1. <rp id="zsypk"></rp>

      2. 初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

        時(shí)間:2022-11-04 13:00:10 知識(shí)點(diǎn)總結(jié) 我要投稿

        初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)匯編15篇

          總結(jié)就是對(duì)一個(gè)時(shí)期的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的回顧和分析的書面材料,他能夠提升我們的書面表達(dá)能力,為此我們要做好回顧,寫好總結(jié)。那么你真的懂得怎么寫總結(jié)嗎?以下是小編整理的初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié),希望能夠幫助到大家。

        初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)匯編15篇

        初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

          一.定義

          1.一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根.a叫做被開方數(shù).

          2.一般地,如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)叫做a的平方根或二次方根,求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開平方.

          3.一般地,如果一個(gè)數(shù)的立方等于a,那么這個(gè)數(shù)叫做a的立方根或三次方根.求一個(gè)數(shù)的立方根的運(yùn)算,叫做開立方.

          4.任何一個(gè)有理數(shù)都可以寫成有限小數(shù)或無限循環(huán)小數(shù)的形式.任何有限小數(shù)或無限循環(huán)小數(shù)也都是有理數(shù).

          5.無限不循環(huán)小數(shù)又叫無理數(shù).

          6.有理數(shù)和無理數(shù)統(tǒng)稱實(shí)數(shù).

          7.數(shù)軸上的點(diǎn)與實(shí)數(shù)一一對(duì)應(yīng).平面直角坐標(biāo)系中與有序?qū)崝?shù)對(duì)之間也是一一對(duì)應(yīng)的.

          二.重點(diǎn)

          1.平方與開平方互為逆運(yùn)算.

          2.正數(shù)的平方根有兩個(gè),它們互為相反數(shù),其中正的平方根就是這個(gè)數(shù)的算術(shù)平方根.

          3.當(dāng)被開方數(shù)的小數(shù)點(diǎn)向右每移動(dòng)兩位,它的算術(shù)平方根的小數(shù)點(diǎn)就向右移動(dòng)一位.

          4.當(dāng)被平方數(shù)小數(shù)點(diǎn)每向右移動(dòng)三位,它的立方根小數(shù)點(diǎn)向右移動(dòng)一位.

          5.數(shù)a的相反數(shù)是-a[a為任意實(shí)數(shù)],一個(gè)正實(shí)數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)實(shí)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0.

          三.注意

          1.被開方數(shù)一定是非負(fù)數(shù).

          2.0,1的算術(shù)平方根是它本身;0的平方根是0,負(fù)數(shù)沒有平方根;正數(shù)的立方根是正數(shù),負(fù)數(shù)的立方根是負(fù)數(shù),0的立方根是0.

          3.帶根號(hào)的無理數(shù)的整數(shù)倍或幾分之幾仍是無理數(shù);帶根號(hào)的數(shù)若開之后是有理數(shù)則是有理數(shù);任何一個(gè)有理數(shù)都能寫成分?jǐn)?shù)的形式.

          以上就是數(shù)學(xué)網(wǎng)為大家提供的初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié):實(shí)數(shù)希望能對(duì)考生產(chǎn)生幫助,更多資料請(qǐng)咨詢數(shù)學(xué)網(wǎng)中考頻道。

        初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

          第一章分式

          1分式及其基本性質(zhì)分式的分子和分母同時(shí)乘以(或除以)一個(gè)不等于零的整式,分式的只不變

          2分式的運(yùn)算

          (1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。

         。2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變?yōu)橥帜傅姆质,再加減

          3整數(shù)指數(shù)冪的加減乘除法

          4分式方程及其解法

          第二章反比例函數(shù)

          1反比例函數(shù)的表達(dá)式、圖像、性質(zhì)

          圖像:雙曲線

          表達(dá)式:y=k/x(k不為0)

          性質(zhì):兩支的增減性相同;

          2反比例函數(shù)在實(shí)際問題中的應(yīng)用

          第三章勾股定理

          1勾股定理:直角三角形的兩個(gè)直角邊的平方和等于斜邊的平方

          2勾股定理的逆定理:如果一個(gè)三角形中,有兩個(gè)邊的平方和等于第三條邊的平方,那么這個(gè)三角形是直角三角形

          第四章四邊形

          1平行四邊形

          性質(zhì):對(duì)邊相等;對(duì)角相等;對(duì)角線互相平分。

          判定:兩組對(duì)邊分別相等的四邊形是平行四邊形;

          兩組對(duì)角分別相等的四邊形是平行四邊形;

          對(duì)角線互相平分的四邊形是平行四邊形;

          一組對(duì)邊平行而且相等的四邊形是平行四邊形。

          推論:三角形的中位線平行第三邊,并且等于第三邊的一半。

          2特殊的平行四邊形:矩形、菱形、正方形

         。1)矩形

          性質(zhì):矩形的四個(gè)角都是直角;

          矩形的對(duì)角線相等;

          矩形具有平行四邊形的所有性質(zhì)

          判定:有一個(gè)角是直角的平行四邊形是矩形;對(duì)角線相等的平行四邊形是矩形;

          推論:直角三角形斜邊的中線等于斜邊的一半。

         。2)菱形性質(zhì):菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形具有平行四邊形的一切性質(zhì)

          判定:有一組鄰邊相等的平行四邊形是菱形;對(duì)角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。

          (3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì)。

          3梯形:直角梯形和等腰梯形

          等腰梯形:等腰梯形同一底邊上的兩個(gè)角相等;等腰梯形的兩條對(duì)角線相等;同一個(gè)底上的兩個(gè)角相等的梯形是等腰梯形。

          第五章數(shù)據(jù)的分析

          加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差

          初二必備數(shù)學(xué)知識(shí)

          位置與坐標(biāo)

          1、確定位置

          在平面內(nèi),確定物體的位置一般需要兩個(gè)數(shù)據(jù)。

          2、平面直角坐標(biāo)系及有關(guān)概念

         、倨矫嬷苯亲鴺(biāo)系

          在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。

         、谧鴺(biāo)軸和象限

          為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。

          注意:x軸和y軸上的點(diǎn)(坐標(biāo)軸上的點(diǎn)),不屬于任何一個(gè)象限。

         、埸c(diǎn)的坐標(biāo)的概念

          對(duì)于平面內(nèi)任意一點(diǎn)P,過點(diǎn)P分別x軸、y軸向作垂線,垂足在上x軸、y軸對(duì)應(yīng)的數(shù)a,b分別叫做點(diǎn)P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(duì)(a,b)叫做點(diǎn)P的坐標(biāo)。

          點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。

          平面內(nèi)點(diǎn)的與有序?qū)崝?shù)對(duì)是一一對(duì)應(yīng)的。

         、懿煌恢玫狞c(diǎn)的坐標(biāo)的特征

          a、各象限內(nèi)點(diǎn)的坐標(biāo)的特征

          點(diǎn)P(x,y)在第一象限→ x>0,y>0

          點(diǎn)P(x,y)在第二象限→ x0

          點(diǎn)P(x,y)在第三象限→ x<0,y<0

          點(diǎn)P(x,y)在第四象限→ x>0,y<0

          b、坐標(biāo)軸上的點(diǎn)的特征

          點(diǎn)P(x,y)在x軸上→ y=0,x為任意實(shí)數(shù)

          點(diǎn)P(x,y)在y軸上→ x=0,y為任意實(shí)數(shù)

          點(diǎn)P(x,y)既在x軸上,又在y軸上→ x,y同時(shí)為零,即點(diǎn)P坐標(biāo)為(0,0)即原點(diǎn)

          c、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征

          點(diǎn)P(x,y)在第一、三象限夾角平分線(直線y=x)上→ x與y相等

          點(diǎn)P(x,y)在第二、四象限夾角平分線上→ x與y互為相反數(shù)

          d、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征

          位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。

          位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)相同。

          e、關(guān)于x軸、y軸或原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特征

          點(diǎn)P與點(diǎn)p’關(guān)于x軸對(duì)稱橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于x軸的對(duì)稱點(diǎn)為P’(x,—y)

          點(diǎn)P與點(diǎn)p’關(guān)于y軸對(duì)稱縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于y軸的對(duì)稱點(diǎn)為P’(—x,y)

          點(diǎn)P與點(diǎn)p’關(guān)于原點(diǎn)對(duì)稱,橫、縱坐標(biāo)均互為相反數(shù),即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P’(—x,—y)

          f、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離

          點(diǎn)P(x,y)到坐標(biāo)軸及原點(diǎn)的距離:

          點(diǎn)P(x,y)到x軸的距離等于?y?

          點(diǎn)P(x,y)到y(tǒng)軸的距離等于?x?

