1. <rp id="zsypk"></rp>

      2. 初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

        時(shí)間:2024-11-16 23:15:26 秀雯 知識(shí)點(diǎn)總結(jié) 我要投稿

        初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)集錦

          上學(xué)的時(shí)候,說(shuō)起知識(shí)點(diǎn),應(yīng)該沒(méi)有人不熟悉吧?知識(shí)點(diǎn)是知識(shí)中的最小單位,最具體的內(nèi)容,有時(shí)候也叫“考點(diǎn)”。相信很多人都在為知識(shí)點(diǎn)發(fā)愁,下面是小編收集整理的初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎大家分享。

        初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)集錦

          軸對(duì)稱

          1.如果一個(gè)平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線叫做對(duì)稱軸。

          2.性質(zhì)

          (1)成軸對(duì)稱的兩個(gè)圖形全等;

          (2)如果兩個(gè)圖形成軸對(duì)稱,那么對(duì)稱軸是對(duì)稱點(diǎn)連線的垂直平分線。

          一次函數(shù)

          (一)一次函數(shù)是函數(shù)中的一種,一般形如y=kx+b(k,b是常數(shù),k≠0),其中x是自變量,y是因變量。特別地,當(dāng)b=0時(shí),y=kx+b(k為常數(shù),k≠0),y叫做x的正比例函數(shù)。

          (二)函數(shù)三要素

          1.定義域:設(shè)x、y是兩個(gè)變量,變量x的變化范圍為D,如果對(duì)于每一個(gè)數(shù)x∈D,變量y遵照一定的法則總有確定的數(shù)值與之對(duì)應(yīng),則稱y是x的函數(shù),記作y=f(x),x∈D,x稱為自變量,y稱為因變量,數(shù)集D稱為這個(gè)函數(shù)的定義域。

          2.在函數(shù)經(jīng)典定義中,因變量改變而改變的取值范圍叫做這個(gè)函數(shù)的值域,在函數(shù)現(xiàn)代定義中是指定義域中所有元素在某個(gè)對(duì)應(yīng)法則下對(duì)應(yīng)的所有的象所組成的集合。如:f(x)=x,那么f(x)的取值范圍就是函數(shù)f(x)的值域。

          3.對(duì)應(yīng)法則:一般地說(shuō),在函數(shù)記號(hào)y=f(x)中,“f”即表示對(duì)應(yīng)法則,等式y(tǒng)=f(x)表明,對(duì)于定義域中的任意的x值,在對(duì)應(yīng)法則“f”的作用下,即可得到值域中唯一y值。

          (三)一次函數(shù)的表示方法

          1.解析式法:用含自變量x的式子表示函數(shù)的方法叫做解析式法。

          2.列表法:把一系列x的值對(duì)應(yīng)的函數(shù)值y列成一個(gè)表來(lái)表示的函數(shù)關(guān)系的方法叫做列表法。

          3.圖像法:用圖象來(lái)表示函數(shù)關(guān)系的方法叫做圖象法。

          (四)一次函數(shù)的性質(zhì)

          1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k。即:y=kx+b(k≠0)(k不等于0,且k,b為常數(shù))。

          2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的交點(diǎn),坐標(biāo)為(0,b)。當(dāng)y=0時(shí),該函數(shù)圖象在x軸上的交點(diǎn)坐標(biāo)為(-b/k,0)。

          3.k為一次函數(shù)y=kx+b的斜率,k=tanθ(角θ為一次函數(shù)圖象與x軸正方向夾角,θ≠90°)。

          4.當(dāng)b=0時(shí)(即y=kx),一次函數(shù)圖象變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。

          5.函數(shù)圖象性質(zhì):當(dāng)k相同,且b不相等,圖像平行;當(dāng)k不同,且b相等,圖象相交于Y軸;當(dāng)k互為負(fù)倒數(shù)時(shí),兩直線垂直。

          6.平移時(shí):上加下減在末尾,左加右減在中間。

          直角三角形

          1.勾股定理及其逆定理

          定理:直角三角形的兩條直角邊的等于的平方。

          逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是直角三角形。

          2.含30°的直角三角形的邊的性質(zhì)

          定理:在直角三角形中,如果一個(gè)銳角等于30°,那么等于的一半。

          3.直角三角形斜邊上的中線等于斜邊的一半。

          要點(diǎn)詮釋:①勾股定理的逆定理在語(yǔ)言敘述的時(shí)候一定要注意,不能說(shuō)成“兩條邊的平方和等于斜邊的平方”,應(yīng)該說(shuō)成“三角形兩邊的平方和等于第三邊的平方”。

         、谥苯侨切蔚娜扰卸ǚ椒,HL還有SSS,SAS,ASA,AAS,一共有5種判定方法。

          圖形的平移與旋轉(zhuǎn)

          1.平移,是指在同一平面內(nèi),將一個(gè)圖形上的所有點(diǎn)都按照某個(gè)直線方向做相同距離的移動(dòng),這樣的圖形運(yùn)動(dòng)叫做圖形的平移運(yùn)動(dòng),簡(jiǎn)稱平移。

          2.平移性質(zhì)

          (1)圖形平移前后的形狀和大小沒(méi)有變化,只是位置發(fā)生變化。

          (2)圖形平移后,對(duì)應(yīng)點(diǎn)連成的線段平行(或在同一直線上)且相等。

          拓展閱讀:初中數(shù)學(xué)提高解題速度的方法

          認(rèn)真仔細(xì)審題

          對(duì)于一道具體的習(xí)題,解題時(shí)最重要的環(huán)節(jié)是審題。審題的第一步是讀題,這是獲取信息量和思考的過(guò)程。讀題要慢,一邊讀,一邊想,應(yīng)特別注意每一句話的內(nèi)在涵義,并從中找出隱含條件。

          有些學(xué)生沒(méi)有養(yǎng)成讀題、思考的習(xí)慣,心里著急,匆匆一看,就開(kāi)始解題,結(jié)果常常是漏掉了一些信息,花了很長(zhǎng)時(shí)間解不出來(lái),還找不到原因,想快卻慢了。所以,在實(shí)際解題時(shí),應(yīng)特別注意,審題要認(rèn)真、仔細(xì)。

          做好歸納總結(jié)

          在解過(guò)一定數(shù)量的習(xí)題之后,對(duì)所涉及到的知識(shí)、解題方法進(jìn)行歸納總結(jié),以便使解題思路更為清晰,就能達(dá)到舉一反三的效果,對(duì)于類似的習(xí)題一目了然,可以節(jié)約大量的解題時(shí)間。

          熟悉習(xí)題內(nèi)容

          解題、做練習(xí)只是學(xué)習(xí)過(guò)程中的一個(gè)環(huán)節(jié),而不是學(xué)習(xí)的全部,你不能為解題而解題。解題時(shí),我們的概念越清晰,對(duì)公式、定理和規(guī)則越熟悉,解題速度就越快。

          因此,我們?cè)诮忸}之前,應(yīng)通過(guò)閱讀教科書和做簡(jiǎn)單的練習(xí),先熟悉、記憶和辨別這些基本內(nèi)容,正確理解其涵義的本質(zhì),接著馬上就做后面所配的練習(xí),一刻也不要停留。

          學(xué)會(huì)主動(dòng)畫圖

          畫圖是一個(gè)翻譯的過(guò)程,把解題時(shí)的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來(lái),其中的關(guān)系就變得一目了然。尤其是對(duì)于幾何題,包括解析幾何題,若不會(huì)畫圖,有時(shí)簡(jiǎn)直是無(wú)從下手。

          因此,牢記各種題型的基本作圖方法,牢記各種函數(shù)的圖像和意義及演變過(guò)程和條件,對(duì)于提高解題速度非常重要。

          逐步增加難度

          人們認(rèn)識(shí)事物的過(guò)程都是從簡(jiǎn)單到復(fù)雜。簡(jiǎn)單的問(wèn)題解多了,從而使概念清晰了,對(duì)公式、定理以及解題步驟熟悉了,解題時(shí)就會(huì)形成跳躍性思維,解題的速度就會(huì)大大提高。

          我們?cè)趯W(xué)習(xí)時(shí),應(yīng)根據(jù)自己的能力,先去解那些看似簡(jiǎn)單,卻很重要的習(xí)題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會(huì)達(dá)到事半功倍的效果。

          初二上冊(cè)知識(shí)點(diǎn)

          第一章 一次函數(shù)

          1 函數(shù)的定義,函數(shù)的定義域、值域、表達(dá)式,函數(shù)的圖像

          2 一次函數(shù)和正比例函數(shù),包括他們的表達(dá)式、增減性、圖像

          3 從函數(shù)的觀點(diǎn)看方程、方程組和不等式

          第二章 數(shù)據(jù)的描述

          1 了解幾種常見(jiàn)的統(tǒng)計(jì)圖表:條形圖、扇形圖、折線圖、復(fù)合條形圖、直方圖,了解各種圖表的特點(diǎn)

          條形圖特點(diǎn):

          (1)能夠顯示出每組中的具體數(shù)據(jù);

         。2)易于比較數(shù)據(jù)間的差別

          扇形圖的特點(diǎn):

          (1)用扇形的面積來(lái)表示部分在總體中所占的百分比;

          (2)易于顯示每組數(shù)據(jù)相對(duì)與總數(shù)的大小

          折線圖的特點(diǎn);

          易于顯示數(shù)據(jù)的變化趨勢(shì)

          直方圖的特點(diǎn):

          (1)能夠顯示各組頻數(shù)分布的情況;

         。2)易于顯示各組之間頻數(shù)的差別

          2 會(huì)用各種統(tǒng)計(jì)圖表示出一些實(shí)際的問(wèn)題

          第三章 全等三角形

          1 全等三角形的性質(zhì):

          全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

          2 全等三角形的判定

          邊邊邊、邊角邊、角邊角、角角邊、直角三角形的HL定理

          3 角平分線的性質(zhì)

          角平分線上的點(diǎn)到角的兩邊的距離相等;

          到角的兩邊距離相等的點(diǎn)在角的平分線上.

