- 相關(guān)推薦
等腰三角形的性質(zhì)教學(xué)設(shè)計一等獎(精選13篇)
作為一名無私奉獻(xiàn)的老師,常常要根據(jù)教學(xué)需要編寫教學(xué)設(shè)計,教學(xué)設(shè)計以計劃和布局安排的形式,對怎樣才能達(dá)到教學(xué)目標(biāo)進(jìn)行創(chuàng)造性的決策,以解決怎樣教的問題。怎樣寫教學(xué)設(shè)計才更能起到其作用呢?以下是小編為大家收集的等腰三角形的性質(zhì)教學(xué)設(shè)計一等獎(精選13篇),希望對大家有所幫助。
等腰三角形的性質(zhì)教學(xué)設(shè)計一等獎 1
一、教材分析
1、教材的地位與作用:
本節(jié)課內(nèi)容是在學(xué)生掌握了一般三角形和軸對稱的知識,具有初步的推理證明能力的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。使學(xué)生學(xué)會分析、學(xué)會證明,在培養(yǎng)學(xué)生的思維能力和推理能力等方面有重要的作用。通過等腰三角形的性質(zhì)反映在一個三角形中“等邊對等角”的邊角關(guān)系,并且是對軸對稱圖形性質(zhì)的直觀反映(三線合一)。它所倡導(dǎo)的“觀察———發(fā)現(xiàn)———猜想———論證”的數(shù)學(xué)思想方法是今后研究數(shù)學(xué)的基本思想方法。等腰三角形的性質(zhì)也是論證兩個角相等、兩條線段相等、兩條直線垂直的重要依據(jù),因此,本節(jié)內(nèi)容在教材中處于非常重要的地位,起著承前啟后的作用。
2、教學(xué)目標(biāo):
知識技能:理解掌握等腰三角形的性質(zhì);運用等腰三角形的性質(zhì)進(jìn)行證明和計算。
過程方法:通過實踐、觀察、證明等腰三角形的性質(zhì),發(fā)展學(xué)生合情推理能力和演繹推理能力。
解決問題:通過觀察等腰三角形的對稱性,及運用等腰三角形的性質(zhì)解決有關(guān)的問題,提高學(xué)生觀察、分析、歸納、運用知識解決問題的能力,發(fā)展應(yīng)用意識。
情感態(tài)度:通過引導(dǎo)學(xué)生對圖形的觀察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在運用數(shù)學(xué)知識解答問題的活動中獲取成功的體驗,建立學(xué)習(xí)的自信心。
(根據(jù)教材內(nèi)容的地位與作用及教學(xué)目標(biāo),因此我將把本節(jié)課的重點確定為:等腰三角形的性質(zhì)的探究和應(yīng)用。由于對文字語言敘述的幾何命題的證明要求嚴(yán)格且步驟繁瑣,此時八年級學(xué)生還沒有深刻的理解和熟練的掌握,因此我將把本節(jié)課的難點定為:等腰三角形性質(zhì)的推理證明。)
3、教學(xué)重點與難點:
重點:等腰三角形的性質(zhì)的探索和應(yīng)用。
難點:等腰三角形性質(zhì)的`推理證明。
二、教法設(shè)計:
教法設(shè)想:我采用探索發(fā)現(xiàn)法和啟發(fā)式教學(xué)法完成本節(jié)的教學(xué),在教學(xué)中通過創(chuàng)設(shè)情景,設(shè)計問題,引導(dǎo)學(xué)生自主探索,合作交流,組織學(xué)生動手操作,觀察現(xiàn)象,提出猜想,推理論證等。有效地啟發(fā)學(xué)生的思考,使學(xué)生真正成為學(xué)習(xí)的主體。
三、學(xué)法設(shè)計:
在學(xué)生學(xué)習(xí)的過程中,我將從兩個方面指導(dǎo)學(xué)生學(xué)習(xí),一方面老師大膽放手,讓學(xué)生去自主探究等腰三角形的性質(zhì),另一方面,在對等腰三角形性質(zhì)的證明過程中,老師要巧妙引導(dǎo),分散難點。這樣做既有利于活躍學(xué)生的思維,又能幫助他們探本求源,這樣也體現(xiàn)了以“教師為主導(dǎo),學(xué)生為主體”的新課改背景下的教學(xué)原則。
四、教學(xué)過程:
根據(jù)制定的教學(xué)目標(biāo),圍繞重點,突破難點,我將從以下七個方面設(shè)計我的教學(xué)過程
1、創(chuàng)設(shè)情景:
首先向同學(xué)們出示精美的建筑物圖片,并提出問題串:
。1)什么是軸對稱圖形?這些圖片中有軸對稱圖形嗎?