          點(diǎn)P(x,y)到原點(diǎn)的距離等于√x2+y2

          初二數(shù)學(xué)?贾R(shí)

          一次函數(shù)

          1、函數(shù)

          一般地,在某一變化過程中有兩個(gè)變量x與y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。

          2、自變量取值范圍

          使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實(shí)數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負(fù)數(shù))、實(shí)際意義幾方面考慮。

          3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)

          關(guān)系式(解析)法兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做關(guān)系式(解析)法。

          列表法把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。

          圖象法用圖象表示函數(shù)關(guān)系的方法叫做圖象法。

          4、由函數(shù)關(guān)系式畫其圖像的一般步驟

          列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值。

          描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)。

          連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。

          5、正比例函數(shù)和一次函數(shù)

         、僬壤瘮(shù)和一次函數(shù)的概念

          一般地,若兩個(gè)變量x,y間的關(guān)系可以表示成y=kx+b(k,b為常數(shù),k不等于0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。

          特別地,當(dāng)一次函數(shù)y=kx+b中的b=0時(shí)(k為常數(shù),k不等于0),稱y是x的正比例函數(shù)。②一次函數(shù)的圖像:

          所有一次函數(shù)的圖像都是一條直線。

          ③一次函數(shù)、正比例函數(shù)圖像的主要特征

          一次函數(shù)y=kx+b的圖像是經(jīng)過點(diǎn)(0,b)的直線;

        初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

          一次函數(shù)

          (1)正比例函數(shù):一般地,形如y=kx(k是常數(shù),k?0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù);

          (2)正比例函數(shù)圖像特征:一些過原點(diǎn)的直線;

          (3)圖像性質(zhì):

         、佼(dāng)k>0時(shí),函數(shù)y=kx的圖像經(jīng)過第一、三象限,從左向右上升,即隨著x的增大y也增大;②當(dāng)k<0時(shí),函數(shù)y=kx的圖像經(jīng)過第二、四象限,從左向右下降,即隨著x的增大y反而減小;

          (4)求正比例函數(shù)的解析式:已知一個(gè)非原點(diǎn)即可;

          (5)畫正比例函數(shù)圖像:經(jīng)過原點(diǎn)和點(diǎn)(1,k);(或另外一個(gè)非原點(diǎn))

          (6)一次函數(shù):一般地,形如y=kx+b(k、b是常數(shù),k?0)的函數(shù),叫做一次函數(shù);

          (7)正比例函數(shù)是一種特殊的一次函數(shù);(因?yàn)楫?dāng)b=0時(shí),y=kx+b即為y=kx)

          (8)一次函數(shù)圖像特征:一些直線;

          (9)性質(zhì):

         、賧=kx與y=kx+b的傾斜程度一樣,y=kx+b可看成由y=kx平移|b|個(gè)單位長(zhǎng)度而得;(當(dāng)b>0,向上平移;當(dāng)b<0,向下平移)

          ②當(dāng)k>0時(shí),直線y=kx+b由左至右上升,即y隨著x的增大而增大;

          ③當(dāng)k<0時(shí),直線y=kx+b由左至右下降,即y隨著x的增大而減小;

         、墚(dāng)b>0時(shí),直線y=kx+b與y軸正半軸有交點(diǎn)為(0,b);

          ⑤當(dāng)b<0時(shí),直線y=kx+b與y軸負(fù)半軸有交點(diǎn)為(0,b);

          (10)求一次函數(shù)的解析式:即要求k與b的值;

          (11)畫一次函數(shù)的圖像:已知兩點(diǎn);

          用函數(shù)觀點(diǎn)看方程(組)與不等式

          (1)解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個(gè)一次函數(shù)的值為0時(shí),求相應(yīng)的自變量的值;從圖像上看,這相當(dāng)于已知直線y=kx+b,確定它與x軸交點(diǎn)的橫坐標(biāo)的值;

          (2)解一元一次不等式可以看作:當(dāng)一次函數(shù)值大(小)于0時(shí),求自變量相應(yīng)的取值范圍;

          (3)每個(gè)二元一次方程都對(duì)應(yīng)一個(gè)一元一次函數(shù),于是也對(duì)應(yīng)一條直線;

          (4)一般地,每個(gè)二元一次方程組都對(duì)應(yīng)兩個(gè)一次函數(shù),于是也對(duì)應(yīng)兩條直線。從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)的值相等,以及這個(gè)函數(shù)值是何值;從“形”的角度看,解方程組相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo);

        初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

          第十二章軸對(duì)稱

          一、軸對(duì)稱圖形

          1.把一個(gè)圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個(gè)圖形就叫做軸對(duì)稱圖形。這條直線就是它的對(duì)稱軸。這時(shí)我們也說這個(gè)圖形關(guān)于這條直線(成軸)對(duì)稱。

          2.把一個(gè)圖形沿著某一條直線折疊,如果它能與另一個(gè)圖形完全重合,那么就說這兩個(gè)圖關(guān)于這條直線

          4.軸對(duì)稱與軸對(duì)稱圖形的性質(zhì)

         、訇P(guān)于某直線對(duì)稱的兩個(gè)圖形是全等形。

         、谌绻麅蓚(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。 ③軸對(duì)稱圖形的對(duì)稱軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。

          ④如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱。

         、輧蓚(gè)圖形關(guān)于某條直線成軸對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上。

          二、線段的垂直平分線

          1.定義:經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。

          2.性質(zhì):線段垂直平分線上的點(diǎn)與這條線段的兩個(gè)端點(diǎn)的距離相等

          3.判定:與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在線段的垂直平分線上

          三、用坐標(biāo)表示軸對(duì)稱小結(jié):

          1.在平面直角坐標(biāo)系中

          ①關(guān)于x軸對(duì)稱的點(diǎn)橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù);

         、陉P(guān)于y軸對(duì)稱的點(diǎn)橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等;

         、坳P(guān)于原點(diǎn)對(duì)稱的點(diǎn)橫坐標(biāo)和縱坐標(biāo)互為相反數(shù);

         、芘cX軸或Y軸平行的直線的兩個(gè)點(diǎn)橫(縱)坐標(biāo)的關(guān)系;

          ⑤關(guān)于與直線X=C或Y=C對(duì)稱的坐標(biāo)

          點(diǎn)(x, y)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為_(x, -y)_____.

          點(diǎn)(x, y)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為___(-x, y)___.

          2.三角形三條邊的垂直平分線相交于一點(diǎn),這個(gè)點(diǎn)到三角形三個(gè)頂點(diǎn)的距離相等

          四、(等腰三角形)知識(shí)點(diǎn)回顧

          1.等腰三角形的性質(zhì)

          ①.等腰三角形的兩個(gè)底角相等。(等邊對(duì)等角)

          ②.等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)

          理解:已知等腰三角形的一線就可以推知另兩線。

          2、等腰三角形的判定:

          如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等。(等角對(duì)等邊)

          五、(等邊三角形)知識(shí)點(diǎn)回顧

          1.等邊三角形的性質(zhì):

          等邊三角形的三個(gè)角都相等,并且每一個(gè)角都等于600 。

          2、等邊三角形的判定:

          ①三個(gè)角都相等的三角形是等邊三角形。

         、谟幸粋(gè)角是600的'等腰三角形是等邊三角形。

          3.在直角三角形中,如果一個(gè)銳角等于30,那么它所對(duì)的直角邊等于斜邊的一半。 0

        初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

          第十二章全等三角形

          一、全等三角形

          1.定義:能夠完全重合的兩個(gè)三角形叫做全等三角形。

          理解:①全等三角形形狀與大小完全相等,與位置無關(guān);②一個(gè)三角形經(jīng)過平移、翻折、旋轉(zhuǎn)可以得到它的全

          等形;③三角形全等不因位置發(fā)生變化而改變。

          2、全等三角形有哪些性質(zhì)

          (1)全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等。

          理解:

         、匍L(zhǎng)邊對(duì)長(zhǎng)邊,短邊對(duì)短邊;最大角對(duì)最大角,最小角對(duì)最小角;

         、趯(duì)應(yīng)角的對(duì)邊為對(duì)應(yīng)邊,對(duì)應(yīng)邊對(duì)

          的角為對(duì)應(yīng)角。

         。2)全等三角形的周長(zhǎng)相等、面積相等。

         。3)全等三角形的對(duì)應(yīng)邊上的對(duì)應(yīng)中線、角平分線、高線分別相等。

          3、全等三角形的判定

          邊邊邊:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡(jiǎn)寫成“SSS”)

          邊角邊:兩邊和它們的夾角對(duì)應(yīng)相等兩個(gè)三角形全等(可簡(jiǎn)寫成“SAS”)角邊角:兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡(jiǎn)寫成“ASA”)角角邊:兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡(jiǎn)寫成“AAS”)

          1、性質(zhì):角的平分線上的點(diǎn)到角的兩邊的距離相等.