          第四章 軸對(duì)稱

          1 軸對(duì)稱圖形和關(guān)于直線對(duì)稱的兩個(gè)圖形

          2 軸對(duì)稱的性質(zhì)

          軸對(duì)稱圖形的對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線;

          如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連的線段的垂直平分線;

          線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等;

          到線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上

          3 用坐標(biāo)表示軸對(duì)稱

          點(diǎn)(x,y)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)是(x,-y),關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)是(-x,y),關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是(-x,-y).

          4 等腰三角形

          等腰三角形的兩個(gè)底角相等;(等邊對(duì)等角)

          等腰三角形的頂角平分線、底邊上的中線、底邊上的高線互相重合;(三線合一)

          一個(gè)三角形的兩個(gè)相等的角所對(duì)的邊也相等.(等角對(duì)等邊)

          5 等邊三角形的性質(zhì)和判定

          等邊三角形的三個(gè)內(nèi)角都相等,都等于60度;

          三個(gè)角都相等的三角形是等邊三角形;

          有一個(gè)角是60度的等腰三角形是等邊三角形;

          推論:

          直角三角形中,如果有一個(gè)銳角是30度,那么他所對(duì)的直角邊等于斜邊的一半.

          在三角形中,大角對(duì)大邊,大邊對(duì)大角.

          第五章 整式

          1 整式定義、同類項(xiàng)及其合并

          2 整式的加減

          3 整式的乘法

          (1)同底數(shù)冪的乘法:

         。2)冪的乘方

          (3)積的乘方

         。4)整式的乘法

          4 乘法公式

         。1)平方差公式

          (2)完全平方公式

          5 整式的除法

         。1)同底數(shù)冪的除法

          (2)整式的除法

          6 因式分解

         。1)提共因式法

         。2)公式法

          (3)十字相乘法

          初二下冊(cè)知識(shí)點(diǎn)

          第一章 分式

          1 分式及其基本性質(zhì)

          分式的分子和分母同時(shí)乘以(或除以)一個(gè)不等于零的整式,分式的只不變

          2 分式的運(yùn)算

         。1)分式的乘除

          乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母

          除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘.

          (2) 分式的加減

          加減法法則:同分母分式相加減,分母不變,把分子相加減;

          異分母分式相加減,先通分,變?yōu)橥帜傅姆质?再加減

          3 整數(shù)指數(shù)冪的加減乘除法

          4 分式方程及其解法

          第二章 反比例函數(shù)

          1 反比例函數(shù)的表達(dá)式、圖像、性質(zhì)

          圖像:雙曲線

          表達(dá)式:y=k/x(k不為0)

          性質(zhì):兩支的增減性相同;

          2 反比例函數(shù)在實(shí)際問(wèn)題中的應(yīng)用

          第三章 勾股定理

          1 勾股定理:直角三角形的兩個(gè)直角邊的平方和等于斜邊的平方

          2 勾股定理的逆定理:如果一個(gè)三角形中,有兩個(gè)邊的平方和等于第三條邊的平方,那么這個(gè)三角形是直角三角形.

          第四章 四邊形

          1 平行四邊形

          性質(zhì):對(duì)邊相等;對(duì)角相等;對(duì)角線互相平分.

          判定:兩組對(duì)邊分別相等的四邊形是平行四邊形;

          兩組對(duì)角分別相等的四邊形是平行四邊形;

          對(duì)角線互相平分的四邊形是平行四邊形;

          一組對(duì)邊平行而且相等的四邊形是平行四邊形.

          推論:三角形的中位線平行第三邊,并且等于第三邊的一半.

          2 特殊的平行四邊形:矩形、菱形、正方形

         。1) 矩形

          性質(zhì):矩形的四個(gè)角都是直角;

          矩形的對(duì)角線相等;

          矩形具有平行四邊形的所有性質(zhì)

          判定: 有一個(gè)角是直角的平行四邊形是矩形;

          對(duì)角線相等的平行四邊形是矩形;

          推論: 直角三角形斜邊的中線等于斜邊的一半.

          (2) 菱形

          性質(zhì):菱形的四條邊都相等;

          菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;

          菱形具有平行四邊形的一切性質(zhì)

          判定:有一組鄰邊相等的平行四邊形是菱形;

          對(duì)角線互相垂直的平行四邊形是菱形;

          四邊相等的四邊形是菱形.

         。3) 正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì).

          3 梯形:直角梯形和等腰梯形

          等腰梯形:等腰梯形同一底邊上的兩個(gè)角相等;

          等腰梯形的兩條對(duì)角線相等;

          同一個(gè)底上的兩個(gè)角相等的梯形是等腰梯形.

          第五章 數(shù)據(jù)的分析

          加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差

          正方形知識(shí)點(diǎn)

          1、正方形的概念

          有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。

          2、正方形的性質(zhì)

          (1)具有平行四邊形、矩形、菱形的一切性質(zhì);

          (2)正方形的四個(gè)角都是直角,四條邊都相等;

          (3)正方形的兩條對(duì)角線相等,并且互相垂直平分,每一條對(duì)角線平分一組對(duì)角;

          (4)正方形是軸對(duì)稱圖形,有4條對(duì)稱軸;

          (5)正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形,兩條對(duì)角線把正方形分成四個(gè)全等的小等腰直角三角形;

          (6)正方形的一條對(duì)角線上的一點(diǎn)到另一條對(duì)角線的兩端點(diǎn)的距離相等。

          3、正方形的判定

          (1)判定一個(gè)四邊形是正方形的主要依據(jù)是定義,途徑有兩種:

          先證它是矩形,再證有一組鄰邊相等。

          先證它是菱形,再證有一個(gè)角是直角。

          (2)判定一個(gè)四邊形為正方形的一般順序如下:

          先證明它是平行四邊形;

          再證明它是菱形(或矩形);

          最后證明它是矩形(或菱形)。

          分解因式

          分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。

          方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。

          以上對(duì)分解因式知識(shí)點(diǎn)的總結(jié)學(xué)習(xí),相信同學(xué)們對(duì)此知識(shí)點(diǎn)可以很熟練的掌握了,希望能很好的幫助同學(xué)們的考試工作。

          初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系

          下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

          平面直角坐標(biāo)系

          平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

          水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

          平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

          三個(gè)規(guī)定:

         、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

         、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

          ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

          相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

          多邊形知識(shí)點(diǎn)

          在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形

          (1)多邊形的一些要素:

          邊:組成多邊形的各條線段叫做多邊形的邊.

          頂點(diǎn):每相鄰兩條邊的公共端點(diǎn)叫做多邊形的頂點(diǎn).

          內(nèi)角:多邊形相鄰兩邊組成的角叫多邊形的內(nèi)角,一個(gè)n邊形有n個(gè)內(nèi)角。

          外角:多邊形的邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。

          (2)在定義中應(yīng)注意:

          ①一些線段(多邊形的邊數(shù)是大于等于3的正整數(shù));

         、谑孜岔槾蜗噙B,二者缺一不可;

          ③理解時(shí)要特別注意“在同一平面內(nèi)”這個(gè)條件,其目的是為了排除幾個(gè)點(diǎn)不共面的情況,即空間

          一次函數(shù)

          一、常量、變量:

          在一個(gè)變化過(guò)程中,數(shù)值發(fā)生變化的量叫做;數(shù)值始終不變的量叫做

          二、函數(shù)的概念:

          函數(shù)的定義:一般的,在一個(gè)變化過(guò)程中,如果有兩個(gè)變量x與y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們就說(shuō)x是自變量,y是x的函數(shù).

