- 相關(guān)推薦
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(集錦15篇)
總結(jié)是指對(duì)某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況加以總結(jié)和概括的書(shū)面材料,它可以提升我們發(fā)現(xiàn)問(wèn)題的能力,因此十分有必須要寫一份總結(jié)哦?偨Y(jié)你想好怎么寫了嗎?下面是小編精心整理的高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié),僅供參考,大家一起來(lái)看看吧。
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
求函數(shù)奇偶性的常見(jiàn)錯(cuò)誤
錯(cuò)因分析:求函數(shù)奇偶性的常見(jiàn)錯(cuò)誤有求錯(cuò)函數(shù)定義域或是忽視函數(shù)定義域,對(duì)函數(shù)具有奇偶性的前提條件不清,對(duì)分段函數(shù)奇偶性判斷方法不當(dāng)?shù)取E袛嗪瘮?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷,在用定義進(jìn)行判斷時(shí)要注意自變量在定義域區(qū)間內(nèi)的任意性。
抽象函數(shù)中推理不嚴(yán)密致誤
錯(cuò)因分析:很多抽象函數(shù)問(wèn)題都是以抽象出某一類函數(shù)的共同“特征”而設(shè)計(jì)出來(lái)的,在解決問(wèn)題時(shí),可以通過(guò)類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)的性質(zhì)。解答抽象函數(shù)問(wèn)題要注意特殊賦值法的應(yīng)用,通過(guò)特殊賦值可以找到函數(shù)的不變性質(zhì),這個(gè)不變性質(zhì)往往是進(jìn)一步解決問(wèn)題的突破口。抽象函數(shù)性質(zhì)的證明是一種代數(shù)推理,和幾何推理證明一樣,要注意推理的嚴(yán)謹(jǐn)性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過(guò)程要層次分明,書(shū)寫規(guī)范。
函數(shù)零點(diǎn)定理使用不當(dāng)致誤
錯(cuò)因分析:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也是方程f(c)=0的根,這個(gè)結(jié)論我們一般稱之為函數(shù)的零點(diǎn)定理。函數(shù)的零點(diǎn)有“變號(hào)零點(diǎn)”和“不變號(hào)零點(diǎn)”,對(duì)于“不變號(hào)零點(diǎn)”,函數(shù)的零點(diǎn)定理是“無(wú)能為力”的,在解決函數(shù)的零點(diǎn)時(shí)要注意這個(gè)問(wèn)題。
混淆兩類切線致誤
錯(cuò)因分析:曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過(guò)一個(gè)點(diǎn)的切線是指過(guò)這個(gè)點(diǎn)的曲線的所有切線,這個(gè)點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過(guò)一個(gè)點(diǎn)的切線可能不止一條。因此求解曲線的切線問(wèn)題時(shí),首先要區(qū)分是什么類型的切線。
混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系致誤
錯(cuò)因分析:對(duì)于一個(gè)函數(shù)在某個(gè)區(qū)間上是增函數(shù),如果認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,就會(huì)出錯(cuò)。研究函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時(shí)一定要注意:一個(gè)函數(shù)的導(dǎo)函數(shù)在某個(gè)區(qū)間上單調(diào)遞增(減)的充要條件是這個(gè)函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。
導(dǎo)數(shù)與極值關(guān)系不清致誤
錯(cuò)因分析:在使用導(dǎo)數(shù)求函數(shù)極值時(shí),很容易出現(xiàn)的錯(cuò)誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),而沒(méi)有對(duì)這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號(hào)進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn)。出現(xiàn)這些錯(cuò)誤的原因是對(duì)導(dǎo)數(shù)與極值關(guān)系不清?蓪(dǎo)函數(shù)在一個(gè)點(diǎn)處的導(dǎo)函數(shù)值為零只是這個(gè)函數(shù)在此點(diǎn)處取到極值的必要條件,在此提醒廣大考生在使用導(dǎo)數(shù)求函數(shù)極值時(shí)一定要注意對(duì)極值點(diǎn)進(jìn)行檢驗(yàn)。
用錯(cuò)基本公式致誤
錯(cuò)因分析:等差數(shù)列的首項(xiàng)為a1、公差為d,則其通項(xiàng)公式an=a1+(n-1)d,前n項(xiàng)和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比數(shù)列的首項(xiàng)為a1、公比為q,則其通項(xiàng)公式an=a1pn-1,當(dāng)公比q≠1時(shí),前n項(xiàng)和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當(dāng)公比q=1時(shí),前n項(xiàng)和公式Sn=na1。在數(shù)列的基礎(chǔ)性試題中,等差數(shù)列、等比數(shù)列的這幾個(gè)公式是解題的根本,用錯(cuò)了公式,解題就失去了方向。
an,Sn關(guān)系不清致誤
錯(cuò)因分析:在數(shù)列問(wèn)題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在關(guān)系:這個(gè)關(guān)系是對(duì)任意數(shù)列都成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n≥2時(shí)這個(gè)關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯(cuò)的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn)。當(dāng)題目中給出了數(shù)列{an}的an與Sn之間的關(guān)系時(shí),這兩者之間可以進(jìn)行相互轉(zhuǎn)換,知道了an的具體表達(dá)式可以通過(guò)數(shù)列求和的方法求出Sn,知道了Sn可以求出an,解題時(shí)要注意體會(huì)這種轉(zhuǎn)換的相互性。
對(duì)等差、等比數(shù)列的性質(zhì)理解錯(cuò)誤
錯(cuò)因分析:等差數(shù)列的前n項(xiàng)和在公差不為0時(shí)是關(guān)于n的常數(shù)項(xiàng)為0的二次函數(shù)。一般地,有結(jié)論“若數(shù)列{an}的前N項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數(shù)列。解決這類題目的一個(gè)基本出發(fā)點(diǎn)就是考慮問(wèn)題要全面,把各種可能性都考慮進(jìn)去,認(rèn)為正確的命題給以證明,認(rèn)為不正確的命題舉出反例予以駁斥。在等比數(shù)列中公比等于-1時(shí)是一個(gè)很特殊的情況,在解決有關(guān)問(wèn)題時(shí)要注意這個(gè)特殊情況。
遺忘空集致誤
錯(cuò)因分析:由于空集是任何非空集合的真子集,因此,對(duì)于集合B高三經(jīng)典糾錯(cuò)筆記:數(shù)學(xué)A,就有B=A,φ≠B高三經(jīng)典糾錯(cuò)筆記:數(shù)學(xué)A,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了 B≠φ這種情況,導(dǎo)致解題結(jié)果錯(cuò)誤。尤其是在解含有參數(shù)的集合問(wèn)題時(shí),更要充分注意當(dāng)參數(shù)在某個(gè)范圍內(nèi)取值時(shí)所給的集合可能是空集這種情況?占且粋(gè)特殊的集合,由于思維定式的原因,考生往往會(huì)在解題中遺忘了這個(gè)集合,導(dǎo)致解題錯(cuò)誤或是解題不全面。
忽視集合元素的三性致誤
錯(cuò)因分析:集合中的元素具有確定性、無(wú)序性、互異性,集合元素的三性中互異性對(duì)解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對(duì)字母參數(shù)的一些要求。在解題時(shí)也可以先確定字母參數(shù)的范圍后,再具體解決問(wèn)題。
四種命題的結(jié)構(gòu)不明致誤
錯(cuò)因分析:如果原命題是“若 A則B”,則這個(gè)命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這里面有兩組等價(jià)的命題,即“原命題和它的逆否命題等價(jià),否命題與逆命題等價(jià)”。在解答由一個(gè)命題寫出該命題的其他形式的命題時(shí),一定要明確四種命題的結(jié)構(gòu)以及它們之間的等價(jià)關(guān)系。另外,在否定一個(gè)命題時(shí),要注意全稱命題的否定是特稱命題,特稱命題的否定是全稱命題。如對(duì)“a,b都是偶數(shù)”的否定應(yīng)該是“a,b不都是偶數(shù)”,而不應(yīng)該是“a ,b都是奇數(shù)”。