          2、判定:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上。

          注意:三角形的三條角平分線交于一點(diǎn),這個(gè)點(diǎn)到三角形三邊的距離相等。

          三、學(xué)習(xí)全等三角形應(yīng)注意以下幾個(gè)問題:

         。1)要正確區(qū)分“對(duì)應(yīng)邊”與“對(duì)邊”,“對(duì)應(yīng)角”與“對(duì)角”的不同含義;

          (2表示兩個(gè)三角形全等時(shí),表示對(duì)應(yīng)頂點(diǎn)的字母要寫在對(duì)應(yīng)的位置上;

         。3)“有三個(gè)角對(duì)應(yīng)相等”或“有兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等”的兩個(gè)三角形不一定全等;

         。4)時(shí)刻注意圖形中的隱含條件,如“公共角” 、“公共邊”、“對(duì)頂角”

         。5)截長(zhǎng)補(bǔ)短法證三角形全等。

        初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

          分解因式

          分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。

          方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。

          以上對(duì)分解因式知識(shí)點(diǎn)的總結(jié)學(xué)習(xí),相信同學(xué)們對(duì)此知識(shí)點(diǎn)可以很熟練的掌握了,希望能很好的幫助同學(xué)們的考試工作。

          初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系

          下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

          平面直角坐標(biāo)系

          平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

          水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

          平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

          三個(gè)規(guī)定:

         、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

         、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

         、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

          相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

        初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

          乘法與因式分解a2-b2=(a+b)(a-b)

          a3+b3=(a+b)(a2-ab+b2)

          a3-b3=(a-b(a2+ab+b2)

          三角不等式 |a+b||a|+|b|

          |a-b||a|+|b|

          |a|=ab

          |a-b||a|-|b| -|a||a|

          一元二次方程的解 -b+(b2-4ac)/2a

          -b-(b2-4ac)/2a

          根與系數(shù)的關(guān)系 X1+X2=-b/a

          X1*X2=c/a 注:韋達(dá)定理

          判別式

          b2-4ac=0 注:方程有兩個(gè)相等的實(shí)根

          b2-4ac0 注:方程有兩個(gè)不等的實(shí)根

          b2-4ac0 注:方程沒有實(shí)根,有共軛復(fù)數(shù)根

          某些數(shù)列前n項(xiàng)和

          1+2+3+4+5+6+7+8+9++n=n(n+1)/2 1+3+5+7+9+11+13+15++(2n-1)=n2

          2+4+6+8+10+12+14++(2n)=n(n+1) 12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6

          13+23+33+43+53+63+n3=n2(n+1)2/4

          1*2+2*3+3*4+4*5+5*6+6*7++n(n+1)=n(n+1)(n+2)/3

          正弦定理 a/sinA=b/sinB=c/sinC=2R

          注:其中 R 表示三角形的外接圓半徑

          余弦定理 b2=a2+c2-2accosB

          注:角B是邊a和邊c的夾角

        初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

          第十六章 分式

          一、定義:如果A、B表示兩個(gè)整式,并且B中含有字母,那么式子 叫做分式。

          二、分式基本性質(zhì):分式的分子與分母同乘或除以一個(gè)不等于0的整式,分式的值不變。

          三、分式計(jì)算:分式乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為分母。

          分式除法法則:分式除以分式,把除式的分子、分母顛倒置后,與被除式相乘。

          分式乘方:分式乘方要把分子、分母分別乘方。

          四、整數(shù)指數(shù)冪:(1) (2)較小數(shù)的科學(xué)記數(shù)法;

          五、分式方程檢驗(yàn)方法:將整式方程的解帶入最簡(jiǎn)公分母,如果最簡(jiǎn)公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個(gè)解不是原分式方程的解。(這個(gè)解是增根,原方程無解)。

          第十七章 反比例函數(shù)

          一、形如y= (k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù);

          二、反比例函數(shù)的圖像屬于雙曲線;

          三、性質(zhì):當(dāng)k>0時(shí),雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減小;

          當(dāng)k<0時(shí),雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大。

          第十八章 勾股定理

          一、勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c,那么

          二、勾股定理逆定理:如果三角形三邊長(zhǎng)a,b,c滿足 ,那么這個(gè)三角形是直角三角形。

          三、經(jīng)過證明被確認(rèn)正確的命題叫做定理。

          四、我們把題設(shè)、結(jié)論正好相反的兩個(gè)命題叫做互逆命題。如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。(例:勾股定理與勾股定理逆定理)

          第十九章 四邊形

          一、平行四邊形:

          1、定義:有兩組對(duì)邊分別平行的四邊形叫做平行四邊形。

          2、性質(zhì):平行四邊形的對(duì)邊相等;平行四邊形的對(duì)角相等;平行四邊形的對(duì)角線互相平分。

          3、判定:(1)兩組對(duì)邊分別相等的四邊形是平行四邊形;

          (2)兩組對(duì)角分別相等的四邊形是平行四邊形;

          (3)對(duì)角線互相平分的四邊形是平行四邊形;

          (4)一組對(duì)邊平行且相等的四邊形是平行四邊形。

          (5)有兩組對(duì)邊分別平行的四邊形叫做平行四邊形。(定義)

          4、三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。

          二、矩形:

          1、定義:有一個(gè)角是直角的平行四邊形叫做矩形。

          2、性質(zhì):矩形的四個(gè)角都是直角;矩形的對(duì)角線平分且相等。

          3、判定:(1)有一個(gè)角是直角的平行四邊形叫做矩形。(定義)

          (2)對(duì)角線相等的平行四邊形是矩形。

          (3)有三個(gè)角是直角的四邊形是矩形。

          4、直角三角形斜邊上的中線等于斜邊的一半。

          三、菱形:

          1、定義:一組鄰邊相等的平行四邊形是菱形

          2、性質(zhì):菱形的四條邊都相等;菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。

          3、判定:(1)一組鄰邊相等的平行四邊形是菱形。(定義)

          (2)對(duì)角線互相垂直的平行四邊形是菱形。

          (3)四條邊相等的四邊形是菱形。

          4、S菱形=底×高 S菱形= ab(a、b為兩條對(duì)角線)

          四、正方形:

          1、定義:有一組鄰邊相等的矩形是正方形;蛴幸粋(gè)角是直角的菱形是正方形。

          2、性質(zhì):四條邊都相等,四個(gè)角都是直角;正方形既是矩形,又是菱形。

          3、判定:(1)鄰邊相等的矩形是正方形。

          (2)有一個(gè)角是直角的菱形是正方形。

          五、梯形:

          1、定義:一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形叫做梯形。

          2、等腰梯形定義:兩腰相等的梯形叫做等腰梯形。

          性質(zhì):等腰梯形同一底邊上的兩個(gè)角相等;等腰梯形的兩條對(duì)角線相等。

          判定:同一底上兩個(gè)角相等的梯形是等腰梯形;對(duì)角線相等的梯形是等腰梯形。

          3、梯形的中位線分別平行于上、下兩底,且等于上、下兩底和的一半。

          六、重心:

          1、線段的重心就是線段的中點(diǎn)。

          2、平行四邊形的重心是它的兩條對(duì)角線的交點(diǎn)。

          3、三角形的三條中線交于疑點(diǎn),這一點(diǎn)就是三角形的重心。

          七、數(shù)學(xué)活動(dòng)(教材115頁):

          1、折紙多60°、30°、15°的角證明方法(重點(diǎn)30°角)

          2、寬和長(zhǎng)的比是 (約為0.618)的矩形叫做黃金矩形。

          第二十章 數(shù)據(jù)的分析

          一、加權(quán)平均數(shù):計(jì)算公式(教材125頁。)

          二、中位數(shù):將一組數(shù)據(jù)按照由小到大(大到小)的順序排列,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。

          三、眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。

          四、極差:一組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差(range)。

          五、方差:

          1、計(jì)算公式: ( 表示 的平均數(shù))

          2、性質(zhì):方差越大,數(shù)據(jù)的波動(dòng)越大;方差越小,數(shù)據(jù)的波動(dòng)越小,就越穩(wěn)定。

          六、數(shù)據(jù)的收集與整理的步驟:

          1.收集數(shù)據(jù) 2.整理數(shù)據(jù) 3.描述數(shù)據(jù) 4.分析數(shù)據(jù) 5.撰寫調(diào)查報(bào)告

        初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

          一、 在平面內(nèi),確定物體的位置一般需要兩個(gè)數(shù)據(jù)。

          二、平面直角坐標(biāo)系及有關(guān)概念

          1、平面直角坐標(biāo)系

          在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。

          2、為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。

          注意:x軸和y軸上的點(diǎn)(坐標(biāo)軸上的點(diǎn)),不屬于任何一個(gè)象限。

          3、點(diǎn)的坐標(biāo)的概念

          對(duì)于平面內(nèi)任意一點(diǎn)P,過點(diǎn)P分別x軸、y軸向作垂線,垂足在上x軸、y軸對(duì)應(yīng)的數(shù)a,b分別叫做點(diǎn)P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(duì)(a,b)叫做點(diǎn)P的坐標(biāo)。

          點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有,分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),當(dāng) 時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。

          平面內(nèi)點(diǎn)的與有序?qū)崝?shù)對(duì)是一一對(duì)應(yīng)的。

          4、不同位置的點(diǎn)的坐標(biāo)的特征

          (1)、各象限內(nèi)點(diǎn)的坐標(biāo)的特征

          點(diǎn)P(x,y)在第一象限:x0

          點(diǎn)P(x,y)在第二象限:x0

          點(diǎn)P(x,y)在第三象限:x0

          點(diǎn)P(x,y)在第四象限:x0

          (2)、坐標(biāo)軸上的點(diǎn)的特征

          點(diǎn)P(x,y)在x軸上,y=0 ,x為任意實(shí)數(shù)

          點(diǎn)P(x,y)在y軸上,x=0 ,y為任意實(shí)數(shù)

          點(diǎn)P(x,y)既在x軸上,又在y軸上, x,y同時(shí)為零,即點(diǎn)P坐標(biāo)為(0,0)即原點(diǎn)

          (3)、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征

          點(diǎn)P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等

          點(diǎn)P(x,y)在第二、四象限夾角平分線上,x與y互為相反數(shù)

          (4)、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征

          位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。

          位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)相同。

          (5)、關(guān)于x軸、y軸或原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特征

          點(diǎn)P與點(diǎn)p關(guān)于x軸對(duì)稱 橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于x軸的對(duì)稱點(diǎn)為P(x,-y)

          點(diǎn)P與點(diǎn)p關(guān)于y軸對(duì)稱 縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于y軸的對(duì)稱點(diǎn)為P(-x,y)