          三、函數(shù)中自變量取值范圍的求法:

         。1)用整式表示的函數(shù),自變量的取值范圍是全體實(shí)數(shù)。

         。2)用分式表示的函數(shù),自變量的取值范圍是使分母不為0的一切實(shí)數(shù)。

         。3)用寄次根式表示的函數(shù),自變量的取值范圍是全體實(shí)數(shù)。

          用偶次根式表示的函數(shù),自變量的取值范圍是使被開(kāi)方數(shù)為非負(fù)數(shù)的一切實(shí)數(shù)。

         。4)若解析式由上述幾種形式綜合而成,須先求出各部分的取值范圍,然后再求其公共范圍,即為自變量的取值范圍。

         。5)對(duì)于與實(shí)際問(wèn)題有關(guān)系的,自變量的取值范圍應(yīng)使實(shí)際問(wèn)題有意義。

          四、函數(shù)圖象的定義:

          一般的,對(duì)于一個(gè)函數(shù),如果把自變量與函數(shù)的每對(duì)對(duì)應(yīng)值分別作為點(diǎn)的橫、縱坐標(biāo),那么在坐標(biāo)平面內(nèi)由這些點(diǎn)組成的圖形,就是這個(gè)函數(shù)的圖象.

          五、用描點(diǎn)法畫函數(shù)的圖象的一般步驟

          1、列表(表中給出一些自變量的值及其對(duì)應(yīng)的函數(shù)值。)

          注意:列表時(shí)自變量由小到大,相差一樣,有時(shí)需對(duì)稱。

          2、描點(diǎn):(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對(duì)應(yīng)的各點(diǎn)。

          3、連線:(按照橫坐標(biāo)由小到大的順序把所描的各點(diǎn)用平滑的曲線連接起來(lái))。

          六、函數(shù)有三種表示形式:

         。1)列表法(2)圖像法(3)解析式法

          七、正比例函數(shù)與一次函數(shù)的概念:

          一般地,形如y=kx(k為常數(shù),且k≠0)的函數(shù)叫做正比例函數(shù).其中k叫做比例系數(shù)。一般地,形如y=kx+b (k,b為常數(shù),且k≠0)的函數(shù)叫做一次函數(shù).

          當(dāng)b =0時(shí),y=kx+b即為y=kx,所以正比例函數(shù),是一次函數(shù)的特例.

          八、正比例函數(shù)的圖象與性質(zhì):

         。1)圖象:正比例函數(shù)y= kx (k是常數(shù),k≠0))的圖象是經(jīng)過(guò)原點(diǎn)的一條直線,我們稱它為直線y= kx 。

          (2)性質(zhì):當(dāng)k>0時(shí),直線y= kx經(jīng)過(guò)第三,一象限,從左向右上升,即隨著x的增大y也增大;當(dāng)k<0時(shí),直線y= kx經(jīng)過(guò)二,四象限,從左向右下降,即隨著x的增大y反而減小。

          九、求函數(shù)解析式的方法:

          待定系數(shù)法:先設(shè)出函數(shù)解析式,再根據(jù)條件確定解析式中未知的系數(shù),從而具體寫出這個(gè)式子的方法。

          1.一次函數(shù)與一元一次方程:從“數(shù)”的角度看x為何值時(shí)函數(shù)y= ax+b的值為0.

          2.求ax+b=0(a, b是常數(shù),a≠0)的解,從“形”的角度看,求直線y= ax+b與x軸交點(diǎn)的橫坐標(biāo)

          3.一次函數(shù)與一元一次不等式:

          解不等式ax+b>0(a,b是常數(shù),a≠0).從“數(shù)”的角度看,x為何值時(shí)函數(shù)y= ax+b的值大于0.

          4.解不等式ax+b>0(a,b是常數(shù),a≠0).從“形”的角度看,求直線y= ax+b在x軸上方的部分(射線)

          所對(duì)應(yīng)的的橫坐標(biāo)的取值范圍.

          十、一次函數(shù)與正比例函數(shù)的圖象與性質(zhì)

          解方程組??a1x?b1y?c1從“數(shù)”的角度看,自變量(x)為何值時(shí)兩個(gè)函數(shù)的值相等.并???a2x?b2y?c2求出這個(gè)函數(shù)值

          ?a 1 x ? b解方程組? 1 y ? c 1從“形”的角度看,確定兩直線交點(diǎn)的坐標(biāo). ? ??a2x?b2y?c2

          初二數(shù)學(xué)圖形知識(shí)點(diǎn)

          1、直角三角形斜邊上的中線等于斜邊上的一半。

          2、四邊形的外角和等于360°。

          3、等腰梯形性質(zhì)定理:等腰梯形在同一底上的兩個(gè)角相等。

          4、同角或等角的余角相等。

          5、過(guò)一點(diǎn)有且只有一條直線和已知直線垂直。

          6、平行公理:經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。

          7、如果兩條直線都和第三條直線平行,這兩條直線也互相平行。

          8、同位角相等,兩直線平行。

          9、同旁內(nèi)角互補(bǔ),兩直線平行。

          10、兩直線平行,同位角相等。

          二次根式知識(shí)點(diǎn)

          (一)一般地,形如√a的代數(shù)式叫做二次根式,其中,a叫做被開(kāi)方數(shù)。當(dāng)a≥0時(shí),√a表示a的算術(shù)平方根;當(dāng)a小于0時(shí),√a的值為純虛數(shù)。

          (二)二次根式的加減法

          1.同類二次根式:一般地,把幾個(gè)二次根式化為最簡(jiǎn)二次根式后,如果它們的被開(kāi)方數(shù)相同,就把這幾個(gè)二次根式叫做同類二次根式。

          2.合并同類二次根式:把幾個(gè)同類二次根式合并為一個(gè)二次根式就叫做合并同類二次根式。

          3.二次根式加減時(shí),可以先將二次根式化為最簡(jiǎn)二次根式,再將被開(kāi)方數(shù)相同的進(jìn)行合并。

          (三)二次根式的乘除法

          二次根式相乘除,把被開(kāi)方數(shù)相乘除,根指數(shù)不變,再把結(jié)果化為最簡(jiǎn)二次根式。

          一次函數(shù)知識(shí)點(diǎn)

          (一)一般地,形如y=kx+b(k,b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù),其中x是自變量。當(dāng)b=0時(shí),一次函數(shù)y=kx,又叫做正比例函數(shù)。

          (二)一次函數(shù)的圖像及性質(zhì)

          1.在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。

          2.一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)。

          3.正比例函數(shù)的圖像總是過(guò)原點(diǎn)。

          4.k,b與函數(shù)圖像所在象限的關(guān)系:

          當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。

          當(dāng)k>0,b>0時(shí),直線通過(guò)一、二、三象限;

          當(dāng)k>0,b<0時(shí),直線通過(guò)一、三、四象限;

          當(dāng)k<0,b>0時(shí),直線通過(guò)一、二、四象限;

          當(dāng)k<0,b<0時(shí),直線通過(guò)二、三、四象限;

          當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

          這時(shí),當(dāng)k>0時(shí),直線只通過(guò)一、三象限;當(dāng)k<0時(shí),直線只通過(guò)二、四象限。

          初二數(shù)學(xué)下冊(cè)函數(shù)知識(shí)點(diǎn)歸納

          1、變量與常量

          在某一變化過(guò)程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

          一般地,在某一變化過(guò)程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有唯一確定的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù)。

          2、函數(shù)解析式

          用來(lái)表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

          使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

          3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)

          (1)解析法

          兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。

          (2)列表法

          把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來(lái)表示函數(shù)關(guān)系,這種表示法叫做列表法。

          (3)圖像法

          用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

          4、由函數(shù)解析式畫其圖像的一般步驟

          (1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值

          (2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)

          (3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來(lái)。

          實(shí)數(shù)的概念及分類

          1、實(shí)數(shù)的分類

          一是分類是:正數(shù)、負(fù)數(shù)、0;

          另一種分類是:有理數(shù)、無(wú)理數(shù)

          將兩種分類進(jìn)行組合:負(fù)有理數(shù),負(fù)無(wú)理數(shù),0,正有理數(shù),正無(wú)理數(shù)

          2、無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫做無(wú)理數(shù)。

          在理解無(wú)理數(shù)時(shí),要抓住“無(wú)限不循環(huán)”這一時(shí)之,歸納起來(lái)有四類:

          (1)開(kāi)方開(kāi)不盡的數(shù),如等;

          (2)有特定意義的數(shù),如圓周率π,或化簡(jiǎn)后含有π的數(shù),如+8等;

          (3)有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;

          (4)某些三角函數(shù)值,如sin60o等

          實(shí)數(shù)的倒數(shù)、相反數(shù)和絕對(duì)值

          1、相反數(shù)

          實(shí)數(shù)與它的相反數(shù)時(shí)一對(duì)數(shù)(只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。

          2、絕對(duì)值

          在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對(duì)值。(|a|≥0)。零的絕對(duì)值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。

          3、倒數(shù)

          如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒(méi)有倒數(shù)。

          4、數(shù)軸

          規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸(畫數(shù)軸時(shí),要注意上述規(guī)定的三要素缺一不可)。

          解題時(shí)要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對(duì)應(yīng)的,并能靈活運(yùn)用。

          一次函數(shù)

          一、正比例函數(shù)與一次函數(shù)的概念:

          一般地,形如y=kx(k為常數(shù),且k≠0)的函數(shù)叫做正比例函數(shù).其中k叫做比例系數(shù)。

          一般地,形如y=kx+b(k,b為常數(shù),且k≠0)的函數(shù)叫做一次函數(shù).