充分必要條件顛倒致誤
錯(cuò)因分析:對(duì)于兩個(gè)條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。解題時(shí)最容易出錯(cuò)的就是顛倒了充分性與必要性,所以在解決這類問(wèn)題時(shí)一定要根據(jù)充要條件的概念作出準(zhǔn)確的判斷。
易錯(cuò)點(diǎn)5邏輯聯(lián)結(jié)詞理解不準(zhǔn)致誤
錯(cuò)因分析:在判斷含邏輯聯(lián)結(jié)詞的命題時(shí)很容易因?yàn)槔斫獠粶?zhǔn)確而出現(xiàn)錯(cuò)誤,在這里我們給出一些常用的判斷方法,希望對(duì)大家有所幫助:p∨q真<=>p真或q真,命題p∨q假<=>p假且q假(概括為一真即真);命題p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括為一假即假);┐p真<=>p假,┐p假<=>p真(概括為一真一假)。函數(shù)與導(dǎo)數(shù)
易錯(cuò)點(diǎn)6求函數(shù)定義域忽視細(xì)節(jié)致誤
錯(cuò)因分析:函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,因此要求定義域就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來(lái),列成不等式組,不等式組的解集就是該函數(shù)的定義域。在求一般函數(shù)定義域時(shí)要注意下面幾點(diǎn):
(1)分母不為0;
(2)偶次被開(kāi)放式非負(fù);
3)真數(shù)大于0;
(4)0的0次冪沒(méi)有意義。
函數(shù)的定義域是非空的數(shù)集,在解決函數(shù)定義域時(shí)不要忘記了這點(diǎn)。對(duì)于復(fù)合函數(shù),要注意外層函數(shù)的定義域是由內(nèi)層函數(shù)的值域決定的。
易錯(cuò)點(diǎn)7帶有絕對(duì)值的函數(shù)單調(diào)性判斷錯(cuò)誤
錯(cuò)因分析:帶有絕對(duì)值的函數(shù)實(shí)質(zhì)上就是分段函數(shù),對(duì)于分段函數(shù)的單調(diào)性,有兩種基本的判斷方法:
一是在各個(gè)段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,最后對(duì)各個(gè)段上的單調(diào)區(qū)間進(jìn)行整合;
二是畫出這個(gè)分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)進(jìn)行直觀的判斷。研究函數(shù)問(wèn)題離不開(kāi)函數(shù)圖象,函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),在研究函數(shù)問(wèn)題時(shí)要時(shí)時(shí)刻刻想到函數(shù)的圖象,學(xué)會(huì)從函數(shù)圖象上去分析問(wèn)題,尋找解決問(wèn)題的方案。對(duì)于函數(shù)的幾個(gè)不同的單調(diào)遞增(減)區(qū)間,千萬(wàn)記住不要使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。
易錯(cuò)點(diǎn)8求函數(shù)奇偶性的常見(jiàn)錯(cuò)誤
錯(cuò)因分析:求函數(shù)奇偶性的`常見(jiàn)錯(cuò)誤有求錯(cuò)函數(shù)定義域或是忽視函數(shù)定義域,對(duì)函數(shù)具有奇偶性的前提條件不清,對(duì)分段函數(shù)奇偶性判斷方法不當(dāng)?shù)。判斷函?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷,在用定義進(jìn)行判斷時(shí)要注意自變量在定義域區(qū)間內(nèi)的任意性。
易錯(cuò)點(diǎn)9抽象函數(shù)中推理不嚴(yán)密致誤
錯(cuò)因分析:很多抽象函數(shù)問(wèn)題都是以抽象出某一類函數(shù)的共同“特征”而設(shè)計(jì)出來(lái)的,在解決問(wèn)題時(shí),可以通過(guò)類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)的性質(zhì)。解答抽象函數(shù)問(wèn)題要注意特殊賦值法的應(yīng)用,通過(guò)特殊賦值可以找到函數(shù)的不變性質(zhì),這個(gè)不變性質(zhì)往往是進(jìn)一步解決問(wèn)題的突破口。抽象函數(shù)性質(zhì)的證明是一種代數(shù)推理,和幾何推理證明一樣,要注意推理的嚴(yán)謹(jǐn)性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過(guò)程要層次分明,書(shū)寫規(guī)范。
易錯(cuò)點(diǎn)10函數(shù)零點(diǎn)定理使用不當(dāng)致誤
錯(cuò)因分析:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也是方程f(c)=0的根,這個(gè)結(jié)論我們一般稱之為函數(shù)的零點(diǎn)定理。函數(shù)的零點(diǎn)有“變號(hào)零點(diǎn)”和“不變號(hào)零點(diǎn)”,對(duì)于“不變號(hào)零點(diǎn)”,函數(shù)的零點(diǎn)定理是“無(wú)能為力”的,在解決函數(shù)的零點(diǎn)時(shí)要注意這個(gè)問(wèn)題。
易錯(cuò)點(diǎn)11混淆兩類切線致誤
錯(cuò)因分析:曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過(guò)一個(gè)點(diǎn)的切線是指過(guò)這個(gè)點(diǎn)的曲線的所有切線,這個(gè)點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過(guò)一個(gè)點(diǎn)的切線可能不止一條。因此求解曲線的切線問(wèn)題時(shí),首先要區(qū)分是什么類型的切線。
易錯(cuò)點(diǎn)12混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系致誤
錯(cuò)因分析:對(duì)于一個(gè)函數(shù)在某個(gè)區(qū)間上是增函數(shù),如果認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,就會(huì)出錯(cuò)。研究函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時(shí)一定要注意:一個(gè)函數(shù)的導(dǎo)函數(shù)在某個(gè)區(qū)間上單調(diào)遞增(減)的充要條件是這個(gè)函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。
易錯(cuò)點(diǎn)13導(dǎo)數(shù)與極值關(guān)系不清致誤
錯(cuò)因分析:在使用導(dǎo)數(shù)求函數(shù)極值時(shí),很容易出現(xiàn)的錯(cuò)誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),而沒(méi)有對(duì)這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號(hào)進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn)。出現(xiàn)這些錯(cuò)誤的原因是對(duì)導(dǎo)數(shù)與極值關(guān)系不清。可導(dǎo)函數(shù)在一個(gè)點(diǎn)處的導(dǎo)函數(shù)值為零只是這個(gè)函數(shù)在此點(diǎn)處取到極值的必要條件,在此提醒廣大考生在使用導(dǎo)數(shù)求函數(shù)極值時(shí)一定要注意對(duì)極值點(diǎn)進(jìn)行檢驗(yàn)。
易錯(cuò)點(diǎn)14用錯(cuò)基本公式致誤
錯(cuò)因分析:等差數(shù)列的首項(xiàng)為a1、公差為d,則其通項(xiàng)公式an=a1+(n-1)d,前n項(xiàng)和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比數(shù)列的首項(xiàng)為a1、公比為q,則其通項(xiàng)公式an=a1pn-1,當(dāng)公比q≠1時(shí),前n項(xiàng)和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當(dāng)公比q=1時(shí),前n項(xiàng)和公式Sn=na1。在數(shù)列的基礎(chǔ)性試題中,等差數(shù)列、等比數(shù)列的這幾個(gè)公式是解題的根本,用錯(cuò)了公式,解題就失去了方向。易錯(cuò)點(diǎn)15 an,Sn關(guān)系不清致誤
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7
三角函數(shù)。
注意歸一公式、誘導(dǎo)公式的正確性。
數(shù)列題。
1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰(shuí)為首項(xiàng),誰(shuí)為公差(公比)的等差(等比)數(shù)列;
2、最后一問(wèn)證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證;
3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單
立體幾何題。
1、證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;
2、求異面直線所成的角、線面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),要建系;