          點(diǎn)P與點(diǎn)p關(guān)于原點(diǎn)對(duì)稱 橫、縱坐標(biāo)均互為相反數(shù),即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P(-x,-y)

          (6)、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離

          點(diǎn)P(x,y)到坐標(biāo)軸及原點(diǎn)的距離:

          (1)點(diǎn)P(x,y)到x軸的距離等于|y|;

          (2)點(diǎn)P(x,y)到y(tǒng)軸的距離等于|x|;

          (3)點(diǎn)P(x,y)到原點(diǎn)的距離等于根號(hào)x*x+y*y

          三、坐標(biāo)變化與圖形變化的規(guī)律:

          坐標(biāo)(x,y)的變化

          圖形的變化

          x a或y a

          被橫向或縱向拉長(zhǎng)(壓縮)為原來的a倍

          x a,y a

          放大(縮小)為原來的a倍

          x (-1)或y (-1)

          關(guān)于y軸或x軸對(duì)稱

          x (-1),y (-1)

          關(guān)于原點(diǎn)成中心對(duì)稱

          x +a或y+ a

          沿x軸或y軸平移a個(gè)單位

          x +a,y+ a

          沿x軸平移a個(gè)單位,再沿y軸平移a個(gè)單

        初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

          第一章勾股定理

          1、探索勾股定理

         、俟垂啥ɡ恚褐苯侨切蝺芍苯沁叺钠椒胶偷扔谛边叺钠椒剑绻胊,b和c分別表示直角三角形的兩直角邊和斜邊,那么a2+b2=c2

          2、一定是直角三角形嗎

         、偃绻切蔚娜呴L(zhǎng)a b c滿足a2+b2=c2,那么這個(gè)三角形一定是直角三角形

          3、勾股定理的應(yīng)用

          第二章實(shí)數(shù)

          1、認(rèn)識(shí)無理數(shù)

         、儆欣頂(shù):總是可以用有限小數(shù)和無限循環(huán)小數(shù)表示

          ②無理數(shù):無限不循環(huán)小數(shù)

          2、平方根

          ①算數(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x就叫做a的算數(shù)平方根

         、谔貏e地,我們規(guī)定:0的算數(shù)平方根是0

         、燮椒礁阂话愕,如果一個(gè)數(shù)x的平方等于a,即x2=a。那么這個(gè)數(shù)x就叫做a的平方根,也叫做二次方根

         、芤粋(gè)正數(shù)有兩個(gè)平方根;0只有一個(gè)平方根,它是0本身;負(fù)數(shù)沒有平方根

          ⑤正數(shù)有兩個(gè)平方根,一個(gè)是a的算數(shù)平方,另一個(gè)是—,它們互為相反數(shù),這兩個(gè)平方根合起來可記作±

         、揲_平方:求一個(gè)數(shù)a的平方根的運(yùn)算叫做開平方,a叫做被開方數(shù)

          3、立方根

         、倭⒎礁阂话愕兀绻粋(gè)數(shù)x的立方等于a,即x3=a,那么這個(gè)數(shù)x就叫做a的立方根,也叫三次方根

         、诿總(gè)數(shù)都有一個(gè)立方根,正數(shù)的立方根是正數(shù);0立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。

         、坶_立方:求一個(gè)數(shù)a的立方根的運(yùn)算叫做開立方,a叫做被開方數(shù)

          4、估算

         、俟浪悖话憬Y(jié)果是相對(duì)復(fù)雜的小數(shù),估算有精確位數(shù)

          5、用計(jì)算機(jī)開平方

          6、實(shí)數(shù)

         、賹(shí)數(shù):有理數(shù)和無理數(shù)的統(tǒng)稱

         、趯(shí)數(shù)也可以分為正實(shí)數(shù)、0、負(fù)實(shí)數(shù)

         、勖恳粋(gè)實(shí)數(shù)都可以在數(shù)軸上表示,數(shù)軸上每一個(gè)點(diǎn)都對(duì)應(yīng)一個(gè)實(shí)數(shù),在數(shù)軸上,右邊的點(diǎn)永遠(yuǎn)比左邊的點(diǎn)表示的數(shù)大

          7、二次根式

         、俸x:一般地,形如(a≥0)的式子叫做二次根式,a叫做被開方數(shù)

         、 =(a≥0,b≥0),=(a≥0,b>0)

          ③最簡(jiǎn)二次根式:一般地,被開方數(shù)不含分母,也不含能開的盡方的因數(shù)或因式,這樣的二次根式,叫做最簡(jiǎn)二次根式

          ④化簡(jiǎn)時(shí),通常要求最終結(jié)果中分母不含有根號(hào),而且各個(gè)二次根式時(shí)最簡(jiǎn)二次根式

          第三章位置與坐標(biāo)

          1、確定位置

         、僭谄矫鎯(nèi),確定一個(gè)物體的位置一般需要兩個(gè)數(shù)據(jù)

          2、平面直角坐標(biāo)系

         、俸x:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系

         、谕ǔ5兀瑑蓷l數(shù)軸分別置于水平位置與豎直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或者橫軸,豎直的數(shù)軸叫y軸和縱軸,二者統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)o被稱為直角坐標(biāo)系的原點(diǎn)

         、劢⒘似矫嬷苯亲鴺(biāo)系,平面內(nèi)的點(diǎn)就可以用一組有序?qū)崝?shù)對(duì)來表示

         、茉谄矫嬷苯亲鴺(biāo)系中,兩條坐標(biāo)軸將坐標(biāo)平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時(shí)針方向叫做第二象限,第三象限,第四象限,坐標(biāo)軸上的點(diǎn)不在任何一個(gè)象限

         、菰谥苯亲鴺(biāo)系中,對(duì)于平面上任意一點(diǎn),都有唯一的一個(gè)有序?qū)崝?shù)對(duì)(即點(diǎn)的坐標(biāo))與它對(duì)應(yīng);反過來,對(duì)于任意一個(gè)有序?qū)崝?shù)對(duì),都有平面上唯一的一點(diǎn)與它對(duì)應(yīng)

          3、軸對(duì)稱與坐標(biāo)變化

         、訇P(guān)于x軸對(duì)稱的兩個(gè)點(diǎn)的坐標(biāo),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對(duì)稱的兩個(gè)點(diǎn)的坐標(biāo),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù)

          第四章一次函數(shù)

          1、函數(shù)

         、僖话愕,如果在一個(gè)變化過程中有兩個(gè)變量x和y,并且對(duì)于變量x的每一個(gè)值,變量y都有唯一的值與它對(duì)應(yīng),那么我們稱y是x的函數(shù)其中x是自變量

          ②表示函數(shù)的方法一般有:列表法、關(guān)系式法和圖象法

          ③對(duì)于自變量在可取值范圍內(nèi)的一個(gè)確定的值a,函數(shù)有唯一確定的對(duì)應(yīng)值,這個(gè)對(duì)應(yīng)值稱為當(dāng)自變量等于a的函數(shù)值

          2、一次函數(shù)與正比例函數(shù)

         、偃魞蓚(gè)變量x,y間的對(duì)應(yīng)關(guān)系可以表示成y=kx+b(k、b為常數(shù),k≠0)的形式,則稱y是x的一次函數(shù),特別的,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)

          3、一次函數(shù)的圖像

         、僬壤瘮(shù)y=kx的圖像是一條經(jīng)過原點(diǎn)(0,0)的直線。因此,畫正比例函數(shù)圖像是,只要再確定一點(diǎn),過這個(gè)點(diǎn)與原點(diǎn)畫直線就可以了

         、谠谡壤瘮(shù)y=kx中,當(dāng)k>0時(shí),y的值隨著x值的增大而減;當(dāng)k<0時(shí),y的值隨著x的值增大而減小

         、垡淮魏瘮(shù)y=kx+b的圖像是一條直線,因此畫一次函數(shù)圖像時(shí),只要確定兩個(gè)點(diǎn),再過這兩點(diǎn)畫直線就可以了。一次函數(shù)y=kx+b的圖像也稱為直線y=kx+b

         、芤淮魏瘮(shù)y=kx+b的圖像經(jīng)過點(diǎn)(0,b)。當(dāng)k>0時(shí),y的值隨著x值的增大而增大;當(dāng)k<0時(shí),y的值隨著x值的增大而減小

          4、一次函數(shù)的應(yīng)用

          ①一般地,當(dāng)一次函數(shù)y=kx+b的函數(shù)值為0時(shí),相應(yīng)的自變量的值就是方程kx+b=0的解,從圖像上看,一次函數(shù)y=kx+b的圖像與x軸交點(diǎn)的橫坐標(biāo)就是方程kx+b=0

          第五章二元一次方程組

          1、認(rèn)識(shí)二元一次方程組

         、俸袃蓚(gè)未知數(shù),并且所含有未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程

         、诠埠袃蓚(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組

          ③二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解

          2、求解二元一次方程組

         、賹⑵渲幸粋(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來,并代入另個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程,這種解方程組的方法稱為代入消元法,簡(jiǎn)稱代入法

          ②通過兩式子加減,消去其中一個(gè)未知數(shù),這種解二元一次方程組的方法叫做加減消元法,簡(jiǎn)稱加減法

          3、應(yīng)用二元一次方程組

         、匐u兔同籠

          4、應(yīng)用二元一次方程組

          ①增減收支

          5、應(yīng)用二元一次方程組

         、倮锍瘫系臄(shù)