          當(dāng)b=0時(shí),y=kx+b即為y=kx,所以正比例函數(shù),是一次函數(shù)的特例.

          二、正比例函數(shù)的圖象與性質(zhì):

          (1)圖象:正比例函數(shù)y=kx(k是常數(shù),k≠0))的圖象是經(jīng)過(guò)原點(diǎn)的一條直線,我們稱它為直線y=kx。

          (2)性質(zhì):當(dāng)k>0時(shí),直線y=kx經(jīng)過(guò)第三,一象限,從左向右上升,即隨著x的增大y也增大;當(dāng)k0,b>0圖像經(jīng)過(guò)一、二、三象限;

          (2)k>0,b<0圖像經(jīng)過(guò)一、三、四象限;

          (3)k>0,b=0圖像經(jīng)過(guò)一、三象限;

          (4)k<0,b>0圖像經(jīng)過(guò)一、二、四象限;

          (5)k<0,b<0圖像經(jīng)過(guò)二、三、四象限;

          (6)k<0,b=0圖像經(jīng)過(guò)二、四象限。

          一次函數(shù)表達(dá)式的確定

          求一次函數(shù)y=kx+b(k、b是常數(shù),k≠0)時(shí),需要由兩個(gè)點(diǎn)來(lái)確定;求正比例函數(shù)y=kx(k≠0)時(shí),只需一個(gè)點(diǎn)即可.

          5.一次函數(shù)與二元一次方程組:

          解方程組

          從“數(shù)”的角度看,自變量(x)為何值時(shí)兩個(gè)函數(shù)的值相等.并

          求出這個(gè)函數(shù)值

          解方程組從“形”的角度看,確定兩直線交點(diǎn)的坐標(biāo).

          數(shù)據(jù)的分析

          數(shù)據(jù)的代表:平均數(shù)、眾數(shù)、中位數(shù)、極差、方差

          三角形知識(shí)點(diǎn)

          第一章勾股定理

          1、探索勾股定理

         、俟垂啥ɡ恚褐苯侨切蝺芍苯沁叺钠椒胶偷扔谛边叺钠椒,如果用a,b和c分別表示直角三角形的兩直角邊和斜邊,那么a2+b2=c2

          2、一定是直角三角形嗎

         、偃绻切蔚娜呴L(zhǎng)a b c滿足a2+b2=c2,那么這個(gè)三角形一定是直角三角形

          3、勾股定理的應(yīng)用

          第二章實(shí)數(shù)

          1、認(rèn)識(shí)無(wú)理數(shù)

         、儆欣頂(shù):總是可以用有限小數(shù)和無(wú)限循環(huán)小數(shù)表示

         、跓o(wú)理數(shù):無(wú)限不循環(huán)小數(shù)

          2、平方根

         、偎銛(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x就叫做a的算數(shù)平方根

          ②特別地,我們規(guī)定:0的算數(shù)平方根是0

          ③平方根:一般地,如果一個(gè)數(shù)x的平方等于a,即x2=a。那么這個(gè)數(shù)x就叫做a的平方根,也叫做二次方根

          ④一個(gè)正數(shù)有兩個(gè)平方根;0只有一個(gè)平方根,它是0本身;負(fù)數(shù)沒(méi)有平方根

         、菡龜(shù)有兩個(gè)平方根,一個(gè)是a的算數(shù)平方,另一個(gè)是—,它們互為相反數(shù),這兩個(gè)平方根合起來(lái)可記作±

         、揲_(kāi)平方:求一個(gè)數(shù)a的平方根的運(yùn)算叫做開(kāi)平方,a叫做被開(kāi)方數(shù)

          3、立方根

         、倭⒎礁阂话愕,如果一個(gè)數(shù)x的立方等于a,即x3=a,那么這個(gè)數(shù)x就叫做a的立方根,也叫三次方根

         、诿總(gè)數(shù)都有一個(gè)立方根,正數(shù)的立方根是正數(shù);0立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。

         、坶_(kāi)立方:求一個(gè)數(shù)a的立方根的運(yùn)算叫做開(kāi)立方,a叫做被開(kāi)方數(shù)

          4、估算

         、俟浪,一般結(jié)果是相對(duì)復(fù)雜的小數(shù),估算有精確位數(shù)

          5、用計(jì)算機(jī)開(kāi)平方

          6、實(shí)數(shù)

          ①實(shí)數(shù):有理數(shù)和無(wú)理數(shù)的統(tǒng)稱

         、趯(shí)數(shù)也可以分為正實(shí)數(shù)、0、負(fù)實(shí)數(shù)

          ③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上表示,數(shù)軸上每一個(gè)點(diǎn)都對(duì)應(yīng)一個(gè)實(shí)數(shù),在數(shù)軸上,右邊的點(diǎn)永遠(yuǎn)比左邊的點(diǎn)表示的數(shù)大

          7、二次根式

         、俸x:一般地,形如(a≥0)的式子叫做二次根式,a叫做被開(kāi)方數(shù)

          ② =(a≥0,b≥0),=(a≥0,b>0)

         、圩詈(jiǎn)二次根式:一般地,被開(kāi)方數(shù)不含分母,也不含能開(kāi)的盡方的因數(shù)或因式,這樣的二次根式,叫做最簡(jiǎn)二次根式

          ④化簡(jiǎn)時(shí),通常要求最終結(jié)果中分母不含有根號(hào),而且各個(gè)二次根式時(shí)最簡(jiǎn)二次根式

          第三章位置與坐標(biāo)

          1、確定位置

         、僭谄矫鎯(nèi),確定一個(gè)物體的位置一般需要兩個(gè)數(shù)據(jù)

          2、平面直角坐標(biāo)系

         、俸x:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系

         、谕ǔ5兀瑑蓷l數(shù)軸分別置于水平位置與豎直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或者橫軸,豎直的數(shù)軸叫y軸和縱軸,二者統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)o被稱為直角坐標(biāo)系的原點(diǎn)

          ③建立了平面直角坐標(biāo)系,平面內(nèi)的點(diǎn)就可以用一組有序?qū)崝?shù)對(duì)來(lái)表示

         、茉谄矫嬷苯亲鴺(biāo)系中,兩條坐標(biāo)軸將坐標(biāo)平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時(shí)針?lè)较蚪凶龅诙笙,第三象限,第四象限,坐?biāo)軸上的點(diǎn)不在任何一個(gè)象限

         、菰谥苯亲鴺(biāo)系中,對(duì)于平面上任意一點(diǎn),都有唯一的一個(gè)有序?qū)崝?shù)對(duì)(即點(diǎn)的坐標(biāo))與它對(duì)應(yīng);反過(guò)來(lái),對(duì)于任意一個(gè)有序?qū)崝?shù)對(duì),都有平面上唯一的一點(diǎn)與它對(duì)應(yīng)

          3、軸對(duì)稱與坐標(biāo)變化

          ①關(guān)于x軸對(duì)稱的兩個(gè)點(diǎn)的坐標(biāo),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對(duì)稱的兩個(gè)點(diǎn)的坐標(biāo),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù)

          第四章一次函數(shù)

          1、函數(shù)

         、僖话愕,如果在一個(gè)變化過(guò)程中有兩個(gè)變量x和y,并且對(duì)于變量x的每一個(gè)值,變量y都有唯一的值與它對(duì)應(yīng),那么我們稱y是x的函數(shù)其中x是自變量

         、诒硎竞瘮(shù)的方法一般有:列表法、關(guān)系式法和圖象法

         、蹖(duì)于自變量在可取值范圍內(nèi)的一個(gè)確定的值a,函數(shù)有唯一確定的對(duì)應(yīng)值,這個(gè)對(duì)應(yīng)值稱為當(dāng)自變量等于a的函數(shù)值

          2、一次函數(shù)與正比例函數(shù)

