高一數(shù)學(xué)必修一知識點總結(jié)精選15篇
總結(jié)是事后對某一時期、某一項目或某些工作進行回顧和分析,從而做出帶有規(guī)律性的結(jié)論,它可以幫助我們總結(jié)以往思想,發(fā)揚成績,不如我們來制定一份總結(jié)吧?偨Y(jié)怎么寫才不會千篇一律呢?下面是小編收集整理的高一數(shù)學(xué)必修一知識點總結(jié),歡迎閱讀與收藏。
高一數(shù)學(xué)必修一知識點總結(jié)1
知識點1
一、集合有關(guān)概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1、元素的確定性;
2、元素的互異性;
3、元素的無序性
說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
。2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
。3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1、用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2、集合的表示方法:列舉法與描述法。
注意。撼S脭(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R
關(guān)于“屬于”的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A
列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。
、僬Z言描述法:例:{不是直角三角形的三角形}
、跀(shù)學(xué)式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}
4、集合的分類:
1、有限集含有有限個元素的集合
2、無限集含有無限個元素的集合
3、空集不含任何元素的集合例:{x|x2=—5}
知識點2
I、定義與定義表達式
一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c
(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)
則稱y為x的二次函數(shù)。
二次函數(shù)表達式的右邊通常為二次三項式。
II、二次函數(shù)的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
頂點式:y=a(x—h)^2+k[拋物線的頂點P(h,k)]
交點式:y=a(x—x?)(x—x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a
III、二次函數(shù)的圖像
在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。
IV、拋物線的性質(zhì)
1、拋物線是軸對稱圖形。對稱軸為直線x=—b/2a。對稱軸與拋物線的交點為拋物線的頂點P。
特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)
2、拋物線有一個頂點P,坐標(biāo)為
P(—b/2a,(4ac—b^2)/4a)
當(dāng)—b/2a=0時,P在y軸上;當(dāng)Δ=b^2—4ac=0時,P在x軸上。
3、二次項系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
知識點3
1、拋物線是軸對稱圖形。對稱軸為直線
x=—b/2a。
對稱軸與拋物線的交點為拋物線的頂點P。
特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)
2、拋物線有一個頂點P,坐標(biāo)為
P(—b/2a,(4ac—b’2)/4a)
當(dāng)—b/2a=0時,P在y軸上;當(dāng)Δ=b’2—4ac=0時,P在x軸上。
3、二次項系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
4、一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;
當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。
5、常數(shù)項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6、拋物線與x軸交點個數(shù)
Δ=b’2—4ac>0時,拋物線與x軸有2個交點。
Δ=b’2—4ac=0時,拋物線與x軸有1個交點。
Δ=b’2—4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=—b±√b’2—4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
知識點4
對數(shù)函數(shù)
對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。
右圖給出對于不同大小a所表示的函數(shù)圖形:
可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因為它們互為反函數(shù)。
(1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。
(2)對數(shù)函數(shù)的值域為全部實數(shù)集合。
。3)函數(shù)總是通過(1,0)這點。
(4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。
。5)顯然對數(shù)函數(shù)。
知識點5
方程的根與函數(shù)的零點
1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。
2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標(biāo)。即:方程有實數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點,函數(shù)有零點。
3、函數(shù)零點的求法:
。1)(代數(shù)法)求方程的實數(shù)根;
。2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點。
4、二次函數(shù)的零點:
。1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點。
。2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點。
。3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點。
高一數(shù)學(xué)必修一知識點總結(jié)2
一、集合及其表示
1、集合的含義:
“集合”這個詞首先讓我們想到的是上體育課或者開會時老師經(jīng)常喊的“全體集合”。數(shù)學(xué)上的“集合”和這個意思是一樣的,只不過一個是動詞一個是名詞而已。
所以集合的含義是:某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那么所有高一二班的同學(xué)就構(gòu)成了一個集合,每一個同學(xué)就稱為這個集合的元素。
2、集合的表示
通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。
有一些特殊的集合需要記憶:
非負(fù)整數(shù)集(即自然數(shù)集)N正整數(shù)集N_或N+
整數(shù)集Z有理數(shù)集Q實數(shù)集R
集合的表示方法:列舉法與描述法。
、倭信e法:{a,b,c……}
、诿枋龇ǎ簩⒓现械脑氐墓矊傩悦枋龀鰜。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}
、壅Z言描述法:例:{不是直角三角形的三角形}
例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
強調(diào):描述法表示集合應(yīng)注意集合的代表元素
A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。
3、集合的三個特性
(1)無序性
指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。
例題:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B
注意:該題有兩組解。
(2)互異性
指集合中的元素不能重復(fù),A={2,2}只能表示為{2}
(3)確定性
集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。
高一數(shù)學(xué)必修一知識點總結(jié)3
高一數(shù)學(xué)集合有關(guān)概念
集合的含義
集合的中元素的三個特性:
元素的確定性如:世界上的山
元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3。集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N_N+整數(shù)集Z有理數(shù)集Q實數(shù)集R
列舉法:{a,b,c……}
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{x(R|x—3>2},{x|x—3>2}
語言描述法:例:{不是直角三角形的三角形}
Venn圖:
4、集合的分類:
有限集含有有限個元素的集合
無限集含有無限個元素的集合
空集不含任何元素的集合例:{x|x2=—5}
高一數(shù)學(xué)必修一知識點總結(jié)4
一、指數(shù)函數(shù)
(一)指數(shù)與指數(shù)冪的運算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.