3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。
概率問(wèn)題。
1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);
2、搞清是什么概率模型,套用哪個(gè)公式;
3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;
4、求概率時(shí),正難則反(根據(jù)p1+p2+……+pn=1);
5、注意計(jì)數(shù)時(shí)利用列舉、樹(shù)圖等基本方法;
6、注意放回抽樣,不放回抽樣;
正弦、余弦典型例題。
1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為
2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°
3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°
4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°
5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。
正弦、余弦解題訣竅。
1、已知兩角及一邊,或兩邊及一邊的對(duì)角(對(duì)三角形是否存在要討論)用正弦定理。
2、已知三邊,或兩邊及其夾角用余弦定理
3、余弦定理對(duì)于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8
圓與圓的位置關(guān)系的判斷方法
一、設(shè)兩個(gè)圓的半徑為R和r,圓心距為d。
則有以下五種關(guān)系:
1、d>R+r兩圓外離;兩圓的圓心距離之和大于兩圓的半徑之和。
2、d=R+r兩圓外切;兩圓的圓心距離之和等于兩圓的半徑之和。
3、d=R—r兩圓內(nèi)切;兩圓的圓心距離之和等于兩圓的半徑之差。
4、d 5、d 二、圓和圓的位置關(guān)系,還可用有無(wú)公共點(diǎn)來(lái)判斷: 1、無(wú)公共點(diǎn),一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含。 2、有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切。 3、有兩個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。 1、函數(shù)零點(diǎn)的概念: 對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。 2、函數(shù)零點(diǎn)的意義: 函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn)。 3、函數(shù)零點(diǎn)的求法: 求函數(shù)的零點(diǎn): 。1)(代數(shù)法)求方程的實(shí)數(shù)根; 。2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn)。 4、二次函數(shù)的零點(diǎn): 二次函數(shù)。 1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn)。 2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn)。 3)△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn)。 高中數(shù)學(xué)復(fù)習(xí)的五大要點(diǎn)分析 一、端正態(tài)度,切忌浮躁,忌急于求成 在第一輪復(fù)習(xí)的過(guò)程中,心浮氣躁是一個(gè)非常普遍的現(xiàn)象。主要表現(xiàn)為平時(shí)復(fù)習(xí)覺(jué)得沒(méi)有問(wèn)題,題目也能做,但是到了考試時(shí)就是拿不了高分!這主要是因?yàn)椋?/p> (1)對(duì)復(fù)習(xí)的知識(shí)點(diǎn)缺乏系統(tǒng)的理解,解題時(shí)缺乏思維層次結(jié)構(gòu)。第一輪復(fù)習(xí)著重對(duì)基礎(chǔ)知識(shí)點(diǎn)的挖掘,數(shù)學(xué)老師一定都會(huì)反復(fù)強(qiáng)調(diào)基礎(chǔ)的重要性。如果不重視對(duì)知識(shí)點(diǎn)的系統(tǒng)化分析,不能構(gòu)成一個(gè)整體的知識(shí)網(wǎng)絡(luò)構(gòu)架,自然在解題時(shí)就不能擁有整體的構(gòu)思,也不能深入理解高考典型例題的思維方法。 (2)復(fù)習(xí)的時(shí)候心不靜。心不靜就會(huì)導(dǎo)致思維不清晰,而思維不清晰就會(huì)促使復(fù)習(xí)沒(méi)有效率。建議大家在開(kāi)始一個(gè)學(xué)科的復(fù)習(xí)之前,先靜下心來(lái)認(rèn)真想一想接下來(lái)需要復(fù)習(xí)哪一塊兒,需要做多少事情,然后認(rèn)真去做,同時(shí)需要很高的注意力,只有這樣才會(huì)有很好的效果。 (3)在第一輪復(fù)習(xí)階段,學(xué)習(xí)的重心應(yīng)該轉(zhuǎn)移到基礎(chǔ)復(fù)習(xí)上來(lái)。 因此,建議廣大同學(xué)在一輪復(fù)習(xí)的時(shí)候千萬(wàn)不要急于求成,一定要靜下心來(lái),認(rèn)真的揣摩每個(gè)知識(shí)點(diǎn),弄清每一個(gè)原理。只有這樣,一輪復(fù)習(xí)才能顯出成效。 二、注重教材、注重基礎(chǔ),忌盲目做題 要把書(shū)本中的常規(guī)題型做好,所謂做好就是要用最少的時(shí)間把題目做對(duì)。部分同學(xué)在第一輪復(fù)習(xí)時(shí)對(duì)基礎(chǔ)題不予以足夠的重視,認(rèn)為題目看上去會(huì)做就可以不加訓(xùn)練,結(jié)果常在一些“不該錯(cuò)的地方錯(cuò)了”,最終把原因簡(jiǎn)單的歸結(jié)為粗心,從而忽視了對(duì)基本概念的掌握,對(duì)基本結(jié)論和公式的記憶及基本計(jì)算的訓(xùn)練和常規(guī)方法的積累,造成了實(shí)際成績(jī)與心理感覺(jué)的偏差。 可見(jiàn),數(shù)學(xué)的基本概念、定義、公式,數(shù)學(xué)知識(shí)點(diǎn)的聯(lián)系,基本的數(shù)學(xué)解題思路與方法,是第一輪復(fù)習(xí)的重中之重。不妨以既是重點(diǎn)也是難點(diǎn)的函數(shù)部分為例,就必須掌握函數(shù)的概念,建立函數(shù)關(guān)系式,掌握定義域、值域與最值、奇偶性、單調(diào)性、周期性、對(duì)稱性等性質(zhì),學(xué)會(huì)利用圖像即數(shù)形結(jié)合。 三、抓薄弱環(huán)節(jié),做好復(fù)習(xí)的針對(duì)性,忌無(wú)計(jì)劃 每個(gè)同學(xué)在數(shù)學(xué)學(xué)習(xí)上遇到的問(wèn)題有共同點(diǎn),更有不同點(diǎn)。在復(fù)習(xí)課上,老師只能針對(duì)性去解決共同點(diǎn),而同學(xué)們自己的個(gè)別問(wèn)題則需要通過(guò)自己的思考,與同學(xué)們的討論,并向老師提問(wèn)來(lái)解決問(wèn)題,我們提倡同學(xué)多問(wèn)老師,要敢于問(wèn)。每個(gè)同學(xué)必須了解自己掌握了什么,還有哪些問(wèn)題沒(méi)有解決,要明確只有把漏洞一一補(bǔ)上才能提高。復(fù)習(xí)的過(guò)程,實(shí)質(zhì)就是解決問(wèn)題的過(guò)程,問(wèn)題解決了,復(fù)習(xí)的效果就實(shí)現(xiàn)了。同時(shí),也請(qǐng)同學(xué)們注意:在你問(wèn)問(wèn)題之前先經(jīng)過(guò)自己思考,不要把不經(jīng)過(guò)思考的問(wèn)題就直接去問(wèn),因?yàn)檫@并不能起到更大作用。 高三的復(fù)習(xí)一定是有計(jì)劃、有目標(biāo)的,所以千萬(wàn)不要盲目做題。第一輪復(fù)習(xí)非常具有針對(duì)性,對(duì)于所有知識(shí)點(diǎn)的地毯式轟炸,一定要做到不缺不漏。因此,僅靠簡(jiǎn)單做題是達(dá)不到一輪復(fù)習(xí)應(yīng)該具有的效果。而且盲目做題沒(méi)有針對(duì)性,更不會(huì)有全面性。在概念模糊的情況下一定要回歸課本,注意教材上最清晰的概念與原理,注重對(duì)知識(shí)點(diǎn)運(yùn)用方法的總結(jié)。 四、在平時(shí)做題中要養(yǎng)成良好的解題習(xí)慣,忌不思 1.樹(shù)立信心,養(yǎng)成良好的運(yùn)算習(xí)慣。部分同學(xué)平時(shí)學(xué)習(xí)過(guò)程中自信心不足,做作業(yè)時(shí)免不了互相對(duì)答案,也不認(rèn)真找出錯(cuò)誤原因并加以改正。“會(huì)而不對(duì)”是高三數(shù)學(xué)學(xué)習(xí)的大忌,常見(jiàn)的有審題失誤、計(jì)算錯(cuò)誤等,平時(shí)都以為是粗心,其實(shí)這就是一種非常不好的習(xí)慣,必須在第一輪復(fù)習(xí)中逐步克服,否則,后患無(wú)窮。可結(jié)合平時(shí)解題中存在的具體問(wèn)題,逐題找出原因,看其是行為習(xí)慣方面的原因,還是知識(shí)方面的缺陷,再有針對(duì)性加以解決。必要時(shí)作些記錄,也就是錯(cuò)題本,每位同學(xué)必備的,以便以后查詢。 2.做好解題后的開(kāi)拓引申,培養(yǎng)一題多解和舉一反三的能力。解題能力的培養(yǎng)可以從一題多解和舉一反三中得到提高,因而解完題后,需要再回味和引申,它包括對(duì)解題方法的開(kāi)拓引申,即一道數(shù)學(xué)題從不同的角度去考慮去分析,可以有不同的思路,不同的解法。 