         、偃魞蓚(gè)變量x,y間的對(duì)應(yīng)關(guān)系可以表示成y=kx+b(k、b為常數(shù),k≠0)的形式,則稱y是x的一次函數(shù),特別的,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)

          3、一次函數(shù)的圖像

          ①正比例函數(shù)y=kx的圖像是一條經(jīng)過(guò)原點(diǎn)(0,0)的直線。因此,畫正比例函數(shù)圖像是,只要再確定一點(diǎn),過(guò)這個(gè)點(diǎn)與原點(diǎn)畫直線就可以了

          ②在正比例函數(shù)y=kx中,當(dāng)k>0時(shí),y的值隨著x值的增大而減。划(dāng)k<0時(shí),y的值隨著x的值增大而減小

         、垡淮魏瘮(shù)y=kx+b的圖像是一條直線,因此畫一次函數(shù)圖像時(shí),只要確定兩個(gè)點(diǎn),再過(guò)這兩點(diǎn)畫直線就可以了。一次函數(shù)y=kx+b的圖像也稱為直線y=kx+b

          ④一次函數(shù)y=kx+b的圖像經(jīng)過(guò)點(diǎn)(0,b)。當(dāng)k>0時(shí),y的值隨著x值的增大而增大;當(dāng)k<0時(shí),y的值隨著x值的增大而減小

          4、一次函數(shù)的應(yīng)用

         、僖话愕,當(dāng)一次函數(shù)y=kx+b的函數(shù)值為0時(shí),相應(yīng)的自變量的值就是方程kx+b=0的解,從圖像上看,一次函數(shù)y=kx+b的圖像與x軸交點(diǎn)的橫坐標(biāo)就是方程kx+b=0

          第五章二元一次方程組

          1、認(rèn)識(shí)二元一次方程組

         、俸袃蓚(gè)未知數(shù),并且所含有未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程

          ②共含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組

          ③二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解

          2、求解二元一次方程組

         、賹⑵渲幸粋(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來(lái),并代入另個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程,這種解方程組的方法稱為代入消元法,簡(jiǎn)稱代入法

         、谕ㄟ^(guò)兩式子加減,消去其中一個(gè)未知數(shù),這種解二元一次方程組的方法叫做加減消元法,簡(jiǎn)稱加減法

          3、應(yīng)用二元一次方程組

          ①雞兔同籠

          4、應(yīng)用二元一次方程組

          ①增減收支

          5、應(yīng)用二元一次方程組

         、倮锍瘫系臄(shù)

          6、二元一次方程組與一次函數(shù)

         、僖话愕,以一個(gè)二元一次方程的解為坐標(biāo)的點(diǎn)組成的圖像與相應(yīng)的一次函數(shù)的圖像相同,是一條直線

          ②一般地,從圖形的角度看,確定兩條直線相交點(diǎn)的坐標(biāo),相當(dāng)于求相應(yīng)的二元一次方程組的解,解一個(gè)二元一次方程組相當(dāng)于確定相應(yīng)兩條直線交點(diǎn)的坐標(biāo)

          7、用二元一次方程組確定一次函數(shù)表達(dá)式

         、傧仍O(shè)出函數(shù)表達(dá)式,再根據(jù)所給條件確定表達(dá)式中未知的系數(shù),從而得到函數(shù)表達(dá)式的方法,叫做待定系數(shù)法。

          8、三元一次方程組

         、僭谝粋(gè)方程組中,各個(gè)式子都含有三個(gè)未知數(shù),并且所含有未知數(shù)的項(xiàng)的次數(shù)都是1,這樣的方程叫做三元一次方程

         、谙襁@樣,共含有三個(gè)未知數(shù)的三個(gè)一次方程所組成的一組方程,叫做三元一次方程組

         、廴淮畏匠探M中各個(gè)方程的公共解,叫做這個(gè)三元一次方程組的解。

          第六章數(shù)據(jù)的分析

          1、平均數(shù)

          ①一般地,對(duì)于n個(gè)數(shù)x1x2.....xn,我們把(x1+x2+···+xn)叫做這n個(gè)數(shù)的算數(shù)平均數(shù),簡(jiǎn)稱平均數(shù)記為。

         、谠趯(shí)際問(wèn)題中,一組數(shù)據(jù)里的各個(gè)數(shù)據(jù)的“重要程度”未必相同,因而在計(jì)算,這組數(shù)據(jù)的平均數(shù)時(shí),往往給每個(gè)數(shù)據(jù)一個(gè)權(quán),叫做加權(quán)平均數(shù)

          2、中位數(shù)與眾數(shù)

          ①中位數(shù):一般地,n個(gè)數(shù)據(jù)按大小順序排列,處于最中間位置的一個(gè)數(shù)據(jù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)

         、谝唤M數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)

          ③平均數(shù)、中位數(shù)和眾數(shù)都是描述數(shù)據(jù)集中趨勢(shì)的統(tǒng)計(jì)量

         、苡(jì)算平均數(shù)時(shí),所有數(shù)據(jù)都參加運(yùn)算,它能充分地利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實(shí)生活中較為常用,但他容易受極端值影響。

          ⑤中位數(shù)的優(yōu)點(diǎn)是計(jì)算簡(jiǎn)單,受極端值影響較小,但不能充分利用所有數(shù)據(jù)的信息

          ⑥各個(gè)數(shù)據(jù)重復(fù)次數(shù)大致相等時(shí),眾數(shù)往往沒(méi)有特別意義

          3、從統(tǒng)計(jì)圖分析數(shù)據(jù)的集中趨勢(shì)

          4、數(shù)據(jù)的離散程度

         、賹(shí)際生活中,除了關(guān)心數(shù)據(jù)的集中趨勢(shì)外,人們還關(guān)注數(shù)據(jù)的離散程度,即它們相對(duì)于集中趨勢(shì)的偏離情況。一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,(稱為極差),就是刻畫數(shù)據(jù)離散程度的一個(gè)統(tǒng)計(jì)量

         、跀(shù)學(xué)上,數(shù)據(jù)的離散程度還可以用方差或標(biāo)準(zhǔn)差刻畫

         、鄯讲钍歉鱾(gè)數(shù)據(jù)與平均數(shù)差的平方的平均數(shù)

         、芷渲惺莤1x2......xn平均數(shù),s2是方差,而標(biāo)準(zhǔn)差就是方差的算術(shù)平方根

          ⑤一般而言,一組數(shù)據(jù)的極差、方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。

          第七章平行線的證明

          1、為什么要證明

          ①實(shí)驗(yàn)、觀察、歸納得到的結(jié)論可能正確,也可能不正確,因此,要判斷一個(gè)數(shù)學(xué)結(jié)論是否正確,僅僅依靠實(shí)驗(yàn)、觀察、歸納是不夠的,必須進(jìn)行有根有據(jù)的證明

          2、定義與命題

          ①證明時(shí),為了交流方便,必須對(duì)某些名稱和術(shù)語(yǔ)形成共同的認(rèn)識(shí),為此,就要對(duì)名稱和術(shù)語(yǔ)的含義加以描述,做出明確的規(guī)定,也就是給它們的定義

          ②判斷一件事情的句子,叫做命題

         、垡话愕,每個(gè)命題都由條件和結(jié)論兩部分組成。條件是已知的選項(xiàng),結(jié)論是已知選項(xiàng)推出的事項(xiàng)。命題通?梢詫懗伞叭绻....那么....”的形式,其中“如果”引出的部分是條件,“那么”引出的部分是結(jié)論

         、苷_的命題稱為真命題,不正確的命題稱為假命題

         、菀f(shuō)明一個(gè)命題是假命題,常常可以舉出一個(gè)例子,使它具備命題的條件,而不具有命題的結(jié)論,這種例子稱為反例

          ⑥歐幾里得在編寫《原本》時(shí),挑選了一部分?jǐn)?shù)學(xué)名詞和一部分公認(rèn)的真命題作為證實(shí)其他命題的出發(fā)點(diǎn)和依據(jù)。其中數(shù)學(xué)名詞稱為原名,公認(rèn)的真命題稱為公理,除了公理外,其他命題的真假都需要通過(guò)演繹推理的方法進(jìn)行判斷

          ⑦演繹推理的過(guò)程稱為證明,經(jīng)過(guò)證明的真命題稱為定理,每個(gè)定理都只能用公理、定義和已經(jīng)證明為真的命題來(lái)證明

          a.本套教科書選用九條基本事實(shí)作為證明的出發(fā)點(diǎn)和依據(jù),其中八條是:兩點(diǎn)確定一條直線

          b.兩點(diǎn)之間線段最短

          c.同一平面內(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直

          d.兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行(簡(jiǎn)述為:同位角相等,兩直線平行)

          e.過(guò)直線外一點(diǎn)有且只有一條直線與這條直線平行

          f.兩邊及其夾角分別相等的兩個(gè)三角形全等

          g.兩角及其夾邊分別相等的兩個(gè)三角形全等

          h.三邊分別相等的兩個(gè)三角形全等

          ⑧此外,數(shù)與式的運(yùn)算律和運(yùn)算法則、等式的有關(guān)性質(zhì),以及反映大小關(guān)系的有關(guān)性質(zhì)都可以作為證明的依據(jù)