當(dāng)是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負(fù)數(shù)的次方根是一個負(fù)數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).
當(dāng)是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負(fù)的次方根用符號-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。
注意:當(dāng)是奇數(shù)時,當(dāng)是偶數(shù)時,
2.分?jǐn)?shù)指數(shù)冪
正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義
指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.
3.實數(shù)指數(shù)冪的運算性質(zhì)
(二)指數(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.
2、指數(shù)函數(shù)的圖象和性質(zhì)
【函數(shù)的應(yīng)用】
1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。
2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標(biāo)。即:
方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.
3、函數(shù)零點的求法:
求函數(shù)的零點:
1(代數(shù)法)求方程的實數(shù)根;
2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.
4、二次函數(shù)的零點:
二次函數(shù).
1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.
2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.
3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.
高一數(shù)學(xué)必修一知識點總結(jié)5
集合的運算
運算類型交 集并 集補 集
定義域 R定義域 R
值域>0值域>0
在R上單調(diào)遞增在R上單調(diào)遞減
非奇非偶函數(shù)非奇非偶函數(shù)
函數(shù)圖象都過定點(0,1)函數(shù)圖象都過定點(0,1)
注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:
(1)在[a,b]上, 值域是 或 ;
。2)若 ,則 ; 取遍所有正數(shù)當(dāng)且僅當(dāng) ;
。3)對于指數(shù)函數(shù) ,總有 ;
二、對數(shù)函數(shù)
(一)對數(shù)
1.對數(shù)的概念:
一般地,如果 ,那么數(shù) 叫做以 為底 的對數(shù),記作: ( — 底數(shù), — 真數(shù), — 對數(shù)式)
說明:○1 注意底數(shù)的限制 ,且 ;
○2 ;
○3 注意對數(shù)的書寫格式.
兩個重要對數(shù):
○1 常用對數(shù):以10為底的對數(shù) ;
○2 自然對數(shù):以無理數(shù) 為底的對數(shù)的對數(shù) .
指數(shù)式與對數(shù)式的互化
冪值 真數(shù)
= N = b
底數(shù)
指數(shù) 對數(shù)
。ǘ⿲(shù)的運算性質(zhì)
如果 ,且 , , ,那么:
○1 + ;
○2 - ;
○3 .
注意:換底公式: ( ,且 ; ,且 ; ).
利用換底公式推導(dǎo)下面的結(jié)論:(1) ;(2) .
。3)、重要的公式 ①、負(fù)數(shù)與零沒有對數(shù); ②、 , ③、對數(shù)恒等式
(二)對數(shù)函數(shù)
1、對數(shù)函數(shù)的概念:函數(shù) ,且 叫做對數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是(0,+∞).
注意:○1 對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如: , 都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù).
○2 對數(shù)函數(shù)對底數(shù)的限制: ,且 .