考慮的愈廣泛愈深刻,獲得的思路愈廣闊,解法愈多樣;及對(duì)題目做開(kāi)拓引申,引申出新題和新解法,有利于培養(yǎng)同學(xué)們的發(fā)散思維,激發(fā)創(chuàng)造精神,提高解題能力: (1)把題目條件開(kāi)拓引申。 ①把特殊條件一般化;②把一般條件特殊化;③把特殊條件和一般條件交替變化。 (2)把題目結(jié)論開(kāi)拓引申。 (3)把題型開(kāi)拓引申,同一個(gè)題目,給出不同的提法,可以變成不同的題型。俗稱為“一題多變”但其解法仍類似,按其解法而言,這些題又可稱為“多題一解”或“一法多用”。 3.提高解題速度,掌握解題技巧。提高解題速度的主要因素有二:一是解題方法的巧妙與簡(jiǎn)捷;二是對(duì)常規(guī)解法的掌握是否達(dá)到高度的熟練程度。 五、學(xué)會(huì)總結(jié)、歸納,訓(xùn)練到位,忌題量不足 我在暑期上課的時(shí)候發(fā)現(xiàn),很多同學(xué)都是一看到題目就開(kāi)始做題,這也是一輪復(fù)習(xí)應(yīng)該避免的地方。做題如果不注重思路的分析,知識(shí)點(diǎn)的運(yùn)用,效果可想而知。因此建議同學(xué)們?cè)谧鲱}前要把老師上課時(shí)復(fù)習(xí)的知識(shí)再回顧一下,梳理知識(shí)體系,回顧各個(gè)知識(shí)點(diǎn),對(duì)所學(xué)的知識(shí)結(jié)構(gòu)要有一個(gè)完整清楚的認(rèn)識(shí),認(rèn)真分析題目考查的知識(shí),思想,以及方法,還要學(xué)會(huì)總結(jié)歸納不留下任何知識(shí)的盲點(diǎn),在一輪復(fù)習(xí)中要注意對(duì)各個(gè)知識(shí)點(diǎn)的細(xì)化。這個(gè)過(guò)程不需要很長(zhǎng)的時(shí)間,而且到了后續(xù)階段會(huì)越來(lái)越熟練。因此,養(yǎng)成良好的做題習(xí)慣,有助于訓(xùn)練自己的解題思維,提高自己的解題能力。 實(shí)踐出真知,充足的題量是把理論轉(zhuǎn)化為能力的一種保障,在足夠的題目的練習(xí)下不僅可以更扎實(shí)的掌握知識(shí)點(diǎn),還可以更深入的了解知識(shí)點(diǎn),避免出現(xiàn)“會(huì)而不對(duì)、對(duì)而不全”的現(xiàn)象。由于高考依然是以做題為主,所以解題能力是高考分?jǐn)?shù)的一個(gè)直接反映,尤其是數(shù)學(xué)試題。而解題能力不是三兩道題就能提升的,而是要大量的反復(fù)的訓(xùn)練、認(rèn)真細(xì)致的推敲才會(huì)有較大的提升。有句話說(shuō)的好,“量變導(dǎo)致質(zhì)變”,因此,同學(xué)們?cè)诿空聫?fù)習(xí)的時(shí)候,一定要做足夠的題,才能夠充分的理解這一章的內(nèi)容,才能夠做到對(duì)這一章知識(shí)點(diǎn)的熟練運(yùn)用。 但是,大量訓(xùn)練絕對(duì)不是題海戰(zhàn)術(shù)。因?yàn)獒槍?duì)每章節(jié)做題都有目標(biāo),同時(shí)做題訓(xùn)練都需要不斷的總結(jié),既要橫向總結(jié),也要縱向深入。只要在每章節(jié)做題做到一定程度的時(shí)候都能感覺(jué)到這一章的知識(shí)點(diǎn)有哪些,典型題型有哪些,方法和技巧有哪些,換句話說(shuō),如果隨機(jī)抽取一些近幾年關(guān)于這一章的高考題都會(huì)做,那我認(rèn)為就可以了。 高中數(shù)學(xué)知識(shí)點(diǎn)歸納 1.必修課程由5個(gè)模塊組成: 必修1:集合,函數(shù)概念與基本初等函數(shù)(指數(shù)函數(shù),冪函數(shù),對(duì)數(shù)函數(shù)) 必修2:立體幾何初步、平面解析幾何初步。 必修3:算法初步、統(tǒng)計(jì)、概率。 必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。 必修5:解三角形、數(shù)列、不等式。 以上所有的知識(shí)點(diǎn)是所有高中生必須掌握的,而且要懂得運(yùn)用。 選修課程分為4個(gè)系列: 系列1:2個(gè)模塊 選修1-1:常用邏輯用語(yǔ)、圓錐曲線與方程、空間向量與立體幾何。 選修1-2:統(tǒng)計(jì)案例、推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù)、框圖 系列2:3個(gè)模塊 選修2-1:常用邏輯用語(yǔ)、圓錐曲線與方程、空間向量與立體幾何 選修2-2:導(dǎo)數(shù)及其應(yīng)用、推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù) 選修2-3:計(jì)數(shù)原理、隨機(jī)變量及其分布列、統(tǒng)計(jì)案例 選修4-1:幾何證明選講 選修4-4:坐標(biāo)系與參數(shù)方程 選修4-5:不等式選講 2.重難點(diǎn)及其考點(diǎn): 重點(diǎn):函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù) 難點(diǎn):函數(shù),圓錐曲線 高考相關(guān)考點(diǎn): 1.集合與邏輯:集合的邏輯與運(yùn)算(一般出現(xiàn)在高考卷的第一道選擇題)、簡(jiǎn)易邏輯、充要條件 2.函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、函數(shù)的應(yīng)用 3.數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求通項(xiàng)、求和 4.三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和差倍半公式、求值、化簡(jiǎn)、證明、三角函數(shù)的圖像及其性質(zhì)、應(yīng)用 5.平面向量:初等運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及其應(yīng)用 6.不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對(duì)值不等式(經(jīng)常出現(xiàn)在大題的選做題里)、不等式的應(yīng)用 7.直線與圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系 8.圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問(wèn)題、圓錐曲線的應(yīng)用 9.直線、平面、簡(jiǎn)單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量 10.排列、組合和概率:排列、組合應(yīng)用題、二項(xiàng)式定理及其應(yīng)用 11.概率與統(tǒng)計(jì):概率、分布列、期望、方差、抽樣、正態(tài)分布 12.導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用 13.復(fù)數(shù):復(fù)數(shù)的概念與運(yùn)算 高三數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié) 考點(diǎn)一:集合與簡(jiǎn)易邏輯 集合部分一般以選擇題出現(xiàn),屬容易題。重點(diǎn)考查集合間關(guān)系的理解和認(rèn)識(shí)。近年的試題加強(qiáng)了對(duì)集合計(jì)算化簡(jiǎn)能力的考查,并向無(wú)限集發(fā)展,考查抽象思維能力。在解決這些問(wèn)題時(shí),要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡(jiǎn)。簡(jiǎn)易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語(yǔ)表達(dá)數(shù)學(xué)解題過(guò)程和邏輯推理。 考點(diǎn)二:函數(shù)與導(dǎo)數(shù) 函數(shù)是高考的重點(diǎn)內(nèi)容,以選擇題和填空題的為載體針對(duì)性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對(duì)數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運(yùn)算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問(wèn)題、參數(shù)的取值范圍問(wèn)題、方程根的個(gè)數(shù)問(wèn)題、不等式的證明等問(wèn)題。 考點(diǎn)三:三角函數(shù)與平面向量 一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運(yùn)算等,另一道對(duì)三角知識(shí)點(diǎn)的補(bǔ)充。大題中如果沒(méi)有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補(bǔ)充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點(diǎn)考查平面向量數(shù)量積的概念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問(wèn)題是“新熱點(diǎn)”題型. 考點(diǎn)四:數(shù)列與不等式 不等式主要考查一元二次不等式的解法、一元二次不等式組和簡(jiǎn)單線性規(guī)劃問(wèn)題、基本不等式的應(yīng)用等,通常會(huì)在小題中設(shè)置1到2道題。對(duì)不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進(jìn)行考查.在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識(shí)為工具,綜合運(yùn)用函數(shù)、方程、不等式等解決問(wèn)題的能力,它們都屬于中、高檔題目. 