          6、二元一次方程組與一次函數(shù)

         、僖话愕兀砸粋(gè)二元一次方程的解為坐標(biāo)的點(diǎn)組成的圖像與相應(yīng)的一次函數(shù)的圖像相同,是一條直線

          ②一般地,從圖形的角度看,確定兩條直線相交點(diǎn)的坐標(biāo),相當(dāng)于求相應(yīng)的二元一次方程組的解,解一個(gè)二元一次方程組相當(dāng)于確定相應(yīng)兩條直線交點(diǎn)的坐標(biāo)

          7、用二元一次方程組確定一次函數(shù)表達(dá)式

         、傧仍O(shè)出函數(shù)表達(dá)式,再根據(jù)所給條件確定表達(dá)式中未知的系數(shù),從而得到函數(shù)表達(dá)式的方法,叫做待定系數(shù)法。

          8、三元一次方程組

          ①在一個(gè)方程組中,各個(gè)式子都含有三個(gè)未知數(shù),并且所含有未知數(shù)的項(xiàng)的次數(shù)都是1,這樣的方程叫做三元一次方程

          ②像這樣,共含有三個(gè)未知數(shù)的三個(gè)一次方程所組成的一組方程,叫做三元一次方程組

         、廴淮畏匠探M中各個(gè)方程的公共解,叫做這個(gè)三元一次方程組的解。

          第六章數(shù)據(jù)的分析

          1、平均數(shù)

         、僖话愕,對(duì)于n個(gè)數(shù)x1x2.....xn,我們把(x1+x2+···+xn)叫做這n個(gè)數(shù)的算數(shù)平均數(shù),簡(jiǎn)稱平均數(shù)記為。

         、谠趯(shí)際問題中,一組數(shù)據(jù)里的各個(gè)數(shù)據(jù)的“重要程度”未必相同,因而在計(jì)算,這組數(shù)據(jù)的平均數(shù)時(shí),往往給每個(gè)數(shù)據(jù)一個(gè)權(quán),叫做加權(quán)平均數(shù)

          2、中位數(shù)與眾數(shù)

         、僦形粩(shù):一般地,n個(gè)數(shù)據(jù)按大小順序排列,處于最中間位置的一個(gè)數(shù)據(jù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)

         、谝唤M數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)

         、燮骄鶖(shù)、中位數(shù)和眾數(shù)都是描述數(shù)據(jù)集中趨勢(shì)的統(tǒng)計(jì)量

         、苡(jì)算平均數(shù)時(shí),所有數(shù)據(jù)都參加運(yùn)算,它能充分地利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實(shí)生活中較為常用,但他容易受極端值影響。

         、葜形粩(shù)的優(yōu)點(diǎn)是計(jì)算簡(jiǎn)單,受極端值影響較小,但不能充分利用所有數(shù)據(jù)的信息

         、薷鱾(gè)數(shù)據(jù)重復(fù)次數(shù)大致相等時(shí),眾數(shù)往往沒有特別意義

          3、從統(tǒng)計(jì)圖分析數(shù)據(jù)的集中趨勢(shì)

          4、數(shù)據(jù)的離散程度

         、賹(shí)際生活中,除了關(guān)心數(shù)據(jù)的集中趨勢(shì)外,人們還關(guān)注數(shù)據(jù)的離散程度,即它們相對(duì)于集中趨勢(shì)的偏離情況。一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,(稱為極差),就是刻畫數(shù)據(jù)離散程度的一個(gè)統(tǒng)計(jì)量

         、跀(shù)學(xué)上,數(shù)據(jù)的離散程度還可以用方差或標(biāo)準(zhǔn)差刻畫

         、鄯讲钍歉鱾(gè)數(shù)據(jù)與平均數(shù)差的平方的平均數(shù)

          ④其中是x1x2......xn平均數(shù),s2是方差,而標(biāo)準(zhǔn)差就是方差的算術(shù)平方根

         、菀话愣,一組數(shù)據(jù)的極差、方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。

          第七章平行線的證明

          1、為什么要證明

         、賹(shí)驗(yàn)、觀察、歸納得到的結(jié)論可能正確,也可能不正確,因此,要判斷一個(gè)數(shù)學(xué)結(jié)論是否正確,僅僅依靠實(shí)驗(yàn)、觀察、歸納是不夠的,必須進(jìn)行有根有據(jù)的證明

          2、定義與命題

         、僮C明時(shí),為了交流方便,必須對(duì)某些名稱和術(shù)語形成共同的認(rèn)識(shí),為此,就要對(duì)名稱和術(shù)語的含義加以描述,做出明確的規(guī)定,也就是給它們的定義

         、谂袛嘁患虑榈木渥樱凶雒}

         、垡话愕,每個(gè)命題都由條件和結(jié)論兩部分組成。條件是已知的選項(xiàng),結(jié)論是已知選項(xiàng)推出的事項(xiàng)。命題通?梢詫懗伞叭绻....那么....”的形式,其中“如果”引出的部分是條件,“那么”引出的部分是結(jié)論

          ④正確的命題稱為真命題,不正確的命題稱為假命題

         、菀f明一個(gè)命題是假命題,常?梢耘e出一個(gè)例子,使它具備命題的條件,而不具有命題的結(jié)論,這種例子稱為反例

         、逇W幾里得在編寫《原本》時(shí),挑選了一部分?jǐn)?shù)學(xué)名詞和一部分公認(rèn)的真命題作為證實(shí)其他命題的出發(fā)點(diǎn)和依據(jù)。其中數(shù)學(xué)名詞稱為原名,公認(rèn)的真命題稱為公理,除了公理外,其他命題的真假都需要通過演繹推理的方法進(jìn)行判斷

         、哐堇[推理的過程稱為證明,經(jīng)過證明的真命題稱為定理,每個(gè)定理都只能用公理、定義和已經(jīng)證明為真的命題來證明

          a.本套教科書選用九條基本事實(shí)作為證明的出發(fā)點(diǎn)和依據(jù),其中八條是:兩點(diǎn)確定一條直線

          b.兩點(diǎn)之間線段最短

          c.同一平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直

          d.兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行(簡(jiǎn)述為:同位角相等,兩直線平行)

          e.過直線外一點(diǎn)有且只有一條直線與這條直線平行

          f.兩邊及其夾角分別相等的兩個(gè)三角形全等

          g.兩角及其夾邊分別相等的兩個(gè)三角形全等

          h.三邊分別相等的兩個(gè)三角形全等

         、啻送,數(shù)與式的運(yùn)算律和運(yùn)算法則、等式的有關(guān)性質(zhì),以及反映大小關(guān)系的有關(guān)性質(zhì)都可以作為證明的依據(jù)

          ⑨ 定理:同角(等角)的補(bǔ)角相等

          同角(等角)的余角相等

          三角形的任意兩邊之和大于第三邊

          對(duì)頂角相等

          3、平行線的判定

         、 定理:兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,那么這兩條直線平行,簡(jiǎn)述為:內(nèi)錯(cuò)角相等,兩直線平行

         、 定理:兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么這兩條直線平行,簡(jiǎn)述為:同旁內(nèi)角互補(bǔ),兩直線平行。

          4、平行線的性質(zhì)

         、 定理:兩條平行直線被第三條直線所截,同位角相等。簡(jiǎn)述為:兩直線平行,同位角相等

         、 定理:兩條平行直線被第三條直線所截,內(nèi)錯(cuò)角相等。簡(jiǎn)述為:兩直線平行,內(nèi)錯(cuò)角相等

          ③ 定理:兩條平行直線被第三條直線所截,同旁內(nèi)角互補(bǔ)。簡(jiǎn)述為:兩直線平行,同旁內(nèi)角互補(bǔ)

          ④ 定理:平行于同一條直線的兩條直線平行

          5、三角形內(nèi)角和定理

          ① 三角形內(nèi)角和定理:三角形的內(nèi)角和等于180°

         、 定理:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

          定理:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

         、 我們通過三角形的內(nèi)角和定理直接推導(dǎo)出兩個(gè)新定理。像這樣,由一個(gè)基本事實(shí)或定理直接推出的定理,叫做這個(gè)基本事實(shí)或定理的推論,推論可以當(dāng)定理使用。

          初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)匯總

         。ㄒ唬┻\(yùn)用公式法:

          我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項(xiàng)式分解因式。于是有:

          a2—b2=(a+b)(a—b)

          a2+2ab+b2=(a+b)2

          a2—2ab+b2=(a—b)2

          如果把乘法公式反過來,就可以用來把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。

         。ǘ┢椒讲罟

          1.平方差公式

         。1)式子: a2—b2=(a+b)(a—b)

         。2)語言:兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積。這個(gè)公式就是平方差公式。

         。ㄈ┮蚴椒纸

          1.因式分解時(shí),各項(xiàng)如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。

          2.因式分解,必須進(jìn)行到每一個(gè)多項(xiàng)式因式不能再分解為止。

         。ㄋ模┩耆椒焦

          (1)把乘法公式(a+b)2=a2+2ab+b2 和 (a—b)2=a2—2ab+b2反過來,就可以得到:

          a2+2ab+b2 =(a+b)2

          a2—2ab+b2 =(a—b)2

          這就是說,兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。

          把a(bǔ)2+2ab+b2和a2—2ab+b2這樣的式子叫完全平方式。

          上面兩個(gè)公式叫完全平方公式。

          (2)完全平方式的形式和特點(diǎn)