         、 定理:同角(等角)的補(bǔ)角相等

          同角(等角)的余角相等

          三角形的任意兩邊之和大于第三邊

          對(duì)頂角相等

          3、平行線的判定

         、 定理:兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,那么這兩條直線平行,簡(jiǎn)述為:內(nèi)錯(cuò)角相等,兩直線平行

         、 定理:兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么這兩條直線平行,簡(jiǎn)述為:同旁內(nèi)角互補(bǔ),兩直線平行。

          4、平行線的性質(zhì)

          ① 定理:兩條平行直線被第三條直線所截,同位角相等。簡(jiǎn)述為:兩直線平行,同位角相等

         、 定理:兩條平行直線被第三條直線所截,內(nèi)錯(cuò)角相等。簡(jiǎn)述為:兩直線平行,內(nèi)錯(cuò)角相等

         、 定理:兩條平行直線被第三條直線所截,同旁內(nèi)角互補(bǔ)。簡(jiǎn)述為:兩直線平行,同旁內(nèi)角互補(bǔ)

         、 定理:平行于同一條直線的兩條直線平行

          5、三角形內(nèi)角和定理

         、 三角形內(nèi)角和定理:三角形的內(nèi)角和等于180°

          ② 定理:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

          定理:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

         、 我們通過(guò)三角形的內(nèi)角和定理直接推導(dǎo)出兩個(gè)新定理。像這樣,由一個(gè)基本事實(shí)或定理直接推出的定理,叫做這個(gè)基本事實(shí)或定理的推論,推論可以當(dāng)定理使用。

          初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)匯總

         。ㄒ唬┻\(yùn)用公式法:

          我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過(guò)來(lái)就是把多項(xiàng)式分解因式。于是有:

          a2—b2=(a+b)(a—b)

          a2+2ab+b2=(a+b)2

          a2—2ab+b2=(a—b)2

          如果把乘法公式反過(guò)來(lái),就可以用來(lái)把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。

          (二)平方差公式

          1.平方差公式

         。1)式子: a2—b2=(a+b)(a—b)

          (2)語(yǔ)言:兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積。這個(gè)公式就是平方差公式。

         。ㄈ┮蚴椒纸

          1.因式分解時(shí),各項(xiàng)如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。

          2.因式分解,必須進(jìn)行到每一個(gè)多項(xiàng)式因式不能再分解為止。

         。ㄋ模┩耆椒焦

          (1)把乘法公式(a+b)2=a2+2ab+b2 和 (a—b)2=a2—2ab+b2反過(guò)來(lái),就可以得到:

          a2+2ab+b2 =(a+b)2

          a2—2ab+b2 =(a—b)2

          這就是說(shuō),兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。

          把a(bǔ)2+2ab+b2和a2—2ab+b2這樣的式子叫完全平方式。

          上面兩個(gè)公式叫完全平方公式。

         。2)完全平方式的形式和特點(diǎn)

          ①項(xiàng)數(shù):三項(xiàng)

         、谟袃身(xiàng)是兩個(gè)數(shù)的的平方和,這兩項(xiàng)的符號(hào)相同。

         、塾幸豁(xiàng)是這兩個(gè)數(shù)的積的兩倍。

         。3)當(dāng)多項(xiàng)式中有公因式時(shí),應(yīng)該先提出公因式,再用公式分解。

         。4)完全平方公式中的a、b可表示單項(xiàng)式,也可以表示多項(xiàng)式。這里只要將多項(xiàng)式看成一個(gè)整體就可以了。

         。5)分解因式,必須分解到每一個(gè)多項(xiàng)式因式都不能再分解為止。

         。ㄎ澹┓纸M分解法

          我們看多項(xiàng)式am+ an+ bm+ bn,這四項(xiàng)中沒(méi)有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

          如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式。

          原式=(am +an)+(bm+ bn)

          =a(m+ n)+b(m +n)

          做到這一步不叫把多項(xiàng)式分解因式,因?yàn)樗环弦蚴椒纸獾囊饬x。但不難看出這兩項(xiàng)還有公因式(m+n),因此還能繼續(xù)分解,所以

          原式=(am +an)+(bm+ bn)

          =a(m+ n)+b(m+ n)

          =(m +n)×(a +b)。

          這種利用分組來(lái)分解因式的方法叫做分組分解法。從上面的例子可以看出,如果把一個(gè)多項(xiàng)式的項(xiàng)分組并提取公因式后它們的另一個(gè)因式正好相同,那么這個(gè)多項(xiàng)式就可以用分組分解法來(lái)分解因式。

         。┨峁蚴椒

          1.在運(yùn)用提取公因式法把一個(gè)多項(xiàng)式因式分解時(shí),首先觀察多項(xiàng)式的結(jié)構(gòu)特點(diǎn),確定多項(xiàng)式的公因式。當(dāng)多項(xiàng)式各項(xiàng)的公因式是一個(gè)多項(xiàng)式時(shí),可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項(xiàng)式,也可以把這個(gè)多項(xiàng)式因式看作一個(gè)整體,直接提取公因式;當(dāng)多項(xiàng)式各項(xiàng)的公因式是隱含的時(shí)候,要把多項(xiàng)式進(jìn)行適當(dāng)?shù)淖冃,或改變符?hào),直到可確定多項(xiàng)式的公因式。

          2. 運(yùn)用公式x2 +(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解要注意:

          1.必須先將常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積,且這兩個(gè)因數(shù)的代數(shù)和等于一次項(xiàng)的系數(shù)。

          2.將常數(shù)項(xiàng)分解成滿足要求的兩個(gè)因數(shù)積的多次嘗試,一般步驟:

          ① 列出常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積各種可能情況;

         、趪L試其中的哪兩個(gè)因數(shù)的和恰好等于一次項(xiàng)系數(shù)。

          3.將原多項(xiàng)式分解成(x+q)(x+p)的形式。

          (七)分式的乘除法

          1.把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分。

          2.分式進(jìn)行約分的目的是要把這個(gè)分式化為最簡(jiǎn)分式。

          3.如果分式的分子或分母是多項(xiàng)式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式。如果分子或分母中的多項(xiàng)式不能分解因式,此時(shí)就不能把分子、分母中的某些項(xiàng)單獨(dú)約分。

          4.分式約分中注意正確運(yùn)用乘方的符號(hào)法則,如x—y=—(y—x),(x—y)2=(y—x)2,(x—y)3=—(y—x)3。

          5.分式的分子或分母帶符號(hào)的n次方,可按分式符號(hào)法則,變成整個(gè)分式的符號(hào),然后再按—1的偶次方為正、奇次方為負(fù)來(lái)處理。當(dāng)然,簡(jiǎn)單的分式之分子分母可直接乘方。

          6.注意混合運(yùn)算中應(yīng)先算括號(hào),再算乘方,然后乘除,最后算加減。

         。ò耍┓?jǐn)?shù)的加減法

          1.通分與約分雖都是針對(duì)分式而言,但卻是兩種相反的變形。約分是針對(duì)一個(gè)分式而言,而通分是針對(duì)多個(gè)分式而言;約分是把分式化簡(jiǎn),而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來(lái)。

          2.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變。

          3.一般地,通分結(jié)果中,分母不展開(kāi)而寫成連乘積的形式,分子則乘出來(lái)寫成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備。

          4.通分的依據(jù):分式的基本性質(zhì)。

          5.通分的關(guān)鍵:確定幾個(gè)分式的公分母。

          通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡(jiǎn)公分母。

          6.類比分?jǐn)?shù)的通分得到分式的通分:

          把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分。

          7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

          同分母的分式加減運(yùn)算,分母不變,把分子相加減,這就是把分式的運(yùn)算轉(zhuǎn)化為整式運(yùn)算。

          8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质,然后再加減。

          9.同分母分式相加減,分母不變,只須將分子作加減運(yùn)算,但注意每個(gè)分子是個(gè)整體,要適時(shí)添上括號(hào)。

          10.對(duì)于整式和分式之間的加減運(yùn)算,則把整式看成一個(gè)整體,即看成是分母為1的分式,以便通分。

          11.異分母分式的加減運(yùn)算,首先觀察每個(gè)公式是否最簡(jiǎn)分式,能約分的先約分,使分式簡(jiǎn)化,然后再通分,這樣可使運(yùn)算簡(jiǎn)化。