考點(diǎn)五:立體幾何與空間向量 一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點(diǎn)、線、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問(wèn)題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個(gè)客觀題和一個(gè)解答題,多為中檔題。 考點(diǎn)六:解析幾何 一般有1~2個(gè)客觀題和1個(gè)解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的定義應(yīng)用、標(biāo)準(zhǔn)方程的求解、離心率的計(jì)算等,解答題則主要考查直線與橢圓、拋物線等的位置關(guān)系問(wèn)題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問(wèn)題、證明問(wèn)題、定點(diǎn)與定值、最值與范圍問(wèn)題等。 考點(diǎn)七:算法復(fù)數(shù)推理與證明 高考對(duì)算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”.考查的熱點(diǎn)是流程圖的識(shí)別與算法語(yǔ)言的閱讀理解.算法與數(shù)列知識(shí)的網(wǎng)絡(luò)交匯命題是考查的主流.復(fù)數(shù)考查的重點(diǎn)是復(fù)數(shù)的有關(guān)概念、復(fù)數(shù)的代數(shù)形式、運(yùn)算及運(yùn)算的幾何意義,一般是選擇題、填空題,難度不大.推理證明部分命題的方向主要會(huì)在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨(dú)出題的可能性較小。對(duì)于理科,數(shù)學(xué)歸納法可能作為解答題的一小問(wèn). 1、直線的傾斜角 定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180° 2、直線的斜率 、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。 ②過(guò)兩點(diǎn)的直線的斜率公式: 注意下面四點(diǎn): (1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°; (2)k與P1、P2的順序無(wú)關(guān); (3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得; (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。 3、直線方程 點(diǎn)斜式: 直線斜率k,且過(guò)點(diǎn) 注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。 一、集合與函數(shù) 1.進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解。 2.在應(yīng)用條件時(shí),易A忽略是空集的情況 3.你會(huì)用補(bǔ)集的思想解決有關(guān)問(wèn)題嗎? 4.簡(jiǎn)單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件? 5.你知道“否命題”與“命題的否定形式”的區(qū)別。 6.求解與函數(shù)有關(guān)的問(wèn)題易忽略定義域優(yōu)先的原則。 7.判斷函數(shù)奇偶性時(shí),易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱。 8.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽略標(biāo)注該函數(shù)的定義域。 9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)。例如:。 10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負(fù))和導(dǎo)數(shù)法 11.求函數(shù)單調(diào)性時(shí),易錯(cuò)誤地在多個(gè)單調(diào)區(qū)間之間添加符號(hào)“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示。 12.求函數(shù)的值域必須先求函數(shù)的定義域。 13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題? ①比較函數(shù)值的大小; 、诮獬橄蠛瘮(shù)不等式; ③求參數(shù)的范圍(恒成立問(wèn)題).這幾種基本應(yīng)用你掌握了嗎? 14.解對(duì)數(shù)函數(shù)問(wèn)題時(shí),你注意到真數(shù)與底數(shù)的限制條件了嗎? (真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論 15.三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值? 16.用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數(shù)的范圍。 17.“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時(shí),你是否注意到:當(dāng)時(shí),“方程有解”不能轉(zhuǎn)化為。若原題中沒(méi)有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項(xiàng)系數(shù)可能為的零的情形? 二、不等式 1.利用均值不等式求最值時(shí),你是否注意到:“一正;二定;三等”. 2.絕對(duì)值不等式的解法及其幾何意義是什么? 3.解分式不等式應(yīng)注意什么問(wèn)題?用“根軸法”解整式(分式)不等式的注意事項(xiàng)是什么? 4.解含參數(shù)不等式的通法是“定義域?yàn)榍疤幔瘮?shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”. 5.在求不等式的解集、定義域及值域時(shí),其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示。 6.兩個(gè)不等式相乘時(shí),必須注意同向同正時(shí)才能相乘,即同向同正可乘;同時(shí)要注意“同號(hào)可倒”即a>b>0,a 三、數(shù)列 1.解決一些等比數(shù)列的前項(xiàng)和問(wèn)題,你注意到要對(duì)公比及兩種情況進(jìn)行討論了嗎? 2.在“已知,求”的問(wèn)題中,你在利用公式時(shí)注意到了嗎?(時(shí),應(yīng)有)需要驗(yàn)證,有些題目通項(xiàng)是分段函數(shù)。 3.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無(wú)窮數(shù)列的概念嗎?你知道無(wú)窮數(shù)列的前項(xiàng)和與所有項(xiàng)的和的不同嗎?什么樣的無(wú)窮等比數(shù)列的所有項(xiàng)的和必定存在? 4.數(shù)列單調(diào)性問(wèn)題能否等同于對(duì)應(yīng)函數(shù)的單調(diào)性問(wèn)題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。) 5.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過(guò)程中,先假設(shè)時(shí)成立,再結(jié)合一些數(shù)學(xué)方法用來(lái)證明時(shí)也成立。 四、三角函數(shù) 1.正角、負(fù)角、零角、象限角的概念你清楚嗎,若角的終邊在坐標(biāo)軸上,那它歸哪個(gè)象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎? 2.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎? 3.在解三角問(wèn)題時(shí),你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎? 4.你還記得三角化簡(jiǎn)的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角。異角化同角,異名化同名,高次化低次) 5.反正弦、反余弦、反正切函數(shù)的取值范圍分別是 6.你還記得某些特殊角的三角函數(shù)值嗎? 7.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì)。你會(huì)寫三角函數(shù)的單調(diào)區(qū)間嗎?會(huì)寫簡(jiǎn)單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書(shū)寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過(guò)怎樣的變換得到嗎? 五、平面向量 1..數(shù)0有區(qū)別,的模為數(shù)0,它不是沒(méi)有方向,而是方向不定?梢钥闯膳c任意向量平行,但與任意向量都不垂直。 2..數(shù)量積與兩個(gè)實(shí)數(shù)乘積的區(qū)別: 在實(shí)數(shù)中:若,且ab=0,則b=0,但在向量的數(shù)量積中,若,且,不能推出。 已知實(shí)數(shù),且,則a=c,但在向量的數(shù)量積中沒(méi)有。 在實(shí)數(shù)中有,但是在向量的數(shù)量積中,這是因?yàn)樽筮吺桥c共線的向量,而右邊是與共線的向量。 3.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。 六、解析幾何 1.在用點(diǎn)斜式、斜截式求直線的方程時(shí),你是否注意到不存在的情況? 2.用到角公式時(shí),易將直線l1、l2的斜率k1、k2的順序弄顛倒。 