。2)里面有等腰三角形嗎?然后向?qū)W生介紹等腰三角形的定義以及邊角等相關(guān)的概念,由于學(xué)生小學(xué)就已經(jīng)接觸過,所以學(xué)生很容易理解。再提出第三個問題:
a、等腰三角形是軸對稱圖形嗎?
b、等腰三角形具備哪些性質(zhì)呢?引出本節(jié)課的課題—我們這節(jié)課來探究等腰三角形的性質(zhì)。
、倌贸稣n下制作的等腰三角形的紙片,它是軸對稱圖形嗎?對稱軸是誰?用你手中的紙片說明你的看法?
、诘妊切窝貙ΨQ軸折疊后,你能得到哪些結(jié)論?(看誰得到的結(jié)論多)
③分組討論。(看哪一組氣氛最活躍,結(jié)論又對又多。)
然后小組代表發(fā)言,交流討論結(jié)果。
、軞w納:你能猜想得到等腰三角形具有什么性質(zhì)?你能用文字語言歸納一下嗎?
。ń處熞龑(dǎo)學(xué)生進(jìn)行總結(jié)歸納得出性質(zhì)1,2)
性質(zhì)1:等腰三角形的兩底角相等。(簡寫成“等邊對等角”)
性質(zhì)2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。(簡稱“三線合一”)
(設(shè)計意圖:由學(xué)生自己動手折紙活動,根據(jù)等腰三角形軸對稱性,大膽猜測等腰三角形的性質(zhì),培養(yǎng)學(xué)生的觀察分析、概括總結(jié)能力。也發(fā)展了學(xué)生的幾何直觀。教師在學(xué)生猜想的基礎(chǔ)上,引導(dǎo)學(xué)生觀察、完善、歸納出性質(zhì)1和性質(zhì)2。培養(yǎng)了學(xué)生進(jìn)行合情推理的能力。)
等腰三角形的性質(zhì)教學(xué)設(shè)計一等獎 2
【教學(xué)目標(biāo)】
教學(xué)知識點
1、等腰三角形的概念。
2、等腰三角形的性質(zhì)。
3、等腰三角形的概念及性質(zhì)的應(yīng)用。
能力訓(xùn)練要求
1、經(jīng)歷作(畫)出等腰三角形的過程,從軸對稱的角度去體會等腰三角形的特點。
2、探索并掌握等腰三角形的性質(zhì)。
情感與價值觀要求
通過學(xué)生的操作和思考,使學(xué)生掌握等腰三角形的相關(guān)概念,并在探究等腰三角形性質(zhì)的過程中培養(yǎng)學(xué)生認(rèn)真思考的習(xí)慣。
【教學(xué)重難點】
重點:
1、等腰三角形的概念及性質(zhì)。
2、等腰三角形性質(zhì)的應(yīng)用。
難點:等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用。
【教學(xué)過程】
一、提出問題,創(chuàng)設(shè)情境
師:在前面的學(xué)習(xí)中,我們認(rèn)識了軸對稱圖形,探究了軸對稱的性質(zhì),并且能夠作出一個簡單平面圖形關(guān)于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設(shè)計一些美麗的圖案。這節(jié)課我們就是從軸對稱的角度來認(rèn)識一些我們熟悉的幾何圖形。來研究:①三角形是軸對稱圖形嗎?②什么樣的三角形是軸對稱圖形?
[生]有的三角形是軸對稱圖形,有的三角形不是。
師:那什么樣的三角形是軸對稱圖形?
[生]滿足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形。
師:很好,我們這節(jié)課就來認(rèn)識一種成軸對稱圖形的三角形──等腰三角形。
二、探究新知:
。ㄒ唬┑妊切蔚亩x:
【活動1】折紙、剪紙、展紙:
觀察△ABC的特點:
(1)在上述過程中,△ABC被剪刀剪過的兩邊是否相等?