          12.作為最后結(jié)果,如果是分式則應(yīng)該是最簡(jiǎn)分式。

          (九)含有字母系數(shù)的一元一次方程

          1.含有字母系數(shù)的一元一次方程

          引例:一數(shù)的a倍(a≠0)等于b,求這個(gè)數(shù)。用x表示這個(gè)數(shù),根據(jù)題意,可得方程 ax=b(a≠0)

          在這個(gè)方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。對(duì)x來(lái)說(shuō),字母a是x的系數(shù),b是常數(shù)項(xiàng)。這個(gè)方程就是一個(gè)含有字母系數(shù)的一元一次方程。

          含有字母系數(shù)的方程的解法與以前學(xué)過(guò)的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個(gè)式子的值不能等于零

          方程知識(shí)點(diǎn)

          一元一次方程:

         、僭谝粋(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

         、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。

          解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。

          二元一次方程:

          含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。

          二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。

          適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。

          二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。

          解二元一次方程組的方法:代入消元法/加減消元法。

          一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程

          一元二次方程的二次函數(shù)的關(guān)系

          大家已經(jīng)學(xué)過(guò)二次函數(shù)(即拋物線)了,對(duì)他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來(lái)表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)Y的0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來(lái),一元二次方程就是二次函數(shù)中,圖象與X軸的交點(diǎn)。也就是該方程的解了

          平方根與立方根知識(shí)點(diǎn)

          平方根:

          概括1:一般地,如果一個(gè)數(shù)的平方等于a,這個(gè)數(shù)就叫做a的平方根(或二次方根)。就是說(shuō),如果x=a,那么x就叫做a的平方根。如:23與-23都是529的平方根。

          因?yàn)?±23)=529,所以±23是529的平方根。問(wèn):(1)16,49,100,1100都是正數(shù),它們有幾個(gè)平方根?平方根之間有什么關(guān)系?(2)0的平方根是什么?

          概括2:一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);0有一個(gè)平方根,它是0本身;負(fù)數(shù)沒(méi)有平方根。

          概括3:求一個(gè)數(shù)a(a≥0)的平方根的運(yùn)算,叫做開(kāi)平方。

          開(kāi)平方運(yùn)算是已知指數(shù)和冪求底數(shù)。平方與開(kāi)平方互為逆運(yùn)算。一個(gè)數(shù)可以是正數(shù)、負(fù)數(shù)或者是0,它的平方數(shù)只有一個(gè),正數(shù)或負(fù)數(shù)的平方都是正數(shù),0的平方是0。但一個(gè)正數(shù)的平方根卻有兩個(gè),這兩個(gè)數(shù)互為相反數(shù),0的平方根是0。負(fù)數(shù)沒(méi)有平方根。因?yàn)槠椒脚c開(kāi)平方互為逆運(yùn)算,因此我們可以通過(guò)平方運(yùn)算來(lái)求一個(gè)數(shù)的平方根,也可以通過(guò)平方運(yùn)算來(lái)檢驗(yàn)一個(gè)數(shù)是不是另一個(gè)數(shù)的平方根。

          一、算術(shù)平方根的概念

          正數(shù)a有兩個(gè)平方根(表示為?根,表示為a。0的平方根也叫做0的算術(shù)平方根,因此0的算術(shù)平方根是0,即0!笔撬阈g(shù)平方根的符號(hào),a就表示a的算術(shù)平方根。a的意義有兩點(diǎn):a,我們把其中正的平方根,叫做a的算術(shù)平方

          (1)被開(kāi)方數(shù)a表示非負(fù)數(shù),即a≥0;

          (2)a也表示非負(fù)數(shù),即a≥0。也就是說(shuō),非負(fù)數(shù)的“算術(shù)”平方根是非負(fù)數(shù)。負(fù)數(shù)不存在算術(shù)平方根,即a<0時(shí),a無(wú)意義。

          如:=3,8是64的算術(shù)平方根,6無(wú)意義。9既表示對(duì)9進(jìn)行開(kāi)平方運(yùn)算,也表示9的正的平方根。

          二、平方根與算術(shù)平方根的區(qū)別在于

         、俣x不同;

          ②個(gè)數(shù)不同:一個(gè)正數(shù)有兩個(gè)平方根,而一個(gè)正數(shù)的算術(shù)平方根只有一個(gè);③表示方法不同:正數(shù)a的平方根表示為?a,正數(shù)a的算術(shù)平方根表示為a;④取值范圍不同:正數(shù)的算術(shù)平方根一定是正數(shù),正數(shù)的平方根是一正一負(fù).⑤0的平方根與算術(shù)平方根都是0.

          三、例題講解:

          例1、求下列各數(shù)的算術(shù)平方根:

          (1)100;

          (2)49;

          (3)0.8164

          注意:由于正數(shù)的算術(shù)平方根是正數(shù),零的算術(shù)平方根是零,可將它們概括成:非負(fù)數(shù)的算術(shù)平方根是非負(fù)數(shù),即當(dāng)a≥0時(shí),a≥0(當(dāng)a<0時(shí),a無(wú)意義)

          用幾何圖形可以直觀地表示算術(shù)平方根的意義如有一個(gè)面積為a(a應(yīng)是非負(fù)數(shù))、邊長(zhǎng)為的正方形就表示a的算術(shù)平方根。

          3、立方根

          (1)立方根的定義:如果一個(gè)數(shù)x的立方等于a,這個(gè)數(shù)叫做a的立方根(也叫做三次方根),即如果x?a,那么x叫做a的立方根

          (2)一個(gè)數(shù)a的立方根,讀作:“三次根號(hào)a”,其中a叫被開(kāi)方數(shù),3叫根指數(shù),不能省略,若省略表示平方。

          (3)一個(gè)正數(shù)有一個(gè)正的立方根;0有一個(gè)立方根,是它本身;一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根;任何數(shù)都有的立方根。

          (4)利用開(kāi)立方和立方互為逆運(yùn)算關(guān)系,求一個(gè)數(shù)的立方根,就可以利用這種互逆關(guān)系,檢驗(yàn)其正確性,求負(fù)數(shù)的立方根,可以先求出這個(gè)負(fù)數(shù)的絕對(duì)值的立方根,再取其相反數(shù)。

          多邊形知識(shí)點(diǎn)

          1、多邊形的概念:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。組成多邊形的各條線段叫做多邊形的邊;每相鄰兩條邊的公共端點(diǎn)叫做多邊形的頂點(diǎn);多邊形相鄰兩邊組成的角叫多邊形的內(nèi)角,一個(gè)n邊形有n個(gè)內(nèi)角;多邊形的邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。在定義中應(yīng)注意:

         、僖恍┚段(多邊形的邊數(shù)是大于等于3的正整數(shù));

         、谑孜岔槾蜗噙B,二者缺一不可;

          ③理解時(shí)要特別注意“在同一平面內(nèi)”這個(gè)條件,其目的是為了排除幾個(gè)點(diǎn)不共面的情況,即空間多邊形。

          2、多邊形的分類

          多邊形可分為凸多邊形和凹多邊形,畫出多邊形的任何一條邊所在的直線,如果整個(gè)多邊形都在這條直線的同一側(cè),則此多邊形為凸多邊形,反之為凹多邊形。

          凸多邊形凹多邊形各個(gè)角都相等、各個(gè)邊都相等的多邊形叫做正多邊形。

          3、多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。

         。1)從n邊形一個(gè)頂點(diǎn)可以引(n-3)條對(duì)角線,將多邊形分成(n-2)個(gè)三角形。

          (2)n邊形共有條對(duì)角線。

          4、多邊形的內(nèi)角和外角

         。1)多邊形的內(nèi)角和公式:n邊形的內(nèi)角和為(n-2)×180°

         。2)多邊形的外角和等于360°,它與邊數(shù)的多少無(wú)關(guān)。

          推論:

         。1)內(nèi)角和與邊數(shù)成正比:邊數(shù)增加,內(nèi)角和增加;邊數(shù)減少,內(nèi)角和減少。每增加一條邊,內(nèi)角的和就增加180°(反過(guò)來(lái)也成立),且多邊形的內(nèi)角和必須是180°的整數(shù)倍。

         。2)多邊形最多有三個(gè)內(nèi)角為銳角,最少?zèng)]有銳角(如矩形);多邊形的外角中最多有三個(gè)鈍角,最少?zèng)]有鈍角。

          全等三角形復(fù)習(xí)知識(shí)點(diǎn)

          一、全等三角形

          1.定義:能夠完全重合的兩個(gè)三角形叫做全等三角形。

          理解:①全等三角形形狀與大小完全相等,與位置無(wú)關(guān);②一個(gè)三角形經(jīng)過(guò)平移、翻折、旋轉(zhuǎn)可以得到它的全等形;③三角形全等不因位置發(fā)生變化而改變。

          2、全等三角形有哪些性質(zhì)

         。1)全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等。

          理解:①長(zhǎng)邊對(duì)長(zhǎng)邊,短邊對(duì)短邊;最大角對(duì)最大角,最小角對(duì)最小角;②對(duì)應(yīng)角的對(duì)邊為對(duì)應(yīng)邊,對(duì)應(yīng)邊對(duì)的角為對(duì)應(yīng)角。

         。2)全等三角形的周長(zhǎng)相等、面積相等。

          (3)全等三角形的對(duì)應(yīng)邊上的對(duì)應(yīng)中線、角平分線、高線分別相等。

          3、全等三角形的判定

          邊邊邊:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡(jiǎn)寫成“SSS”)

          1、性質(zhì):角的平分線上的點(diǎn)到角的兩邊的距離相等.