         、夙(xiàng)數(shù):三項(xiàng)

          ②有兩項(xiàng)是兩個(gè)數(shù)的的平方和,這兩項(xiàng)的符號(hào)相同。

         、塾幸豁(xiàng)是這兩個(gè)數(shù)的積的兩倍。

         。3)當(dāng)多項(xiàng)式中有公因式時(shí),應(yīng)該先提出公因式,再用公式分解。

         。4)完全平方公式中的a、b可表示單項(xiàng)式,也可以表示多項(xiàng)式。這里只要將多項(xiàng)式看成一個(gè)整體就可以了。

          (5)分解因式,必須分解到每一個(gè)多項(xiàng)式因式都不能再分解為止。

         。ㄎ澹┓纸M分解法

          我們看多項(xiàng)式am+ an+ bm+ bn,這四項(xiàng)中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

          如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式。

          原式=(am +an)+(bm+ bn)

          =a(m+ n)+b(m +n)

          做到這一步不叫把多項(xiàng)式分解因式,因?yàn)樗环弦蚴椒纸獾囊饬x。但不難看出這兩項(xiàng)還有公因式(m+n),因此還能繼續(xù)分解,所以

          原式=(am +an)+(bm+ bn)

          =a(m+ n)+b(m+ n)

          =(m +n)×(a +b)。

          這種利用分組來分解因式的方法叫做分組分解法。從上面的例子可以看出,如果把一個(gè)多項(xiàng)式的項(xiàng)分組并提取公因式后它們的另一個(gè)因式正好相同,那么這個(gè)多項(xiàng)式就可以用分組分解法來分解因式。

          (六)提公因式法

          1.在運(yùn)用提取公因式法把一個(gè)多項(xiàng)式因式分解時(shí),首先觀察多項(xiàng)式的結(jié)構(gòu)特點(diǎn),確定多項(xiàng)式的公因式。當(dāng)多項(xiàng)式各項(xiàng)的公因式是一個(gè)多項(xiàng)式時(shí),可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項(xiàng)式,也可以把這個(gè)多項(xiàng)式因式看作一個(gè)整體,直接提取公因式;當(dāng)多項(xiàng)式各項(xiàng)的公因式是隱含的時(shí)候,要把多項(xiàng)式進(jìn)行適當(dāng)?shù)淖冃,或改變符?hào),直到可確定多項(xiàng)式的公因式。

          2. 運(yùn)用公式x2 +(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解要注意:

          1.必須先將常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積,且這兩個(gè)因數(shù)的代數(shù)和等于一次項(xiàng)的系數(shù)。

          2.將常數(shù)項(xiàng)分解成滿足要求的兩個(gè)因數(shù)積的多次嘗試,一般步驟:

          ① 列出常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積各種可能情況;

          ②嘗試其中的哪兩個(gè)因數(shù)的和恰好等于一次項(xiàng)系數(shù)。

          3.將原多項(xiàng)式分解成(x+q)(x+p)的形式。

         。ㄆ撸┓质降某顺

          1.把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分。

          2.分式進(jìn)行約分的目的是要把這個(gè)分式化為最簡(jiǎn)分式。

          3.如果分式的分子或分母是多項(xiàng)式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式。如果分子或分母中的多項(xiàng)式不能分解因式,此時(shí)就不能把分子、分母中的某些項(xiàng)單獨(dú)約分。

          4.分式約分中注意正確運(yùn)用乘方的符號(hào)法則,如x—y=—(y—x),(x—y)2=(y—x)2,(x—y)3=—(y—x)3。

          5.分式的分子或分母帶符號(hào)的n次方,可按分式符號(hào)法則,變成整個(gè)分式的符號(hào),然后再按—1的偶次方為正、奇次方為負(fù)來處理。當(dāng)然,簡(jiǎn)單的分式之分子分母可直接乘方。

          6.注意混合運(yùn)算中應(yīng)先算括號(hào),再算乘方,然后乘除,最后算加減。

         。ò耍┓?jǐn)?shù)的加減法

          1.通分與約分雖都是針對(duì)分式而言,但卻是兩種相反的變形。約分是針對(duì)一個(gè)分式而言,而通分是針對(duì)多個(gè)分式而言;約分是把分式化簡(jiǎn),而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來。

          2.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變。

          3.一般地,通分結(jié)果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備。

          4.通分的依據(jù):分式的基本性質(zhì)。

          5.通分的關(guān)鍵:確定幾個(gè)分式的公分母。

          通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡(jiǎn)公分母。

          6.類比分?jǐn)?shù)的通分得到分式的通分:

          把幾個(gè)異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分。

          7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

          同分母的分式加減運(yùn)算,分母不變,把分子相加減,這就是把分式的運(yùn)算轉(zhuǎn)化為整式運(yùn)算。

          8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质剑缓笤偌訙p。

          9.同分母分式相加減,分母不變,只須將分子作加減運(yùn)算,但注意每個(gè)分子是個(gè)整體,要適時(shí)添上括號(hào)。

          10.對(duì)于整式和分式之間的加減運(yùn)算,則把整式看成一個(gè)整體,即看成是分母為1的分式,以便通分。

          11.異分母分式的加減運(yùn)算,首先觀察每個(gè)公式是否最簡(jiǎn)分式,能約分的先約分,使分式簡(jiǎn)化,然后再通分,這樣可使運(yùn)算簡(jiǎn)化。

          12.作為最后結(jié)果,如果是分式則應(yīng)該是最簡(jiǎn)分式。

         。ň牛┖凶帜赶禂(shù)的一元一次方程

          1.含有字母系數(shù)的一元一次方程

          引例:一數(shù)的a倍(a≠0)等于b,求這個(gè)數(shù)。用x表示這個(gè)數(shù),根據(jù)題意,可得方程 ax=b(a≠0)

          在這個(gè)方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。對(duì)x來說,字母a是x的系數(shù),b是常數(shù)項(xiàng)。這個(gè)方程就是一個(gè)含有字母系數(shù)的一元一次方程。

          含有字母系數(shù)的方程的解法與以前學(xué)過的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個(gè)式子的值不能等于零

        初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

          實(shí)數(shù)

          無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)

          平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒有平方根。④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。

          立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個(gè)數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。

          實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無理數(shù)。②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。

          相信通過上面的學(xué)習(xí),同學(xué)們對(duì)實(shí)數(shù)知識(shí)點(diǎn)可以很好的掌握了,希望同學(xué)們?cè)诳荚囍腥〉煤贸煽?jī)。

          初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系

          下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

          平面直角坐標(biāo)系

          平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

          水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

          平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

          三個(gè)規(guī)定:

          ①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

         、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

          ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

          相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

          初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成

          對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

          平面直角坐標(biāo)系的構(gòu)成

          在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

          通過上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

          初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)

          下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

          點(diǎn)的坐標(biāo)的性質(zhì)

          建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

          對(duì)于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。

          一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

          希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。

          初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟

          關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。

          因式分解的一般步驟

          如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

          通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

          注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。

          相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。

          初中數(shù)學(xué)知識(shí)點(diǎn):因式分解

          下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

          因式分解

          因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。

          因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

          因式分解與整式乘法的關(guān)系:m(a+b+c)

          公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

          公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

          提取公因式步驟:

          ①確定公因式。②確定商式③公因式與商式寫成積的形式。

          分解因式注意;

          ①不準(zhǔn)丟字母

         、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

         、垭p重括號(hào)化成單括號(hào)

         、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

          ⑤相同因式寫成冪的形式

         、奘醉(xiàng)負(fù)號(hào)放括號(hào)外

          ⑦括號(hào)內(nèi)同類項(xiàng)合并。

          通過上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。

        初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

          在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形.

          (1)多邊形的一些要素:

          邊:組成多邊形的各條線段叫做多邊形的邊.

          頂點(diǎn):每相鄰兩條邊的公共端點(diǎn)叫做多邊形的頂點(diǎn).

          內(nèi)角:多邊形相鄰兩邊組成的角叫多邊形的內(nèi)角,一個(gè)n邊形有n個(gè)內(nèi)角。

          外角:多邊形的邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。

          (2)在定義中應(yīng)注意:

         、僖恍┚段(多邊形的邊數(shù)是大于等于3的正整數(shù));

         、谑孜岔槾蜗噙B,二者缺一不可;

          ③理解時(shí)要特別注意“在同一平面內(nèi)”這個(gè)條件,其目的是為了排除幾個(gè)點(diǎn)不共面的情況,即空間

        初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

          第十一章三角形

          一、三角形相關(guān)概念

          1.三角形的概念

          由不在同一直線上的三條線段首尾順次連結(jié)所組成的圖形叫做三角形要點(diǎn):①三條線段;②不在同一直線上;③首尾順次相接.2.三角形的表示

          通常用三個(gè)大寫字母表示三角形的頂點(diǎn),如用A、B、C表示三角形的三個(gè)頂點(diǎn)時(shí),此三角形可記作△ABC,其中線段AB、BC、AC是三角形的三條邊,∠A、∠B、∠C分別表示三角形的三個(gè)內(nèi)角.3.三角形中的三種重要線段

          三角形的角平分線、中線、高線是三角形中的三種重要線段.

         。1)三角形的角平分線:三角形一個(gè)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線.