。2)由此你能說說什么是等腰三角形嗎?
歸納:有兩條邊相等的三角形叫等腰三角形。其中相等的兩條邊叫腰,另一條邊叫做底邊;兩腰所夾的`角叫頂角,底邊和腰所夾的角叫底角。
(二)探索等腰三角形的性質(zhì):
【活動2】觀察△ABC:
。1)等腰△ABC是軸對稱圖形嗎?它的對稱軸是什么?
。2)沿著等腰△ABC中AD所在的直線對折,找出重合的線段、重合的角。
歸納:
性質(zhì)1、等腰三角形的兩個底角相等(簡寫成“等邊對等角”)
性質(zhì)2、等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(簡記為“三線合一”)
。ㄈ┑妊切涡再|(zhì)的證明:
由上面折疊的過程獲得啟發(fā),我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質(zhì)。同學(xué)們現(xiàn)在就動手來寫出這些證明過程。
等腰三角形的性質(zhì)教學(xué)設(shè)計一等獎 3
【學(xué)習(xí)目標(biāo)】
1、知識與能力
了解等腰三角形的有關(guān)概念,探索并掌握等腰三角形的性質(zhì);能夠用等腰三角形的知識解決相應(yīng)的數(shù)學(xué)問題。
2、過程與方法
通過對性質(zhì)的探究活動和例題的分析,培養(yǎng)學(xué)生多角度思考問題的習(xí)慣,提高學(xué)生分析問題和解決問題的能力。
3、情感、態(tài)度與價值觀
通過引導(dǎo)學(xué)生對圖形的觀察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在運用數(shù)學(xué)知識解答問題的活動中獲取成功的體驗,建立學(xué)習(xí)的自信心。
【學(xué)習(xí)重點】
等腰三角形的性質(zhì)的探索及應(yīng)用。
【學(xué)習(xí)難點】
等腰三角形三線合一的性質(zhì)的理解、證明及其應(yīng)用。
【學(xué)習(xí)過程】
一、創(chuàng)設(shè)情境
1、出示人字型屋頂?shù)膱D片(55頁),提問:屋頂被設(shè)計成了哪種幾何圖形?
2、小學(xué)我們已經(jīng)初步認(rèn)識了等腰三角形,這節(jié)課我們來具體研究等腰三角形的性質(zhì)。
二、操作探究
1、動手操作
如圖,把一張長方形的紙按圖中虛線對折,并剪去陰影部分,再把它展開,得到的△ABC有什么特征?
學(xué)生課前動手操作,剪出圖形,課上從剪出的圖形觀察△ABC的特點,可以發(fā)現(xiàn)AB=AC。
學(xué)生總結(jié)出等腰三角形的概念:有兩邊相等的三角形叫作等腰三角形,相等的兩邊叫作腰,另一邊叫作底邊,兩腰的夾角叫作頂角,底邊和腰的夾角叫作底角。
找出手中圖形的腰、底邊、頂角、底角(△ABC中,若AB=AC,則△ABC是等腰三角形,AB、AC是腰、BC是底邊、∠A是頂角,∠B和∠C是底角。)
2、探究問題
(1)剛才剪出的等腰三角形ABC是軸對稱圖形嗎?它的對稱軸是什么?
學(xué)生思考、回顧剪紙過程,動手把等腰三角形ABC沿折痕對折,容易回答出⊿ABC是軸對稱圖形,折痕AD所在的直線是它的對稱軸
。2)把剪出的△ABC沿折痕AD對折,找出其中重合的線段和角,填入下表:
重合的線段重合的角
。3)從上表中你能發(fā)現(xiàn)等腰三角形具有什么性質(zhì)嗎?說一說你的猜想。
學(xué)生經(jīng)過觀察,獨立完成上表,然后小組討論交流,從表中總結(jié)等腰三角形的性質(zhì)。
引導(dǎo)學(xué)生歸納:
性質(zhì)1 等腰三角形的兩個底角相等(簡寫成“等邊對等角”);
性質(zhì)2 等腰三角形頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)
性質(zhì)3 等腰三角形是軸對稱圖形,對稱軸為頂角角平分線(或底邊上的高,或底邊上的中線)所在直線。
三、合作交流
1、性質(zhì)的證明思路
通過上面折疊的過程的啟發(fā),你能利用三角形的全等來證明這些性質(zhì)嗎?
