上下的方位,會用上、下描述物體的相對位置。

          (3)培養(yǎng)學(xué)生初步的空間觀念。

          2、前、后

          (1)在具體場景中理解前、后、最×的含義,以及前后的相對性。

          (2)能比較準(zhǔn)確地確定物體前后的方位,會用前、后、最前、最后描述物體的相對位置。

          (3)培養(yǎng)學(xué)生初步的空間觀念。

          3、左、右

          (1)在具體場景中理解左、右的含義及其相對性。

          (2)能比較準(zhǔn)確地確定物體左右的方位,會用左、右描述物體的位置。

          (3)培養(yǎng)學(xué)生初步的空間觀念。

          4、位置

          (1)明確“橫為行、豎為列”,并知道“第幾行第幾個”、“第幾組第幾個”的含義。

          (2)在具體情境中,會用2個數(shù)據(jù)(2個維度)描述人或物體的'具體位置。

          (3)在具體情境中,能依據(jù)2個維度的數(shù)據(jù)找到人或物體的具體位置。

          高三數(shù)學(xué)的知識點總結(jié) 13

          (1)配方法:

          若函數(shù)為一元二次函數(shù),則可以用這種方法求值域,關(guān)鍵在于正確化成完全平方式。

          (2)換元法:

          常用代數(shù)或三角代換法,把所給函數(shù)代換成值域容易確定的另一函數(shù),從而得到原函數(shù)值域,如y=ax+b+_cx-d(a,b,c,d均為常數(shù)且ac不等于0)的函數(shù)常用此法求解。

          (3)判別式法:

          若函數(shù)為分式結(jié)構(gòu),且分母中含有未知數(shù)x,則常用此法。通常去掉分母轉(zhuǎn)化為一元二次方程,再由判別式△0,確定y的范圍,即原函數(shù)的值域

          (4)不等式法:

          借助于重要不等式a+bab(a0)求函數(shù)的值域。用不等式法求值域時,要注意均值不等式的使用條件一正,二定,三相等。

          (5)反函數(shù)法:

          若原函數(shù)的值域不易直接求解,則可以考慮其反函數(shù)的定義域,根據(jù)互為反函數(shù)的兩個函數(shù)定義域與值域互換的特點,確定原函數(shù)的值域,如y=cx+d/ax+b(a0)型函數(shù)的值域,可采用反函數(shù)法,也可用分離常數(shù)法。

          (6)單調(diào)性法:

          首先確定函數(shù)的定義域,然后在根據(jù)其單調(diào)性求函數(shù)值域,常用到函數(shù)y=x+p/x(p0)的單調(diào)性:增區(qū)間為(-,-p)的左開右閉區(qū)間和(p,+)的左閉右開區(qū)間,減區(qū)間為(-p,0)和(0,p)

          (7)數(shù)形結(jié)合法:

          分析函數(shù)解析式表達(dá)的`集合意義,根據(jù)其圖像特點確定值域。

          練習(xí)題:

          1.函數(shù)y=x+1x的定義域為________.

          解析:利用解不等式組的方法求解.

          要使函數(shù)有意義,需x+1≥0,x≠0,解得x≥-1,x≠0.

          ∴原函數(shù)的定義域為{x|x≥-1且x≠0}.

          答案:{x|x≥-1且x≠0}

          2.函數(shù)f(x)=11-2x的定義域是________

          解析:由1-2x>0x<12.

          答案:_<12

          3.已知f(x)=3x+2,x<1,x2+ax,x≥1.若f(f(0))=4a,則實數(shù)a=________.

          解析:∵f(0)=2,f(f(0))=f(2)=4+2a.

          ∴4+2a=4a;a=2.

          答案:2

        【高三數(shù)學(xué)的知識點總結(jié)】相關(guān)文章:

        高三數(shù)學(xué)知識點總結(jié)03-08

        高三數(shù)學(xué)知識點總結(jié)04-27

        高三數(shù)學(xué)復(fù)習(xí)知識點總結(jié)06-08

        高三數(shù)學(xué)知識點總結(jié)08-24

        高三數(shù)學(xué)復(fù)習(xí)知識點總結(jié)范文12-12

        關(guān)于高三數(shù)學(xué)知識點總結(jié)06-08

        高三數(shù)學(xué)知識點歸納總結(jié)08-13

        高三數(shù)學(xué)知識點歸納總結(jié) 高三數(shù)學(xué)知識梳理04-07

        高三數(shù)學(xué)知識點總結(jié)15篇09-21

        高三數(shù)學(xué)復(fù)習(xí)知識點總結(jié)(精選15篇)06-08

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>