          注意:

          ①三角形的角平分線是一條線段,而角的平分線是經(jīng)過角的頂點(diǎn)且平分此角的一條射線.

         、谌切斡腥龡l角平分線且相交于一點(diǎn),這一點(diǎn)一定在三角形的內(nèi)部.

          ③三角形的角平分線畫法與角平分線的畫法相同,可以用量角器畫,也可通過尺規(guī)作圖來畫.

         。2)三角形的中線:在一個(gè)三角形中,連結(jié)一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段叫做三角形的中線.注意:①三角形有三條中線,且它們相交三角形內(nèi)部一點(diǎn),交點(diǎn)叫重心.

         、诋嬋切沃芯時(shí)只需連結(jié)頂點(diǎn)及對(duì)邊的中點(diǎn)即可.

         。3)三角形的高線:從三角形一個(gè)頂點(diǎn)向它的對(duì)邊作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。注意:

         、偃切蔚娜龡l高是線段

         、诋嬋切蔚母邥r(shí),只需要三角形一個(gè)頂點(diǎn)向?qū)吇驅(qū)叺难娱L(zhǎng)線作垂線,連結(jié)頂點(diǎn)與垂足的線段就是該邊上的高.

          二、三角形三邊關(guān)系定理

         、偃切蝺蛇呏痛笥诘谌,故同時(shí)滿足△ABC三邊長(zhǎng)a、b、c的不等式有:a+b>c,b+c>a,c+a>b.

         、谌切蝺蛇呏钚∮诘谌,故同時(shí)滿足△ABC三邊長(zhǎng)a、b、c的不等式有:a>b-c,b>a-c,c>b-a.注意:已知兩邊可得第三邊的取值范圍是:兩邊之差<第三邊<兩邊之和

          三、三角形的穩(wěn)定性

          三角形的三邊確定了,那么它的形狀、大小都確定了,三角形的這個(gè)性質(zhì)就叫做三角形的穩(wěn)定性.例如起重機(jī)的支架采用三角形結(jié)構(gòu)就是這個(gè)道理.

          四、三角形的內(nèi)角

          三角形內(nèi)角和性質(zhì)的推理方法有多種,常見的有以下幾種:

          結(jié)論1:三角形的內(nèi)角和為180°.表示:在△ABC中,∠A+∠B+∠C=180°(1)構(gòu)造平角

         、倏蛇^A點(diǎn)作MN∥BC(如圖)

         、诳蛇^一邊上任一點(diǎn),作另兩邊的平行線(如圖)(2)構(gòu)造鄰補(bǔ)角,可延長(zhǎng)任一邊得鄰補(bǔ)角(如圖)

          構(gòu)造同旁內(nèi)角,過任一頂點(diǎn)作射線平行于對(duì)邊(如圖)

          結(jié)論2:在直角三角形中,兩個(gè)銳角互余.表示:如圖,在直角三角形ABC中,∠C=90°,那么∠A+∠B=90°

         。ㄒ?yàn)椤螦+∠B+∠C=180°)

          注意:①在三角形中,已知兩個(gè)內(nèi)角可以求出第三個(gè)內(nèi)角

          如:在△ABC中,∠C=180°-(∠A+∠B)

         、谠谌切沃,已知三個(gè)內(nèi)角和的比或它們之間的關(guān)系,求各內(nèi)角.

          如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度數(shù).

          五、三角形的外角

          1.意義:三角形一邊與另一邊的延長(zhǎng)線組成的角叫做三角形的外角.如圖,∠ACD為△ABC的一個(gè)外角,∠BCE也是△ABC的一個(gè)外角,這兩個(gè)角為對(duì)頂角,大小相等.2.性質(zhì):

         、偃切蔚囊粋(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和. ②三角形的一個(gè)外角大于與它不相鄰的任何一個(gè)內(nèi)角.如圖中,∠ACD=∠A+∠B , ∠ACD>∠A , ∠ACD>∠B. ③三角形的一個(gè)外角與與之相鄰的內(nèi)角互補(bǔ)3.外角個(gè)數(shù)

          過三角形的一個(gè)頂點(diǎn)有兩個(gè)外角,這兩個(gè)角為對(duì)頂角(相等),可見一個(gè)三角形共有六個(gè)外角.

          六、多邊形

         、俣噙呅蔚膶(duì)角線n(n?3)

          2

          條對(duì)角線

         、趎邊形的內(nèi)角和為(n-2)×180° ③多邊形的外角和為360°

        初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

          初二上冊(cè)知識(shí)點(diǎn)

          第一章 一次函數(shù)

          1 函數(shù)的定義,函數(shù)的定義域、值域、表達(dá)式,函數(shù)的圖像

          2 一次函數(shù)和正比例函數(shù),包括他們的表達(dá)式、增減性、圖像

          3 從函數(shù)的觀點(diǎn)看方程、方程組和不等式

          第二章 數(shù)據(jù)的描述

          1 了解幾種常見的統(tǒng)計(jì)圖表:條形圖、扇形圖、折線圖、復(fù)合條形圖、直方圖,了解各種圖表的特點(diǎn)

          條形圖特點(diǎn):

         。1)能夠顯示出每組中的具體數(shù)據(jù);

         。2)易于比較數(shù)據(jù)間的差別

          扇形圖的特點(diǎn):

         。1)用扇形的面積來表示部分在總體中所占的百分比;

         。2)易于顯示每組數(shù)據(jù)相對(duì)與總數(shù)的大小

          折線圖的特點(diǎn);

          易于顯示數(shù)據(jù)的變化趨勢(shì)

          直方圖的特點(diǎn):

         。1)能夠顯示各組頻數(shù)分布的情況;

         。2)易于顯示各組之間頻數(shù)的差別

          2 會(huì)用各種統(tǒng)計(jì)圖表示出一些實(shí)際的問題

          第三章 全等三角形

          1 全等三角形的性質(zhì):

          全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

          2 全等三角形的判定

          邊邊邊、邊角邊、角邊角、角角邊、直角三角形的HL定理

          3 角平分線的性質(zhì)

          角平分線上的點(diǎn)到角的兩邊的距離相等;

          到角的兩邊距離相等的點(diǎn)在角的平分線上.

          第四章 軸對(duì)稱

          1 軸對(duì)稱圖形和關(guān)于直線對(duì)稱的兩個(gè)圖形

          2 軸對(duì)稱的性質(zhì)

          軸對(duì)稱圖形的對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線;

          如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連的線段的垂直平分線;

          線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等;

          到線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上

          3 用坐標(biāo)表示軸對(duì)稱

          點(diǎn)(x,y)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)是(x,-y),關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)是(-x,y),關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是(-x,-y).

          4 等腰三角形

          等腰三角形的兩個(gè)底角相等;(等邊對(duì)等角)

          等腰三角形的頂角平分線、底邊上的中線、底邊上的高線互相重合;(三線合一)

          一個(gè)三角形的兩個(gè)相等的角所對(duì)的邊也相等.(等角對(duì)等邊)

          5 等邊三角形的性質(zhì)和判定

          等邊三角形的三個(gè)內(nèi)角都相等,都等于60度;

          三個(gè)角都相等的三角形是等邊三角形;

          有一個(gè)角是60度的等腰三角形是等邊三角形;

          推論:

          直角三角形中,如果有一個(gè)銳角是30度,那么他所對(duì)的直角邊等于斜邊的一半.

          在三角形中,大角對(duì)大邊,大邊對(duì)大角.

          第五章 整式

          1 整式定義、同類項(xiàng)及其合并

          2 整式的加減

          3 整式的乘法

         。1)同底數(shù)冪的乘法:

         。2)冪的乘方

         。3)積的乘方

         。4)整式的乘法

          4 乘法公式

          (1)平方差公式

         。2)完全平方公式

          5 整式的除法

         。1)同底數(shù)冪的除法

          (2)整式的除法

          6 因式分解

         。1)提共因式法

         。2)公式法

         。3)十字相乘法

          初二下冊(cè)知識(shí)點(diǎn)

          第一章 分式

          1 分式及其基本性質(zhì)

          分式的分子和分母同時(shí)乘以(或除以)一個(gè)不等于零的整式,分式的只不變

          2 分式的運(yùn)算

         。1)分式的乘除

          乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母

          除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘.

          (2) 分式的加減

          加減法法則:同分母分式相加減,分母不變,把分子相加減;

          異分母分式相加減,先通分,變?yōu)橥帜傅姆质?再加減

          3 整數(shù)指數(shù)冪的加減乘除法

          4 分式方程及其解法

          第二章 反比例函數(shù)

          1 反比例函數(shù)的表達(dá)式、圖像、性質(zhì)

          圖像:雙曲線

          表達(dá)式:y=k/x(k不為0)

          性質(zhì):兩支的增減性相同;

          2 反比例函數(shù)在實(shí)際問題中的應(yīng)用

          第三章 勾股定理

          1 勾股定理:直角三角形的兩個(gè)直角邊的平方和等于斜邊的平方

          2 勾股定理的逆定理:如果一個(gè)三角形中,有兩個(gè)邊的平方和等于第三條邊的平方,那么這個(gè)三角形是直角三角形.

          第四章 四邊形

          1 平行四邊形

          性質(zhì):對(duì)邊相等;對(duì)角相等;對(duì)角線互相平分.