2、對數(shù)函數(shù)的性質(zhì):
a>10 定義域x>0定義域x>0 值域為R值域為R 在R上遞增在R上遞減 函數(shù)圖象都過定點(1,0)函數(shù)圖象都過定點(1,0) 。ㄈ﹥绾瘮(shù) 1、冪函數(shù)定義:一般地,形如 的函數(shù)稱為冪函數(shù),其中 為常數(shù). 2、冪函數(shù)性質(zhì)歸納. (1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(1,1); (2) 時,冪函數(shù)的圖象通過原點,并且在區(qū)間 上是增函數(shù).特別地,當(dāng) 時,冪函數(shù)的圖象下凸;當(dāng) 時,冪函數(shù)的圖象上凸; 。3) 時,冪函數(shù)的圖象在區(qū)間 上是減函數(shù).在第一象限內(nèi),當(dāng) 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當(dāng) 趨于 時,圖象在 軸上方無限地逼近 軸正半軸. 第四章 函數(shù)的應(yīng)用 一、方程的根與函數(shù)的零點 1、函數(shù)零點的概念:對于函數(shù) ,把使 成立的實數(shù) 叫做函數(shù) 的零點。 2、函數(shù)零點的意義:函數(shù) 的零點就是方程 實數(shù)根,亦即函數(shù) 的圖象與 軸交點的橫坐標(biāo)。 即:方程 有實數(shù)根 函數(shù) 的圖象與 軸有交點 函數(shù) 有零點. 3、函數(shù)零點的求法: ○1 (代數(shù)法)求方程 的實數(shù)根; ○2 (幾何法)對于不能用求根公式的方程,可以將它與函數(shù) 的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點. 4、二次函數(shù)的零點: 二次函數(shù) . 。1)△>0,方程 有兩不等實根,二次函數(shù)的圖象與 軸有兩個交點,二次函數(shù)有兩個零點. 。2)△=0,方程 有兩相等實根,二次函數(shù)的圖象與 軸有一個交點,二次函數(shù)有一個二重零點或二階零點. 。3)△<0,方程 無實根,二次函數(shù)的圖象與 軸無交點,二次函數(shù)無零點. 5.函數(shù)的模型 集合間的基本關(guān)系 1.子集,A包含于B,記為:,有兩種可能 (1)A是B的一部分, (2)A與B是同一集合,A=B,A、B兩集合中元素都相同。 反之:集合A不包含于集合B,記作。 如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三個集合的關(guān)系可以表示為,,B=C。A是C的子集,同時A也是C的真子集。 2.真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA) 3、不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。 4、有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-2個非空真子集。如A={1,2,3,4,5},則集合A有25=32個子集,25-1=31個真子集,25-2=30個非空真子集。 例:集合共有個子集。(13年高考第4題,簡單) 練習(xí):A={1,2,3},B={1,2,3,4},請問A集合有多少個子集,并寫出子集,B集合有多少個非空真子集,并將其寫出來。 解析: 集合A有3個元素,所以有23=8個子集。分別為:①不含任何元素的子集Φ;②含有1個元素的子集{1}{2}{3};③含有兩個元素的子集{1,2}{1,3}{2,3};④含有三個元素的子集{1,2,3}。 集合B有4個元素,所以有24-2=14個非空真子集。具體的子集自己寫出來。 此處這么羅嗦主要是為了讓同學(xué)們注意寫的順序,數(shù)學(xué)就是要講究嚴(yán)謹(jǐn)性和邏輯性的。一定要養(yǎng)成自己的邏輯習(xí)慣。如果就是為了提高計算能力倒不如直接去菜場賣菜算了,絕對能飛速提高的,那學(xué)數(shù)學(xué)也沒什么必要了。 數(shù)學(xué)是利用符號語言研究數(shù)量、結(jié)構(gòu)、變化以及空間模型等概念的一門學(xué)科。小編準(zhǔn)備了高一數(shù)學(xué)必修1期末考知識點,希望你喜歡。 一、集合有關(guān)概念 1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素. 2、集合的中元素的三個特性: 1.元素的確定性; 2.元素的互異性; 3.元素的無序性 說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素. (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素. (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣. (4)集合元素的三個特性使集合本身具有了確定性和整體性. 3、集合的表示:{ } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5} 2.集合的表示方法:列舉法與描述法. 注意。撼S脭(shù)集及其記法: 非負(fù)整數(shù)集(即自然數(shù)集)記作:N 正整數(shù)集 N*或N+ 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R 關(guān)于屬于的概念 集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 a?A 列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上. 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法.用確定的條件表示某些對象是否屬于這個集合的方法. ①語言描述法:例:{不是直角三角形的三角形} 、跀(shù)學(xué)式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32} 4、集合的分類: 1.有限集 含有有限個元素的`集合 2.無限集 含有無限個元素的集合 3.空集 不含任何元素的集合 例:{x|x2=-5} 二、集合間的基本關(guān)系 1.包含關(guān)系子集 注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合. 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A 2.相等關(guān)系(55,且55,則5=5) 實例:設(shè) A={x|x2-1=0} B={-1,1} 元素相同 結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B 、 任何一個集合是它本身的子集.AA 、谡孀蛹:如果AB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A) ③如果 AB, BC ,那么 AC 、 如果AB 同時 BA 那么A=B 3. 不含任何元素的集合叫做空集,記為 規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集. 三、集合的運算 1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集. 記作AB(讀作A交B),即AB={x|xA,且xB}. 2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}. 3、交集與并集的性質(zhì):AA = A, A=, AB = BA,AA = A, A= A ,AB = BA. 4、全集與補集 (1)補集:設(shè)S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集) (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集.