學(xué)生:我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質(zhì)。 小組交流,展示證明思路。
。1)性質(zhì)1(等腰三角形的兩個底角相等)的條件和結(jié)論分別是什么?用數(shù)學(xué)符號如何
表達(dá)條件和結(jié)論?如何證明?
教師引導(dǎo)學(xué)生根據(jù)猜想的結(jié)論畫出相應(yīng)的圖形,寫出已知和求證,師生共同分析證明思路,強(qiáng)調(diào)以下兩點:
、倮萌切蔚娜葋碜C明兩角相等,為證∠B=∠C,需證明以∠B、∠C為元素的兩個三角形全等,需要添加輔助線構(gòu)造符合證明要求的兩個三角形。
、谔砑虞o助線的方法有很多種,常見的有作頂角∠BAC的平分線,或作底邊BC上的中線,或作底邊BC上的高等,讓學(xué)生選擇一種輔助線并完成證明過程。
(2)回顧性質(zhì)1的證明方法,你能用這種方法證明性質(zhì)2(等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合)嗎?
讓學(xué)生模仿證明性質(zhì)2,并鼓勵學(xué)生用多種方法證明。
問題:如圖,已知△ABC中,AB=AC。
。1) 求證:∠B=∠C;
。2)
(3) AD平分∠A,AD⊥BC。
(4)
學(xué)生在獨立思考的.基礎(chǔ)上進(jìn)行討論,尋找解決問題的辦法,若證∠B=∠C,根據(jù)全等三角形的知識可以知道,只需要證明這兩個角所在的三角形全等即可,于是可以作輔助線構(gòu)造兩個三角形,做BC邊上的中線AD,證明△ABD和△ACD全等即可,根據(jù)條件利用“邊邊邊”可以證明。
2、證明過程
讓學(xué)生充分討論,交流,展示后書寫證明過程
證明:方法一 作底邊BC的中線AD
在△ABD和△ACD中
所以△ABD≌△ACD(SSS),所以∠B=∠C,∠BAD=∠CAD,∠ADB=∠ADC=90°。
3、幾何符號語言表述
如圖,在△ABC中
性質(zhì)1:∵AB=AC,∴ = 。
性質(zhì)2:
1∵AB=AC,∠BAD=∠CAD ∴BD = , ⊥ 。
2∵AB=AC,BD=CD ∴∠BAD= , ⊥ 。
3∵AB=AC,AD⊥BC ∴∠BAD= , BD= 。
4、典例分析
如圖,△ABC中,AC=BC,CD是∠ACB的平分線,AD=4cm,∠B=30°,求AB的長及∠BCD的度數(shù)。
四、課堂小結(jié)
每個小組說說自己的收獲
1、等腰三角形的定義及相關(guān)概念。
2、等腰三角形的性質(zhì)。
五、達(dá)標(biāo)檢測
1、等腰三角形頂角為1500,那么它的另外兩個角的度數(shù)分別是 。
2、等腰三角形的一個內(nèi)角為500,則另外兩個角的度數(shù)分別是 。
3、在等腰△ABC中,若AB=3,AC=7,則△ABC的周長為 。
4、如圖,在△ABC中,AB=AC,∠1=∠2,BD=BE,且∠A=1000,則∠DEC= 。
等腰三角形的性質(zhì)教學(xué)設(shè)計一等獎 4
教材分析:
1、 本節(jié)內(nèi)容是七年級下第九章《軸對稱》中的重點部分,是等腰三角形的第一節(jié)課,由于小學(xué)已經(jīng)有等腰三角形的基本概念,故此節(jié)課應(yīng)該是在加深對等腰三角形從軸對稱角度的直觀認(rèn)識的基礎(chǔ)上,著重探究等腰三角形的兩個定理及其應(yīng)用,如何從對稱角度理解等腰三角形是新教材和舊教材完全不同的出發(fā)點,應(yīng)該重新認(rèn)識,把好入門的第一課。