3.直線的傾斜角、到的角、與的夾角的取值范圍依次是。 4.定比分點(diǎn)的坐標(biāo)公式是什么?(起點(diǎn),中點(diǎn),分點(diǎn)以及值可要搞清),在利用定比分點(diǎn)解題時(shí),你注意到了嗎? 5.對(duì)不重合的兩條直線 (建議在解題時(shí),討論后利用斜率和截距) 6.直線在兩坐標(biāo)軸上的截距相等,直線方程可以理解為,但不要忘記當(dāng)時(shí),直線在兩坐標(biāo)軸上的截距都是0,亦為截距相等。 7.解決線性規(guī)劃問(wèn)題的基本步驟是什么?請(qǐng)你注意解題格式和完整的文字表達(dá)。 、僭O(shè)出變量,寫出目標(biāo)函數(shù) 、趯懗鼍性約束條件 、郛嫵隹尚杏 、茏鞒瞿繕(biāo)函數(shù)對(duì)應(yīng)的系列平行線,找到并求出最優(yōu)解 8.三種圓錐曲線的定義、圖形、標(biāo)準(zhǔn)方程、幾何性質(zhì),橢圓與雙曲線中的兩個(gè)特征三角形你掌握了嗎? 9.圓、和橢圓的參數(shù)方程是怎樣的?常用參數(shù)方程的方法解決哪一些問(wèn)題? 10.利用圓錐曲線第二定義解題時(shí),你是否注意到定義中的定比前后項(xiàng)的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應(yīng)用焦半徑公式? 11.通徑是拋物線的所有焦點(diǎn)弦中最短的弦。(想一想在雙曲線中的結(jié)論?) 12.在用圓錐曲線與直線聯(lián)立求解時(shí),消元后得到的方程中要注意:二次項(xiàng)的系數(shù)是否為零?橢圓,雙曲線二次項(xiàng)系數(shù)為零時(shí)直線與其只有一個(gè)交點(diǎn),判別式的限制。(求交點(diǎn),弦長(zhǎng),中點(diǎn),斜率,對(duì)稱,存在性問(wèn)題都在下進(jìn)行). 13.解析幾何問(wèn)題的求解中,平面幾何知識(shí)利用了嗎?題目中是否已經(jīng)有坐標(biāo)系了,是否需要建立直角坐標(biāo)系? 七、立體幾何 1.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測(cè)畫法)。 2.線面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯(lián)系和轉(zhuǎn)化在解決立幾問(wèn)題中的應(yīng)用是怎樣的?每種平行之間轉(zhuǎn)換的條件是什么? 3.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關(guān)鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關(guān)鍵)一面四直線,立柱是關(guān)鍵,垂直三處見(jiàn) 4.線面平行的判定定理和性質(zhì)定理在應(yīng)用時(shí)都是三個(gè)條件,但這三個(gè)條件易混為一談;面面平行的判定定理易把條件錯(cuò)誤地記為”一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面內(nèi)的兩條相交直線分別平行”而導(dǎo)致證明過(guò)程跨步太大。 5.求兩條異面直線所成的角、直線與平面所成的角和二面角時(shí),如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。 6.異面直線所成角利用“平移法”求解時(shí),一定要注意平移后所得角等于所求角(或其補(bǔ)角),特別是題目告訴異面直線所成角,應(yīng)用時(shí)一定要從題意出發(fā),是用銳角還是其補(bǔ)角,還是兩種情況都有可能。 7.你知道公式:和中每一字母的意思嗎?能夠熟練地應(yīng)用它們解題嗎? 8.兩條異面直線所成的角的范圍:0°<α≤90°< p=""> 直線與平面所成的角的范圍:0o≤α≤90° 任一x=A,x=B,記做AB AB,BAA=B AB={x|x=A,且x=B} AB={x|x=A,或x=B} Card(AB)=card(A)+card(B)—card(AB) (1)命題 原命題若p則q 逆命題若q則p 否命題若p則q 逆否命題若q,則p (2)AB,A是B成立的充分條件 BA,A是B成立的必要條件 AB,A是B成立的充要條件 1、集合元素具有 ①確定性; 、诨ギ愋; ③無(wú)序性 2、集合表示方法 、倭信e法; ②描述法; 、垌f恩圖; ④數(shù)軸法 (3)集合的運(yùn)算 、貯∩(B∪C)=(A∩B)∪(A∩C) 、贑u(A∩B)=CuA∪CuB Cu(A∪B)=CuA∩CuB (4)集合的性質(zhì) n元集合的字集數(shù):2n 真子集數(shù):2n—1; 非空真子集數(shù):2n—2 高考數(shù)學(xué)重要知識(shí)點(diǎn) 表達(dá)式:(a+b)(a-b)=a^2-b^2,兩個(gè)數(shù)的和與這兩個(gè)數(shù)差的積,等于這兩個(gè)數(shù)的平方差,這個(gè)公式就叫做乘法的平方差公式 公式運(yùn)用 可用于某些分母含有根號(hào)的分式: 1/(3-4倍根號(hào)2)化簡(jiǎn): 1×(3+4倍根號(hào)2)/(3-4倍根號(hào)2)^2;=(3+4倍根號(hào)2)/(9-32)=(3+4倍根號(hào)2)/-23 解方程: x^2-y^2=1991 思路分析: 利用平方差公式求解 解題過(guò)程: x^2-y^2=1991 (x+y)(x-y)=1991 因?yàn)?991可以分成1×1991,11×181 所以如果x+y=1991,x-y=1,解得x=996,y=995 如果x+y=181,x-y=11,x=96,y=85同時(shí)也可以是負(fù)數(shù) 所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995 或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85 易錯(cuò)點(diǎn)1 遺忘空集致誤 錯(cuò)因分析:由于空集是任何非空集合的真子集,因此,對(duì)于集合B高三經(jīng)典糾錯(cuò)筆記:數(shù)學(xué)A,就有B=A,φ≠B高三經(jīng)典糾錯(cuò)筆記:數(shù)學(xué)A,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了 B≠φ這種情況,導(dǎo)致解題結(jié)果錯(cuò)誤。尤其是在解含有參數(shù)的集合問(wèn)題時(shí),更要充分注意當(dāng)參數(shù)在某個(gè)范圍內(nèi)取值時(shí)所給的集合可能是空集這種情況?占且粋(gè)特殊的集合,由于思維定式的原因,考生往往會(huì)在解題中遺忘了這個(gè)集合,導(dǎo)致解題錯(cuò)誤或是解題不全面。 易錯(cuò)點(diǎn)2 忽視集合元素的三性致誤 錯(cuò)因分析:集合中的元素具有確定性、無(wú)序性、互異性,集合元素的三性中互異性對(duì)解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對(duì)字母參數(shù)的一些要求。在解題時(shí)也可以先確定字母參數(shù)的范圍后,再具體解決問(wèn)題。 易錯(cuò)點(diǎn)3 四種命題的結(jié)構(gòu)不明致誤 錯(cuò)因分析:如果原命題是“若 A則B”,則這個(gè)命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這里面有兩組等價(jià)的命題,即“原命題和它的逆否命題等價(jià),否命題與逆命題等價(jià)”。在解答由一個(gè)命題寫出該命題的其他形式的命題時(shí),一定要明確四種命題的結(jié)構(gòu)以及它們之間的等價(jià)關(guān)系。另外,在否定一個(gè)命題時(shí),要注意全稱命題的否定是特稱命題,特稱命題的 否定是全稱命題。如對(duì)“a,b都是偶數(shù)”的否定應(yīng)該是“a,b不都是偶數(shù)”,而不應(yīng)該是“a ,b都是奇數(shù)”。 易錯(cuò)點(diǎn)4 充分必要條件顛倒致誤 錯(cuò)因分析:對(duì)于兩個(gè)條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。解題時(shí)最容易出錯(cuò)的就是顛倒了充分性與必要性,所以在解決這類問(wèn)題時(shí)一定要根據(jù)充要條件的概念作出準(zhǔn)確的判斷。 易錯(cuò)點(diǎn)6 求函數(shù)定義域忽視細(xì)節(jié)致誤 錯(cuò)因分析:函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,因此要求定義域就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來(lái),列成不等式組,不等式組的解集就是該函數(shù)的定義域。在求一般函數(shù)定義域時(shí)要注意下面幾點(diǎn):(1)分母不為0;(2)偶次被開(kāi)放式非負(fù);(3)真數(shù)大于0;(4)0的0次冪沒(méi)有意義。函 數(shù)的定義域是非空的數(shù)集,在解決函數(shù)定義域時(shí)不要忘記了這點(diǎn)。對(duì)于復(fù)合函數(shù),要注意外層函數(shù)的定義域是由內(nèi)層函數(shù)的值域決定的。 易錯(cuò)點(diǎn)7 帶有絕對(duì)值的函數(shù)單調(diào)性判斷錯(cuò)誤 錯(cuò)因分析:帶有絕對(duì)值的函數(shù)實(shí)質(zhì)上就是分段函數(shù),對(duì)于分段函數(shù)的單調(diào)性,有兩種基本的判斷方法:一是在各個(gè)段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,最后對(duì)各個(gè)段上的單調(diào)區(qū)間進(jìn)行整合;二是畫出這個(gè)分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)進(jìn)行直觀的判斷。