通常用U來表示. (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U 高一數(shù)學(xué)必修一知識點 指數(shù)函數(shù) (一)指數(shù)與指數(shù)冪的運算 1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_. 當(dāng)是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負(fù)數(shù)的次方根是一個負(fù)數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand). 當(dāng)是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負(fù)的次方根用符號-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。 注意:當(dāng)是奇數(shù)時,當(dāng)是偶數(shù)時, 2.分?jǐn)?shù)指數(shù)冪 正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定: 0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義 指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪. 3.實數(shù)指數(shù)冪的運算性質(zhì) (二)指數(shù)函數(shù)及其性質(zhì) 1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R. 注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1. 2、指數(shù)函數(shù)的圖象和性質(zhì) 高一上冊數(shù)學(xué)必修一知識點梳理 空間幾何體表面積體積公式: 1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高) 2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高, 3、a-邊長,S=6a2,V=a3 4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc 5、棱柱S-h-高V=Sh 6、棱錐S-h-高V=Sh/3 7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3 8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6 9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h 10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2) 11、r-底半徑h-高V=πr^2h/3 12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6 14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3 15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6 16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4 17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形) 人教版高一數(shù)學(xué)必修一知識點梳理 1、柱、錐、臺、球的結(jié)構(gòu)特征 (1)棱柱: 定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。 分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。 表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。 幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。 (2)棱錐 定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。 分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等 表示:用各頂點字母,如五棱錐 幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。 (3)棱臺: 定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。 分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等 表示:用各頂點字母,如五棱臺 幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點 (4)圓柱: 定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。 幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。 (5)圓錐: 定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。 幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。 (6)圓臺: 定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分 幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。 (7)球體: 定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體 幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。 2、空間幾何體的三視圖 定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下) 注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度; 俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度; 側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。 3、空間幾何體的直觀圖——斜二測畫法 斜二測畫法特點: 、僭瓉砼cx軸平行的線段仍然與x平行且長度不變; 、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。 二次函數(shù) I.定義與定義表達式 一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.) 則稱y為x的二次函數(shù)。 二次函數(shù)表達式的右邊通常為二次三項式。 II.二次函數(shù)的三種表達式 一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0) 頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)] 交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線] 注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系: h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a III.二次函數(shù)的圖像 在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。 