2、 等腰三角形是在第八章《多邊形》中的三角形知識基礎(chǔ)上的繼續(xù)深入,如何利用學(xué)習(xí)三角形的過程中已經(jīng)形成的思路和觀點,也是對理解“等腰”這個條件造成的特殊結(jié)果的重要之處。
3、 等腰三角形是基本的幾何圖形之一,在今后的.幾何學(xué)習(xí)中有著重要的地位,是構(gòu)成復(fù)雜圖形的基本單位,等腰三角形的定理為今后有關(guān)幾何問題的解決提供了有力的工具。
4、 對稱是幾何圖形觀察和思維的重要思想,也是解決生活中實際問題的常用出發(fā)點之一,學(xué)好本節(jié)知識對加深對稱思想的理解有重要意義。
5、 例題中的幾何運算,是數(shù)形結(jié)合的思想的初步體驗,如何在幾何中結(jié)合代數(shù)的等量思想是教學(xué)中應(yīng)重點研究的問題。
6、 新教材的合情推理是一個創(chuàng)新,如何把握合情推理的書寫及重點問題,本課中的例題也進(jìn)一步做了示范,可以認(rèn)真研究。
7、 本課對學(xué)生的動手能力,觀察能力都有一定的要求,對培養(yǎng)學(xué)生靈活的思維,提高學(xué)生解決實際問題的能力都有重要的意義。
8、 本課內(nèi)容安排上難度和強(qiáng)度不高,適合學(xué)生討論,可以充分開展合作學(xué)習(xí),培養(yǎng)學(xué)生的合作精神和團(tuán)隊競爭的意識。
學(xué)情分析:
1、 授課班級為平行班,學(xué)生基礎(chǔ)較差,教學(xué)中應(yīng)給予充分思考的時間,謹(jǐn)防填塞式教學(xué)。
2、 該班級學(xué)生在平時訓(xùn)練中已經(jīng)形成了良好的合作精神和合作氣氛,可以充分發(fā)揮合作的優(yōu)勢,兼顧效率和平衡。
3、 本班為自己任課的班級,平時對學(xué)生比較了解,在解決具體問題的時候可以兼顧不同能力的學(xué)生,充分調(diào)動學(xué)生的積極性。
教學(xué)目標(biāo):
知識目標(biāo):
等腰三角形的相關(guān)概念,兩個定理的理解及應(yīng)用。
技能目標(biāo):
理解對稱思想的使用,學(xué)會運用對稱思想觀察思考,運用等腰三角形的思想整體觀察對象,總結(jié)一些有益的結(jié)論。
情感目標(biāo):
體會數(shù)學(xué)的對稱美,體驗團(tuán)隊精神,培養(yǎng)合作精神。
教學(xué)中的重點、難點:
重點:
1、等腰三角形對稱的概念。
2、“等邊對等角”的理解和使用。
3、“三線合一”的理解和使用。
難點:
1、等腰三角形三線合一的具體應(yīng)用。
2、等腰三角形圖形組合的觀察,總結(jié)和分析。
主要教學(xué)手段及相關(guān)準(zhǔn)備:
教學(xué)手段:
1、使用導(dǎo)學(xué)法、討論法。
2、運用合作學(xué)習(xí)的方式,分組學(xué)習(xí)和討論。
3、運用多媒體輔助教學(xué)。
4、調(diào)動學(xué)生動手操作,幫助理解。
準(zhǔn)備工作:
1、多媒體課件片斷,輔助難點突破。
2、學(xué)生課前分小組預(yù)習(xí),上課時按小組落座。
3、學(xué)生自帶剪刀,圓規(guī),直尺等工具。
4、每人得到一張印有“長度為a的線段”的紙片。
教學(xué)設(shè)計策略:
依據(jù)教學(xué)目標(biāo)和學(xué)生的特點,依據(jù)教學(xué)時間和效率的要求,在此課教學(xué)方法和教學(xué)模式的設(shè)計中我主要體現(xiàn)了以下的設(shè)計思想和策略:
1、 回歸學(xué)生主體,一切圍繞著學(xué)生的學(xué)習(xí)活動和當(dāng)堂的反饋程度安排教學(xué)過程。
2、 原則性和靈活性相結(jié)合,既要完成教學(xué)計劃,在教學(xué)過程中又可以根據(jù)現(xiàn)實的情況,安排問題的難度,體現(xiàn)一些靈活性。
3、 教學(xué)的形式上注重個體化,充分給予學(xué)生討論和發(fā)表意見的機(jī)會,注重學(xué)習(xí)的參與性,努力避免以教師活動為主體的教學(xué)過程。
等腰三角形的性質(zhì)教學(xué)設(shè)計一等獎 5
教材分析:
《等腰三角形》是冀教版八年級數(shù)學(xué)上冊第十七章第一節(jié)內(nèi)容。是在學(xué)習(xí)了軸對稱之后編排的,是軸對稱知識的延伸和應(yīng)用。等腰三角形的性質(zhì)及判定是探究線段相等、角相等、及兩條直線互相垂直的重要工具,在教材中起著承上啟下的作用。
學(xué)情分析
學(xué)生在本節(jié)課學(xué)習(xí)之前,已經(jīng)知道了全等三角形和軸對稱相關(guān)知識,那么等腰三角形又有怎樣性質(zhì)呢?鑒于八年級學(xué)生的年齡、心理特點及認(rèn)知水平,有進(jìn)一步探究新知的愿望。本節(jié)課采用層層遞進(jìn)的問題啟發(fā)學(xué)生的思考,讓學(xué)生自主探究、合作交流中獲取知識。
教學(xué)目標(biāo):
知識目標(biāo):掌握等腰三角形的有關(guān)概念和相關(guān)性質(zhì)。并能用其解決有關(guān)問題。
能力目標(biāo):通過對性質(zhì)的探究活動和例題的分析,提高學(xué)生分析問題和解決問題的能力。
情感目標(biāo):在探究對等腰三角形性質(zhì)活動中,讓學(xué)生多動手、多思考,培養(yǎng)學(xué)生之間的合作精神。
教學(xué)重難點:
教學(xué)重點:探索等腰三角形“等邊對等角”和“三線合一”的性質(zhì)。
教學(xué)難點:利用等腰三角形的性質(zhì)解決有關(guān)問題。
教學(xué)方法:
本課立足于學(xué)生的“學(xué)”,采用小組合作探究,師生互動,突出“學(xué)生是學(xué)習(xí)的主體”,讓他們在感受知識的過程中,提高他們的知識運用能力。學(xué)習(xí)中要求學(xué)生多動手、多觀察、多思考,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,更好的讓學(xué)生處在“做中學(xué)”“學(xué)中做”的良好學(xué)習(xí)氛圍之中。
教學(xué)過程:
課前準(zhǔn)備:課前安排學(xué)生帶著五個問題預(yù)習(xí)課本140頁和141頁的教材內(nèi)容,同時讓學(xué)生做一個等腰三角形的紙片,各小組長負(fù)責(zé)預(yù)習(xí)等工作。
。ㄒ唬、導(dǎo)入
先復(fù)習(xí)“軸對稱圖形”的相關(guān)知識,根據(jù)本節(jié)課的特點,讓學(xué)生帶著問觀察圖片,找出圖片里面的軸對稱圖形。
。ǘ⑺伎
1、自主學(xué)習(xí),獨立思考問題:
。1)什么是等腰三角形?
。2)等腰三角形各邊都叫什么名稱?各角呢?
。3)等腰三角形的性質(zhì)?
(4)如何證明等腰三角形的性質(zhì)?
。5)等邊三角形的概念及性質(zhì)?