研究函數(shù)問(wèn)題離不開(kāi)函數(shù)圖象,函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),在研究函數(shù)問(wèn)題時(shí)要時(shí)時(shí)刻刻想到函數(shù)的圖象,學(xué)會(huì)從函數(shù)圖象上去分析問(wèn)題,尋找解決問(wèn)題的方案。對(duì)于函數(shù)的幾個(gè)不同的單調(diào)遞增(減)區(qū)間,千萬(wàn)記住不要使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。 易錯(cuò)點(diǎn)8 求函數(shù)奇偶性的常見(jiàn)錯(cuò)誤 錯(cuò)因分析:求函數(shù)奇偶性的常見(jiàn)錯(cuò)誤有求錯(cuò)函數(shù)定義域或是忽視函數(shù)定義域,對(duì)函數(shù)具有奇偶性的前提條件不清,對(duì)分段函數(shù)奇偶性判斷方法不當(dāng)?shù)。判斷函?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷,在用定義進(jìn)行判斷時(shí)要注意自變量在定義域區(qū)間內(nèi)的任意性。 易錯(cuò)點(diǎn)9 抽象函數(shù)中推理不嚴(yán)密致誤 錯(cuò)因分析:很多抽象函數(shù)問(wèn)題都是以抽象出某一類函數(shù)的共同“特征”而設(shè)計(jì)出來(lái)的,在解決問(wèn)題時(shí),可以通過(guò)類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)的性質(zhì)。解答抽象函數(shù)問(wèn)題要注意特殊賦值法的應(yīng)用,通過(guò)特殊賦值可以找到函數(shù)的不變性質(zhì),這個(gè)不變性質(zhì)往往是進(jìn)一步解決問(wèn)題的突破口。抽象函數(shù)性質(zhì)的證明是一種代數(shù)推理,和幾何推理證明一樣,要注意推理的嚴(yán)謹(jǐn)性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過(guò)程要層次分明,書(shū)寫規(guī)范。 易錯(cuò)點(diǎn)10 函數(shù)零點(diǎn)定理使用不當(dāng)致誤 錯(cuò)因分析:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也是方程f(c)=0的根,這個(gè)結(jié)論我們一般稱之為函數(shù)的零點(diǎn)定理。函數(shù)的零點(diǎn)有“變號(hào)零點(diǎn)”和“不變號(hào)零點(diǎn)”,對(duì)于“不變號(hào)零點(diǎn)”,函數(shù)的零點(diǎn)定理是“無(wú)能為力”的,在解決函數(shù)的零點(diǎn)時(shí)要注意這個(gè)問(wèn)題。 易錯(cuò)點(diǎn)11 混淆兩類切線致誤 錯(cuò)因分析:曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過(guò)一個(gè)點(diǎn)的切線是指過(guò)這個(gè)點(diǎn)的曲線的所有切線,這個(gè)點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過(guò)一個(gè)點(diǎn)的切線可能不止一條。因此求解曲線的切線問(wèn)題時(shí),首先要區(qū)分是什么類型的切線。 易錯(cuò)點(diǎn)12 混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系致誤 錯(cuò)因分析:對(duì)于一個(gè)函數(shù)在某個(gè)區(qū)間上是增函數(shù),如果認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,就會(huì)出錯(cuò)。研究函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時(shí)一定要注意:一個(gè)函數(shù)的導(dǎo)函數(shù)在某個(gè)區(qū)間上單調(diào)遞增(減)的充要條件是這個(gè)函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(。┯诘扔0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。 易錯(cuò)點(diǎn)13 導(dǎo)數(shù)與極值關(guān)系不清致誤 錯(cuò)因分析:在使用導(dǎo)數(shù)求函數(shù)極值時(shí),很容易出現(xiàn)的錯(cuò)誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),而沒(méi)有對(duì)這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號(hào)進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn)。出現(xiàn)這些錯(cuò)誤的原因是對(duì)導(dǎo)數(shù)與極值關(guān)系不清?蓪(dǎo)函數(shù)在一個(gè)點(diǎn)處的導(dǎo)函數(shù)值為零只是這個(gè)函數(shù)在此點(diǎn)處取到極值的必要條件,在此提醒廣大考生在使用導(dǎo)數(shù)求函數(shù)極值時(shí)一定要注意對(duì)極值點(diǎn)進(jìn)行檢驗(yàn)。 數(shù)列 易錯(cuò)點(diǎn)14 用錯(cuò)基本公式致誤 錯(cuò)因分析:等差數(shù)列的首項(xiàng)為a1、公差為d,則其通項(xiàng)公式an=a1+(n-1)d,前n項(xiàng)和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比數(shù)列的首項(xiàng)為a1、公比為q,則其通項(xiàng)公式an=a1pn-1,當(dāng)公比q≠1時(shí),前n項(xiàng)和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當(dāng)公比q=1時(shí),前n項(xiàng)和公式Sn=na1。在數(shù)列的基礎(chǔ)性試題中,等差數(shù)列、等比數(shù)列的這幾個(gè)公式是解題的根本,用錯(cuò)了公式,解題就失去了方向。 易錯(cuò)點(diǎn)15 an,Sn關(guān)系不清致誤 高考數(shù)學(xué)知識(shí)點(diǎn):軌跡方程的求解 符合一定條件的動(dòng)點(diǎn)所形成的圖形,或者說(shuō),符合一定條件的點(diǎn)的全體所組成的集合,叫做滿足該條件的點(diǎn)的軌跡. 軌跡,包含兩個(gè)方面的問(wèn)題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性). 【軌跡方程】就是與幾何軌跡對(duì)應(yīng)的代數(shù)描述。 一、求動(dòng)點(diǎn)的軌跡方程的基本步驟 、苯⑦m當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo); ⒉寫出點(diǎn)M的集合; 、沉谐龇匠=0; 、椿(jiǎn)方程為最簡(jiǎn)形式; 、禉z驗(yàn)。 二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。 ⒈直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。 、捕x法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。 、诚嚓P(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。 、磪(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。 、到卉壏ǎ簩蓜(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。 .直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟 ①建系——建立適當(dāng)?shù)淖鴺?biāo)系; 、谠O(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y); 、哿惺健谐鰟(dòng)點(diǎn)p所滿足的關(guān)系式; 、艽鷵Q——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn); 、葑C明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。 高考數(shù)學(xué)知識(shí)點(diǎn):排列組合公式 排列組合公式/排列組合計(jì)算公式 排列P------和順序有關(guān) 組合C-------不牽涉到順序的問(wèn)題 排列分順序,組合不分 例如把5本不同的書(shū)分給3個(gè)人,有幾種分法."排列" 把5本書(shū)分給3個(gè)人,有幾種分法"組合" 1.排列及計(jì)算公式 從n個(gè)不同元素中,任取m(m≤n)個(gè)元素按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有排列的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的排列數(shù),用符號(hào)p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規(guī)定0!=1). 2.組合及計(jì)算公式 從n個(gè)不同元素中,任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有組合的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù).用符號(hào) c(n,m)表示. c(n,m)=p(n,m)/m!=n!