IV.拋物線的性質(zhì) 1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線的交點為拋物線的頂點P。 特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0) 2.拋物線有一個頂點P,坐標(biāo)為 P(-b/2a,(4ac-b^2)/4a) 當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ=b^2-4ac=0時,P在x軸上。 3.二次項系數(shù)a決定拋物線的開口方向和大小。 當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。 |a|越大,則拋物線的開口越小。 【基本初等函數(shù)】 一、指數(shù)函數(shù) (一)指數(shù)與指數(shù)冪的運算 1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈ 當(dāng)是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負(fù)數(shù)的次方根是一個負(fù)數(shù)。此時,的次方根用符號表示。式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand)。 當(dāng)是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù)。此時,正數(shù)的正的次方根用符號表示,負(fù)的次方根用符號—表示。正的次方根與負(fù)的次方根可以合并成±(>0)。由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。 注意:當(dāng)是奇數(shù)時,當(dāng)是偶數(shù)時, 2、分?jǐn)?shù)指數(shù)冪 正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定: 0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義 指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。 3、實數(shù)指數(shù)冪的運算性質(zhì) 。ǘ┲笖(shù)函數(shù)及其性質(zhì) 1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R。 注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1。 2、指數(shù)函數(shù)的圖象和性質(zhì) 集合間的基本關(guān)系 1.“包含”關(guān)系—子集 注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A 2.“相等”關(guān)系(5≥5,且5≤5,則5=5) 實例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同” 結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B A?① 任何一個集合是它本身的子集。A B那就說集合A是集合B的真子集,記作A B(或B A)?B,且A?②真子集:如果A C?C ,那么 A?B, B?③如果 A A 那么A=B?B 同時 B?④ 如果A 3. 不含任何元素的集合叫做空集,記為Φ 規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 集合的運算 1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集. 記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}. 3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A. 4、全集與補集 (1)補集:設(shè)S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集) A}?S且 x? x?記作: CSA 即 CSA ={x (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。 (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U 1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標(biāo)及對稱軸如下表: 解析式 頂點坐標(biāo) 對稱軸 y=ax^2 (0,0) x=0 y=a(x-h)^2 (h,0) x=h y=a(x-h)^2+k (h,k) x=h y=ax^2+bx+c (-b/2a,[4ac-b^2]/4a) x=-b/2a 當(dāng)h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到, 當(dāng)h<0時,則向左平行移動|h|個單位得到. 當(dāng)h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象; 當(dāng)h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象; 當(dāng)h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象; 當(dāng)h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象; 因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標(biāo)、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便. 2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時,開口向上,當(dāng)a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標(biāo)是(-b/2a,[4ac-b^2]/4a). 3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時,y隨x的增大而減小;當(dāng)x≥-b/2a時,y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時,y隨x的增大而增大;當(dāng)x≥-b/2a時,y隨x的增大而減小. 4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點: (1)圖象與y軸一定相交,交點坐標(biāo)為(0,c); (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0 (a≠0)的兩根.這兩點間的距離AB=|x?-x?| 當(dāng)△=0.圖象與x軸只有一個交點; 當(dāng)△<0.圖象與x軸沒有交點.當(dāng)a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當(dāng)a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0. 5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時,y最小(大)值=(4ac-b^2)/4a. 頂點的橫坐標(biāo),是取得最值時的自變量值,頂點的縱坐標(biāo),是最值的取值. 6.