2、動手操作、演示探究
——等腰三角形的性質(zhì)
請同學(xué)們把等腰三角形紙片對折,讓兩腰重合。娔X演示)發(fā)現(xiàn)什么現(xiàn)象?請盡可能多的寫出結(jié)論。(從構(gòu)成要素:邊、角;相關(guān)要素:線、對稱性方面考慮)
。ㄈ、議展
1、探討交流、得出結(jié)論:
重合的線段
重合的角
AB=AC
∠B=∠C
BD=CD
∠BAD=∠CAD
AD=AD
∠ADB=∠ADC
由這些重合的部分,猜想等腰三角形的性質(zhì)。
構(gòu)成要素:
邊:等腰三角形的兩邊相等。
角:等腰三角形的兩底角相等。簡稱“等邊對等角”
相關(guān)要素:
線:等腰三角形頂角的平分線,底邊上的中線,底邊上的高互相重合。簡稱“三線合一”
對稱性:等腰三角形是軸對稱圖形
2、學(xué)生展示
證明“等邊對等角”(學(xué)生展示)
三種方法證明等腰三角形性質(zhì)“等邊對等角”
已知:在△ABC中,AB=AC,求證:∠B=∠C
方法一:
證明:作底邊BC上的中線AD。
在△ABD與△ACD中:
BD=DC(作圖)
AD=AD(公共邊)
∴△ABD≌△ACD(SSS)
∴∠B=∠C(全等三角形對應(yīng)角相等)
方法二:
作頂角∠BAC的平分線AD。
∵AD平分∠BAC
∴∠1=∠2
在△ABD與△ACD中
AB=AC(已知)
∠1=∠2(已證)
AD=AD(公共邊)
∴ △ABD ≌ △ACD(SAS)
∴ ∠B=∠C
方法三:
作底邊BC的高AD。
∵AD⊥BC
∴∠ADB=∠ADC=90°
在RT△ABD與RT△ACD中
AB=AC(已知)
AD=AD(公共邊)
∴ △ABD ≌ △ACD(HL)
∴ ∠B=∠C
。ㄋ模Ⅻc評
找各小組代表分別展示答案之后,其他小組進(jìn)行評價,查漏補(bǔ)缺。然后通過老師講解,再指出其實這作三種輔助線的位置根本沒有發(fā)生改變,從而自然的過度到“三線合一”從中得出結(jié)論,達(dá)到對知識點的.理解和掌握。
等腰三角形性質(zhì)的幾何語言
∵ AB=AC(已知)
∴ ∠B=∠C(等邊對等角)
。1)等腰三角形的頂角的平分線,既是底邊上的中線,又是底邊上的高。
幾何語言:
在△ABC中,∵AB=AC , ∠1=∠2(已知)
∴BD=DC , AD⊥BC(等腰三角形三線合一)
。2)等腰三角形的底邊上中線,既是底邊上的高,又是頂角平分線。
幾何語言:
在△ABC中,∵AB=AC , BD=DC(已知)
∴AD⊥BC , ∠1=∠2(等腰三角形三線合一)
。3)等腰三角形的底邊上的高,既是底邊上的中線,又是頂角平分線。
幾何語言:
在△ABC中,∵AB=AC , AD⊥BC(已知)
∴BD=DC , ∠1=∠2(等腰三角形三線合一)
在學(xué)生掌握了等腰三角形的有關(guān)概念和性質(zhì)之后,引出等邊三角形的教學(xué)。
等邊三角形定義:三邊都相等的三角形叫做等邊三角形
等邊三角形的性質(zhì)定理:等邊三角形的三個角都相等,并且每一個角都等于60°。
等邊三角形性質(zhì)的證明:(學(xué)生在練習(xí)本完成后,再用課件展示證明過程)
例題:
已知:在△ABC中,AB=AC,BD,CE分別為∠ABC,∠ACB的平分線。
求證:BD=CE。
。ㄎ澹⒕毩(xí)
為了檢測學(xué)生對本課教學(xué)目標(biāo)的完成情況,進(jìn)一步加強(qiáng)知識的應(yīng)用訓(xùn)練,我設(shè)計了三組練習(xí)由易到難,由簡單到復(fù)雜,滿足不同層次學(xué)生需求。
練習(xí)1:知識點:(邊:等腰三角形的兩邊相等。)
1、在等腰△ABC中,AB=3,AC=4,則△ABC的周長=________
2、在等腰△ABC中,AB=3,AC=7,則△ABC的周長=________
練習(xí)2:知識點:(角:“等邊對等角”)
1、在等腰△ABC中,AB=AC, ∠B=50°,則∠A=__,∠C =_
2、在等腰△ABC中,∠A =100°,則∠B=___,∠C=___
練習(xí)3:(判斷)知識點:(“三線合一”)
1、等腰三角形的頂角一定是銳角。()
2、等腰三角形的底角可能是銳角或者直角、鈍角都可以。()