          2、判定:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上。

          二、學(xué)習(xí)全等三角形應(yīng)注意以下幾個(gè)問(wèn)題:

         。1)要正確區(qū)分“對(duì)應(yīng)邊”與“對(duì)邊”,“對(duì)應(yīng)角”與“對(duì)角”的不同含義;

         。2表示兩個(gè)三角形全等時(shí),表示對(duì)應(yīng)頂點(diǎn)的字母要寫在對(duì)應(yīng)的位置上;

         。3)“有三個(gè)角對(duì)應(yīng)相等”或“有兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等”的兩個(gè)三角形不一定全等;

         。4)時(shí)刻注意圖形中的隱含條件,如“公共角” 、“公共邊”、“對(duì)頂角”

          (5)截長(zhǎng)補(bǔ)短法證三角形全等。

          三角形知識(shí)點(diǎn)

          1、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等。

          2、邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等。

          3、角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等。

          4、推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等。

          5、邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等。

          6、斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等。

          7、定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等。

          8、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上。

          9、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合。

          10、等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)。

          函數(shù)與方程知識(shí)點(diǎn)

          1、一次函數(shù)也叫做線性函數(shù),一般在X,Y坐標(biāo)軸中用一條直線來(lái)表示,當(dāng)一次函數(shù)中的一個(gè)變量的值確定的情況下,可以用一元一次方程來(lái)解答出另一個(gè)變量的值。

          2、任何一個(gè)一元一次方程都可以轉(zhuǎn)化成ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個(gè)一次函數(shù)的值為0時(shí),求相應(yīng)的自變量的值(從數(shù)的角度);從圖像上來(lái)看,就相當(dāng)于已知直線y=ax+b,確定它與x軸的交點(diǎn)橫坐標(biāo)的值(從形的角度)。

          3、利用函數(shù)圖像解方程:-2x+2=0,可以轉(zhuǎn)化為求一次函數(shù)y=-2x+2與x軸交點(diǎn)的橫坐標(biāo)。而y=-2x+2與x軸交點(diǎn)的橫坐標(biāo)為1,所以方程-2x+2=0的解為x=1。

          注意:解一元一次方程ax+b=0(a≠0)與求函數(shù)y=ax+b(a≠0)的圖像與x軸交點(diǎn)的橫坐標(biāo)是同一個(gè)問(wèn)題。不同的是前者從數(shù)的角度來(lái)解決問(wèn)題,后者從形的角度來(lái)解決問(wèn)題。

          4、每個(gè)二元一次方程組都對(duì)應(yīng)兩個(gè)一次函數(shù),從數(shù)的角度來(lái)看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)的值相等,以及這個(gè)函數(shù)是何值;從形的角度來(lái)看,解方程組相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo),從而使方程組得出答案。

          5、解答一次函數(shù)的作法最簡(jiǎn)單的就是列表法,取一個(gè)滿足一次函數(shù)表達(dá)式的兩個(gè)點(diǎn)的坐標(biāo),來(lái)確定另一個(gè)未知數(shù)的值。還有一個(gè)描點(diǎn)法。一般取兩個(gè)點(diǎn),根據(jù)“兩點(diǎn)確定一條直線”的道理,也可叫“兩點(diǎn)法”。通常情況下y=kx+b(k≠0)的圖象過(guò)(0,b)和(-b/k,0)兩點(diǎn)即可畫出。

          初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)

          一、勾股定理的逆定理:

          如果三角形兩條邊的平方和等于第三邊的平方,那么這個(gè)三角形是直角三角形。

          二、直角三角形的三邊關(guān)系:

          在任何一個(gè)直角三角形中,兩條直角邊長(zhǎng)的平方之和一定等于斜邊長(zhǎng)的平方。

          三、直角三角形斜邊上的中線:

          直角三角形斜邊上的中線等于斜邊的一半。

          四、完全平方公式:

          首平方,末平方,兩倍首末在中央。

          五、二次根式的乘除法:

          根式基本運(yùn)算,法則一樣,只是結(jié)果要化簡(jiǎn)。

          六、代數(shù)式求值:

          字母賦值,代數(shù)式中,等于代數(shù)式的值。

          七、平方根的性質(zhì):

          一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù),零的平方根是零,負(fù)數(shù)沒(méi)有平方根。

          八、實(shí)數(shù)的性質(zhì):

          正數(shù)和零是正實(shí)數(shù),負(fù)數(shù)和零是負(fù)實(shí)數(shù),兩個(gè)負(fù)數(shù)絕對(duì)值大者小。

          九、不等式的性質(zhì):

          1、不等式的兩邊同時(shí)加上(或減去)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變。

          2、不等式的兩邊同時(shí)乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變。

          3、不等式的兩邊同時(shí)乘以(或除以)同一個(gè)負(fù)數(shù),方向改變。

          十、一元一次不等式的性質(zhì):

          1、不等式的兩邊同時(shí)加上(或減去)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變。

          2、不等式的兩邊同時(shí)乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變。

          3、不等式的兩邊同時(shí)乘以(或除以)同一個(gè)負(fù)數(shù),方向改變。

          十一、整式的除法:

          單項(xiàng)式除以單項(xiàng)式,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。

          分解因式知識(shí)點(diǎn)

          2、把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式。

          3、因式分解與整式乘法是互逆關(guān)系。因式分解與整式乘法的區(qū)別和聯(lián)系:

          4、整式乘法是把幾個(gè)整式相乘,化為一個(gè)多項(xiàng)式;

          5、因式分解是把一個(gè)多項(xiàng)式化為幾個(gè)因式相乘。

          提公共因式法

          7、如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積的形式。這種分解因式的方法叫做提公因式法。如: ab+ac=a(b+c)

          8、概念內(nèi)涵:

          (1)因式分解的最后結(jié)果應(yīng)當(dāng)是“積”;

          (2)公因式可能是單項(xiàng)式,也可能是多項(xiàng)式;

         。3)提公因式法的理論依據(jù)是乘法對(duì)加法的分配律,即: ma+mb—mc=m(a+b—c)

          9、易錯(cuò)點(diǎn)點(diǎn)評(píng):

          (1)注意項(xiàng)的符號(hào)與冪指數(shù)是否搞錯(cuò);

          (2)公因式是否提“干凈”;

          10、多項(xiàng)式中某一項(xiàng)恰為公因式,提出后,括號(hào)中這一項(xiàng)為+1,不漏掉。

          運(yùn)用公式法

          12、如果把乘法公式反過(guò)來(lái),就可以用來(lái)把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。

          運(yùn)用公式法:

          14、平方差公式:

          ①應(yīng)是二項(xiàng)式或視作二項(xiàng)式的多項(xiàng)式;

         、诙(xiàng)式的每項(xiàng)(不含符號(hào))都是一個(gè)單項(xiàng)式(或多項(xiàng)式)的平方;

         、鄱(xiàng)是異號(hào)。

          15、完全平方公式:

          ①應(yīng)是三項(xiàng)式;

         、谄渲袃身(xiàng)同號(hào),且各為一整式的平方;

          ③還有一項(xiàng)可正可負(fù),且它是前兩項(xiàng)冪的底數(shù)乘積的2倍。

          因式分解的思路與解題步驟:

          18、先看各項(xiàng)有沒(méi)有公因式,若有,則先提取公因式;

         。2)再看能否使用公式法;

         。3)用分組分解法,即通過(guò)分組后提取各組公因式或運(yùn)用公式法來(lái)達(dá)到分解的目的;

          19、因式分解的最后結(jié)果必須是幾個(gè)整式的乘積,否則不是因式分解;

          20、因式分解的結(jié)果必須進(jìn)行到每個(gè)因式在有理數(shù)范圍內(nèi)不能再分解為止

        【初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

        初二數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)06-26

        初二數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)08-26

        初二數(shù)學(xué)全套知識(shí)點(diǎn)總結(jié)01-30

        初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-21

        初二數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)08-15

        初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)(經(jīng)典)10-21

        初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)01-05

        初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)最新06-18

        初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(精選15篇)06-08

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>