用待定系數(shù)法求二次函數(shù)的解析式 (1)當(dāng)題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應(yīng)值時,可設(shè)解析式為一般形式: y=ax^2+bx+c(a≠0). (2)當(dāng)題給條件為已知圖象的頂點坐標(biāo)或?qū)ΨQ軸時,可設(shè)解析式為頂點式:y=a(x-h)^2+k(a≠0). (3)當(dāng)題給條件為已知圖象與x軸的兩個交點坐標(biāo)時,可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0). 7.二次函數(shù)知識很容易與其它知識綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn). 兩個平面的位置關(guān)系: 。1)兩個平面互相平行的定義:空間兩平面沒有公共點 。2)兩個平面的位置關(guān)系: 兩個平面平行—————沒有公共點;兩個平面相交—————有一條公共直線。 a、平行 兩個平面平行的判定定理:如果一個平面內(nèi)有兩條相交直線都平行于另一個平面,那么這兩個平面平行。 兩個平面平行的性質(zhì)定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。 b、相交 二面角 。1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。 。2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°] (3)二面角的棱:這一條直線叫做二面角的棱。 。4)二面角的面:這兩個半平面叫做二面角的面。 (5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。 。6)直二面角:平面角是直角的二面角叫做直二面角。 兩平面垂直 兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥ 兩平面垂直的判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直 兩個平面垂直的性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于交線的直線垂直于另一個平面。 一:函數(shù)模型及其應(yīng)用 本節(jié)主要包括函數(shù)的模型、函數(shù)的應(yīng)用等知識點。主要是理解函數(shù)解應(yīng)用題的一般步驟靈活利用函數(shù)解答實際應(yīng)用題。 1、常見的函數(shù)模型有一次函數(shù)模型、二次函數(shù)模型、指數(shù)函數(shù)模型、對數(shù)函數(shù)模型、分段函數(shù)模型等。 2、用函數(shù)解應(yīng)用題的基本步驟是: 。1)閱讀并且理解題意。(關(guān)鍵是數(shù)據(jù)、字母的實際意義); 。2)設(shè)量建模; (3)求解函數(shù)模型; (4)簡要回答實際問題。 常見考法: 本節(jié)知識在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數(shù)和較復(fù)雜的函數(shù)的最值等問題,屬于拔高題,難度較大。 誤區(qū)提醒: 1、求解應(yīng)用性問題時,不僅要考慮函數(shù)本身的定義域,還要結(jié)合實際問題理解自變量的取值范圍。 2、求解應(yīng)用性問題時,首先要弄清題意,分清條件和結(jié)論,抓住關(guān)鍵詞和量,理順數(shù)量關(guān)系,然后將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,建立相應(yīng)的數(shù)學(xué)模型。 【典型例題】 例1: 。1)某種儲蓄的月利率是0。36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數(shù)x之間的函數(shù)關(guān)系式,并計算5個月后的本息和(不計復(fù)利)。 (2)按復(fù)利計算利息的一種儲蓄,本金為a元,每期利率為r,設(shè)本利和為y,存期為x,寫出本利和y隨存期x變化的函數(shù)式。如果存入本金1000元,每期利率2。25%,試計算5期后的本利和是多少?解:(1)利息=本金×月利率×月數(shù)。y=100+100×0。36%·x=100+0。36x,當(dāng)x=5時,y=101。8,∴5個月后的本息和為101。8元。 例2: 某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤與投資單位是萬元) 。1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式。 。2)該企業(yè)已籌集到10萬元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能是企業(yè)獲得利潤,其利潤約為多少萬元。(精確到1萬元)。 知識點總結(jié) 本節(jié)知識包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性和函數(shù)的圖象等知識點。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個知識點,函數(shù)的圖象就迎刃而解了。 一、函數(shù)的單調(diào)性 1、函數(shù)單調(diào)性的定義 2、函數(shù)單調(diào)性的判斷和證明:(1)定義法 (2)復(fù)合函數(shù)分析法 (3)導(dǎo)數(shù)證明法 (4)圖象法 二、函數(shù)的奇偶性和周期性 1、函數(shù)的奇偶性和周期性的定義 2、函數(shù)的奇偶性的判定和證明方法 3、函數(shù)的周期性的判定方法 三、函數(shù)的圖象 1、函數(shù)圖象的作法 (1)描點法 (2)圖象變換法 2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。 常見考法 本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。 誤區(qū)提醒 1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。 2、單調(diào)區(qū)間必須用區(qū)間來表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點問題。 3、在多個單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號隔開。 4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點對稱,則函數(shù)一定是非奇非偶函數(shù)。 5、作函數(shù)的圖象,一般是首先化簡解析式,然后確定用描點法或圖象變換法作函數(shù)的圖象。 【高一數(shù)學(xué)必修一知識點總結(jié)】相關(guān)文章: 高一數(shù)學(xué)必修一知識點總結(jié)12-07 高一數(shù)學(xué)必修一知識點總結(jié)08-09 高一數(shù)學(xué)必修3知識點總結(jié)04-11 高一數(shù)學(xué)必修五的知識點總結(jié)03-30 高一數(shù)學(xué)必修1知識點總結(jié)09-08 高一數(shù)學(xué)必修二知識點總結(jié)11-08 高一必修一數(shù)學(xué)集合知識點總結(jié)12-03 高一數(shù)學(xué)必修一知識點總結(jié)歸納02-15高一數(shù)學(xué)必修一知識點總結(jié)6
高一數(shù)學(xué)必修一知識點總結(jié)7
高一數(shù)學(xué)必修一知識點總結(jié)8
高一數(shù)學(xué)必修一知識點總結(jié)9
高一數(shù)學(xué)必修一知識點總結(jié)10
高一數(shù)學(xué)必修一知識點總結(jié)11
高一數(shù)學(xué)必修一知識點總結(jié)12
高一數(shù)學(xué)必修一知識點總結(jié)13
高一數(shù)學(xué)必修一知識點總結(jié)14
高一數(shù)學(xué)必修一知識點總結(jié)15