/((n-m)!.m!);c(n,m)=c(n,n-m); 3.其他排列與組合公式 從n個(gè)元素中取出r個(gè)元素的循環(huán)排列數(shù)=p(n,r)/r=n!/r(n-r)!. n個(gè)元素被分成k類,每類的個(gè)數(shù)分別是n1,n2,...nk這n個(gè)元素的全排列數(shù)為 n!/(n1!.n2!.....nk!). k類元素,每類的個(gè)數(shù)無(wú)限,從中取出m個(gè)元素的組合數(shù)為c(m+k-1,m). 排列(Pnm(n為下標(biāo),m為上標(biāo))) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號(hào));Pnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=n!;0!=1;Pn1(n為下標(biāo)1為上標(biāo))=n 組合(Cnm(n為下標(biāo),m為上標(biāo))) Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=1;Cn1(n為下標(biāo)1為上標(biāo))=n;Cnm=Cnn-m 20xx-07-0813:30 公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N-元素的總個(gè)數(shù)R參與選擇的元素個(gè)數(shù)!-階乘,如9!=9.8.7.6.5.4.3.2.1 從N倒數(shù)r個(gè),表達(dá)式應(yīng)該為n.(n-1).(n-2)..(n-r+1); 因?yàn)閺膎到(n-r+1)個(gè)數(shù)為n-(n-r+1)=r 舉例: Q1:有從1到9共計(jì)9個(gè)號(hào)碼球,請(qǐng)問(wèn),可以組成多少個(gè)三位數(shù)? A1:123和213是兩個(gè)不同的排列數(shù)。即對(duì)排列順序有要求的,既屬于“排列P”計(jì)算范疇。 上問(wèn)題中,任何一個(gè)號(hào)碼只能用一次,顯然不會(huì)出現(xiàn)988,997之類的組合,我們可以這么看,百位數(shù)有9種可能,十位數(shù)則應(yīng)該有9-1種可能,個(gè)位數(shù)則應(yīng)該只有9-1-1種可能,最終共有9.8.7個(gè)三位數(shù)。計(jì)算公式=P(3,9)=9.8.7,(從9倒數(shù)3個(gè)的乘積) Q2:有從1到9共計(jì)9個(gè)號(hào)碼球,請(qǐng)問(wèn),如果三個(gè)一組,代表“三國(guó)聯(lián)盟”,可以組合成多少個(gè)“三國(guó)聯(lián)盟”? A2:213組合和312組合,代表同一個(gè)組合,只要有三個(gè)號(hào)碼球在一起即可。即不要求順序的,屬于“組合C”計(jì)算范疇。 上問(wèn)題中,將所有的包括排列數(shù)的個(gè)數(shù)去除掉屬于重復(fù)的個(gè)數(shù)即為最終組合數(shù)C(3,9)=9.8.7/3.2.1 排列、組合的概念和公式典型例題分析 例1設(shè)有3名學(xué)生和4個(gè)課外小組.(1)每名學(xué)生都只參加一個(gè)課外小組;(2)每名學(xué)生都只參加一個(gè)課外小組,而且每個(gè)小組至多有一名學(xué)生參加.各有多少種不同方法? 解(1)由于每名學(xué)生都可以參加4個(gè)課外小組中的任何一個(gè),而不限制每個(gè)課外小組的人數(shù),因此共有種不同方法. (2)由于每名學(xué)生都只參加一個(gè)課外小組,而且每個(gè)小組至多有一名學(xué)生參加,因此共有種不同方法. 點(diǎn)評(píng)由于要讓3名學(xué)生逐個(gè)選擇課外小組,故兩問(wèn)都用乘法原理進(jìn)行計(jì)算. 例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少種? 解依題意,符合要求的排法可分為第一個(gè)排、、中的某一個(gè),共3類,每一類中不同排法可采用畫“樹(shù)圖”的方式逐一排出: ∴符合題意的不同排法共有9種. 點(diǎn)評(píng)按照分“類”的思路,本題應(yīng)用了加法原理.為把握不同排法的規(guī)律,“樹(shù)圖”是一種具有直觀形象的有效做法,也是解決計(jì)數(shù)問(wèn)題的一種數(shù)學(xué)模型. 例3判斷下列問(wèn)題是排列問(wèn)題還是組合問(wèn)題?并計(jì)算出結(jié)果. (1)高三年級(jí)學(xué)生會(huì)有11人:①每?jī)扇嘶ネㄒ环庑牛餐硕嗌俜庑?②每?jī)扇嘶ノ樟艘淮问,共握了多少次? (2)高二年級(jí)數(shù)學(xué)課外小組共10人:①?gòu)闹羞x一名正組長(zhǎng)和一名副組長(zhǎng),共有多少種不同的選法?②從中選2名參加省數(shù)學(xué)競(jìng)賽,有多少種不同的選法? (3)有2,3,5,7,11,13,17,19八個(gè)質(zhì)數(shù):①?gòu)闹腥稳蓚(gè)數(shù)求它們的商可以有多少種不同的商?②從中任取兩個(gè)求它的積,可以得到多少個(gè)不同的積? (4)有8盆花:①?gòu)闹羞x出2盆分別給甲乙兩人每人一盆,有多少種不同的選法?②從中選出2盆放在教室有多少種不同的選法? 分析(1)①由于每人互通一封信,甲給乙的信與乙給甲的信是不同的兩封信,所以與順序有關(guān)是排列;②由于每?jī)扇嘶ノ找淮问郑着c乙握手,乙與甲握手是同一次握手,與順序無(wú)關(guān),所以是組合問(wèn)題.其他類似分析. (1)①是排列問(wèn)題,共用了封信;②是組合問(wèn)題,共需握手(次). (2)①是排列問(wèn)題,共有(種)不同的選法;②是組合問(wèn)題,共有種不同的選法. (3)①是排列問(wèn)題,共有種不同的商;②是組合問(wèn)題,共有種不同的積. (4)①是排列問(wèn)題,共有種不同的選法;②是組合問(wèn)題,共有種不同的選法. 例4證明. 證明左式 右式. ∴等式成立. 點(diǎn)評(píng)這是一個(gè)排列數(shù)等式的證明問(wèn)題,選用階乘之商的形式,并利用階乘的性質(zhì),可使變形過(guò)程得以簡(jiǎn)化. 例5化簡(jiǎn). 解法一原式 解法二原式 點(diǎn)評(píng)解法一選用了組合數(shù)公式的階乘形式,并利用階乘的性質(zhì);解法二選用了組合數(shù)的兩個(gè)性質(zhì),都使變形過(guò)程得以簡(jiǎn)化. 例6解方程:(1);(2). 解(1)原方程 解得. (2)原方程可變?yōu)?/p> ∵,, ∴原方程可化為. 即,解得 高三數(shù)學(xué)三角函數(shù)公式 銳角三角函數(shù)公式 sin α=∠α的對(duì)邊 / 斜邊 cos α=∠α的鄰邊 / 斜邊 tan α=∠α的對(duì)邊 / ∠α的鄰邊 cot α=∠α的鄰邊 / ∠α的對(duì)邊 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A) ) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推導(dǎo) sin3a =sin(2a+a) =sin2acosa+cos2asina 輔助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降冪公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) 推導(dǎo)公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 =2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa sin3a=3sina-4sin3a =4sina(3/4-sin2a) =4sina[(√3/2)2-sin2a] =4sina(sin260°-sin2a) =4sina(sin60°+sina)(sin60°-sina) =4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos3a-3cosa =4cosa(cos2a-3/4) =4cosa[cos2a-(√3/2)2] =4cosa(cos2a-cos230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述兩式相比可得 tan3a=tanatan(60°-a)tan(60°+a) 半角公式 tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 三角和 sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 兩角和差 cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 和差化積 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 【高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章: 高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11-18 高考數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)11-02 高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)01-06 高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)09-03 高考數(shù)學(xué)易錯(cuò)的知識(shí)點(diǎn)總結(jié)03-31 高考前數(shù)學(xué)知識(shí)點(diǎn)總結(jié)04-11 高考數(shù)學(xué)方差必考知識(shí)點(diǎn)總結(jié)04-11 對(duì)口高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-08高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15