          判定:兩組對(duì)邊分別相等的四邊形是平行四邊形;

          兩組對(duì)角分別相等的四邊形是平行四邊形;

          對(duì)角線互相平分的四邊形是平行四邊形;

          一組對(duì)邊平行而且相等的四邊形是平行四邊形.

          推論:三角形的中位線平行第三邊,并且等于第三邊的一半.

          2 特殊的平行四邊形:矩形、菱形、正方形

         。1) 矩形

          性質(zhì):矩形的四個(gè)角都是直角;

          矩形的對(duì)角線相等;

          矩形具有平行四邊形的所有性質(zhì)

          判定: 有一個(gè)角是直角的平行四邊形是矩形;

          對(duì)角線相等的平行四邊形是矩形;

          推論: 直角三角形斜邊的中線等于斜邊的一半.

          (2) 菱形

          性質(zhì):菱形的四條邊都相等;

          菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;

          菱形具有平行四邊形的一切性質(zhì)

          判定:有一組鄰邊相等的平行四邊形是菱形;

          對(duì)角線互相垂直的平行四邊形是菱形;

          四邊相等的四邊形是菱形.

         。3) 正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì).

          3 梯形:直角梯形和等腰梯形

          等腰梯形:等腰梯形同一底邊上的兩個(gè)角相等;

          等腰梯形的兩條對(duì)角線相等;

          同一個(gè)底上的兩個(gè)角相等的梯形是等腰梯形.

          第五章 數(shù)據(jù)的分析

          加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差

        初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

          軸對(duì)稱

          1.如果一個(gè)平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線叫做對(duì)稱軸。

          2.性質(zhì)

          (1)成軸對(duì)稱的兩個(gè)圖形全等;

          (2)如果兩個(gè)圖形成軸對(duì)稱,那么對(duì)稱軸是對(duì)稱點(diǎn)連線的垂直平分線。

          一次函數(shù)

          (一)一次函數(shù)是函數(shù)中的一種,一般形如y=kx+b(k,b是常數(shù),k≠0),其中x是自變量,y是因變量。特別地,當(dāng)b=0時(shí),y=kx+b(k為常數(shù),k≠0),y叫做x的正比例函數(shù)。

          (二)函數(shù)三要素

          1.定義域:設(shè)x、y是兩個(gè)變量,變量x的變化范圍為D,如果對(duì)于每一個(gè)數(shù)x∈D,變量y遵照一定的法則總有確定的數(shù)值與之對(duì)應(yīng),則稱y是x的函數(shù),記作y=f(x),x∈D,x稱為自變量,y稱為因變量,數(shù)集D稱為這個(gè)函數(shù)的定義域。

          2.在函數(shù)經(jīng)典定義中,因變量改變而改變的取值范圍叫做這個(gè)函數(shù)的值域,在函數(shù)現(xiàn)代定義中是指定義域中所有元素在某個(gè)對(duì)應(yīng)法則下對(duì)應(yīng)的所有的象所組成的集合。如:f(x)=x,那么f(x)的取值范圍就是函數(shù)f(x)的值域。

          3.對(duì)應(yīng)法則:一般地說,在函數(shù)記號(hào)y=f(x)中,“f”即表示對(duì)應(yīng)法則,等式y(tǒng)=f(x)表明,對(duì)于定義域中的任意的x值,在對(duì)應(yīng)法則“f”的作用下,即可得到值域中唯一y值。

          (三)一次函數(shù)的表示方法

          1.解析式法:用含自變量x的式子表示函數(shù)的方法叫做解析式法。

          2.列表法:把一系列x的值對(duì)應(yīng)的函數(shù)值y列成一個(gè)表來表示的函數(shù)關(guān)系的方法叫做列表法。

          3.圖像法:用圖象來表示函數(shù)關(guān)系的方法叫做圖象法。

          (四)一次函數(shù)的性質(zhì)

          1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k。即:y=kx+b(k≠0)(k不等于0,且k,b為常數(shù))。

          2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的交點(diǎn),坐標(biāo)為(0,b)。當(dāng)y=0時(shí),該函數(shù)圖象在x軸上的交點(diǎn)坐標(biāo)為(-b/k,0)。

          3.k為一次函數(shù)y=kx+b的斜率,k=tanθ(角θ為一次函數(shù)圖象與x軸正方向夾角,θ≠90°)。

          4.當(dāng)b=0時(shí)(即y=kx),一次函數(shù)圖象變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。

          5.函數(shù)圖象性質(zhì):當(dāng)k相同,且b不相等,圖像平行;當(dāng)k不同,且b相等,圖象相交于Y軸;當(dāng)k互為負(fù)倒數(shù)時(shí),兩直線垂直。

          6.平移時(shí):上加下減在末尾,左加右減在中間。

          直角三角形

          1.勾股定理及其逆定理

          定理:直角三角形的兩條直角邊的等于的平方。

          逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是直角三角形。

          2.含30°的直角三角形的邊的性質(zhì)

          定理:在直角三角形中,如果一個(gè)銳角等于30°,那么等于的一半。

          3.直角三角形斜邊上的中線等于斜邊的一半。

          要點(diǎn)詮釋:①勾股定理的逆定理在語言敘述的時(shí)候一定要注意,不能說成“兩條邊的平方和等于斜邊的平方”,應(yīng)該說成“三角形兩邊的平方和等于第三邊的平方”。

         、谥苯侨切蔚娜扰卸ǚ椒,HL還有SSS,SAS,ASA,AAS,一共有5種判定方法。

          圖形的平移與旋轉(zhuǎn)

          1.平移,是指在同一平面內(nèi),將一個(gè)圖形上的所有點(diǎn)都按照某個(gè)直線方向做相同距離的移動(dòng),這樣的圖形運(yùn)動(dòng)叫做圖形的平移運(yùn)動(dòng),簡(jiǎn)稱平移。

          2.平移性質(zhì)

          (1)圖形平移前后的形狀和大小沒有變化,只是位置發(fā)生變化。

          (2)圖形平移后,對(duì)應(yīng)點(diǎn)連成的線段平行(或在同一直線上)且相等。

          拓展閱讀:初中數(shù)學(xué)提高解題速度的方法

          認(rèn)真仔細(xì)審題

          對(duì)于一道具體的習(xí)題,解題時(shí)最重要的環(huán)節(jié)是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應(yīng)特別注意每一句話的內(nèi)在涵義,并從中找出隱含條件。

          有些學(xué)生沒有養(yǎng)成讀題、思考的習(xí)慣,心里著急,匆匆一看,就開始解題,結(jié)果常常是漏掉了一些信息,花了很長(zhǎng)時(shí)間解不出來,還找不到原因,想快卻慢了。所以,在實(shí)際解題時(shí),應(yīng)特別注意,審題要認(rèn)真、仔細(xì)。

          做好歸納總結(jié)

          在解過一定數(shù)量的習(xí)題之后,對(duì)所涉及到的知識(shí)、解題方法進(jìn)行歸納總結(jié),以便使解題思路更為清晰,就能達(dá)到舉一反三的效果,對(duì)于類似的習(xí)題一目了然,可以節(jié)約大量的解題時(shí)間。

          熟悉習(xí)題內(nèi)容

          解題、做練習(xí)只是學(xué)習(xí)過程中的一個(gè)環(huán)節(jié),而不是學(xué)習(xí)的全部,你不能為解題而解題。解題時(shí),我們的概念越清晰,對(duì)公式、定理和規(guī)則越熟悉,解題速度就越快。

          因此,我們?cè)诮忸}之前,應(yīng)通過閱讀教科書和做簡(jiǎn)單的練習(xí),先熟悉、記憶和辨別這些基本內(nèi)容,正確理解其涵義的本質(zhì),接著馬上就做后面所配的練習(xí),一刻也不要停留。

          學(xué)會(huì)主動(dòng)畫圖

          畫圖是一個(gè)翻譯的過程,把解題時(shí)的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關(guān)系就變得一目了然。尤其是對(duì)于幾何題,包括解析幾何題,若不會(huì)畫圖,有時(shí)簡(jiǎn)直是無從下手。

          因此,牢記各種題型的基本作圖方法,牢記各種函數(shù)的圖像和意義及演變過程和條件,對(duì)于提高解題速度非常重要。

          逐步增加難度

          人們認(rèn)識(shí)事物的過程都是從簡(jiǎn)單到復(fù)雜。簡(jiǎn)單的問題解多了,從而使概念清晰了,對(duì)公式、定理以及解題步驟熟悉了,解題時(shí)就會(huì)形成跳躍性思維,解題的速度就會(huì)大大提高。

          我們?cè)趯W(xué)習(xí)時(shí),應(yīng)根據(jù)自己的能力,先去解那些看似簡(jiǎn)單,卻很重要的習(xí)題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會(huì)達(dá)到事半功倍的效果。

        【初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

        初二數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)04-24

        初二數(shù)學(xué)全套知識(shí)點(diǎn)總結(jié)05-11

        初二數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)04-24

        初二數(shù)學(xué)分式知識(shí)點(diǎn)總結(jié)04-25

        初二上數(shù)學(xué)知識(shí)點(diǎn)總結(jié)03-30

        初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)人教版總結(jié)08-02

        初二浮力知識(shí)點(diǎn)總結(jié)03-30

        初二函數(shù)知識(shí)點(diǎn)總結(jié)04-22

        初二壓強(qiáng)的知識(shí)點(diǎn)總結(jié)03-31

        初二英語知識(shí)點(diǎn)總結(jié)12-03

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>