3、等腰三角形的頂角平分線一定垂直底邊。()
4、等腰三角形底邊上的中線一定平分頂角。()
5、等腰三角形的角平分線、中線和高互相重合。()
。⒖偨Y(jié)
師生合作,共同歸納:
1、等腰三角形的兩底角相等(簡寫成“等邊對等角”)
2、等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合(簡稱“三線合一”)
3、等邊三角形的性質(zhì)定理:等邊三角形的三個角都相等,并且每一個角都等于60°。布置作業(yè)
鞏固性作業(yè):143頁習(xí)題1、2、(必做),143頁習(xí)題3、4、(選做)
拓展性作業(yè):
1、如圖,在△ABC中,AB=AC,BD,CE分別為AB,AC邊上的中線,試判斷BD 、CE相等嗎?并說明理由。
2、如圖,在△ABC中,AB=AC,BD,CE分別為AB,AC邊上的高線,試判斷BD 、CE相等嗎?并說明理由。
板書設(shè)計
17.1等腰三角形
等腰三角形相關(guān)概念:證明例題
等腰三角形的性質(zhì):
“等邊對等角”
“三線合一”
等邊三角形相關(guān)知識布置作業(yè)
課后反思
這節(jié)課從學(xué)生的實際認(rèn)知出發(fā),以“學(xué)生為主體,教師為主導(dǎo)”,課堂活動中充分調(diào)動學(xué)生的學(xué)習(xí)積極性,在整個教學(xué)過程中我以“啟發(fā)學(xué)生,挖掘?qū)W生潛力,培養(yǎng)學(xué)生能力”為主旨而進(jìn)行!充分地發(fā)揮學(xué)生的主觀能動性。突出了重點,突破了難點,達(dá)到了知識能力情感的三合一,達(dá)到了預(yù)期的教學(xué)效果。不足之處的是,習(xí)題練習(xí)有限,未設(shè)置限時小測等等
等腰三角形的性質(zhì)教學(xué)設(shè)計一等獎 6
一、教學(xué)目的
使學(xué)生掌握等腰三角形性質(zhì)定理(包括推論)及其證明。
二、教學(xué)重點、難點
重點:等腰三角形的性質(zhì)。
難點:文字命題的證明。
三、教學(xué)過程
復(fù)習(xí)提問
什么叫做等腰三角形?什么是等腰三角形的腰、底邊、頂點和底角?
引入新課
教師演示事先備好的等腰三角形紙片對折,使兩腰疊在一起,發(fā)現(xiàn)它的兩底角重合,從而得到等腰三角形兩底角相等的命題,當(dāng)然此命題的真實性還需推理論證。
新課
1、等腰三角形的性質(zhì)定理等腰三角形的兩底角相等(簡寫成“等邊對等角”)。
讓學(xué)生回憶前面學(xué)過的文字命題證明的全過程。引導(dǎo)學(xué)生寫出已知、求證,并且都要結(jié)合圖形使之具體化。
2、推論1等腰三角形頂角平分線平分底邊且垂直于底邊。
從性質(zhì)定理的證明過程可以知道(如圖1)BD=DC,∠ADB=∠ADC,所以AD平分BC,且AD⊥BC,即得推論。
從推論1可以知道,等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。
推論2等邊三角形的各角都相等,并且每一個角都等于60°。
3、等腰三角形性質(zhì)的應(yīng)用。等腰三角形的性質(zhì)有著重要的應(yīng)用,一般說,利用“等腰三角形兩底角相等”的性質(zhì)證明兩角相等;利用“等腰三角形底邊上的三條主要線段重合”的性質(zhì),來證明兩條線段相等、兩個角相等及兩條直線互相垂直;利用“等邊三角形各角相等,并且每一個角都等于60°”的.性質(zhì),來證明一個角是60°,或作圖中通過作等邊三角形,作出一個60°的角。
例1已知:如圖2,房屋的頂角∠BAC=100°,過屋頂A的立柱AD⊥BC、屋椽AB=AC。求頂架上∠B、∠C、∠BAD、∠CAD的度數(shù)。
這是一道幾何計算題,要使學(xué)生熟悉解計算題的步驟,引導(dǎo)學(xué)生寫出解題過程。
小結(jié)
1、敘述等腰三角形的性質(zhì)(本堂所講定理及推論)及其應(yīng)用。
2、等腰三角形頂角與底角之間的常用關(guān)系式:在△ABC中,AB=AC,則
∠A=180°—2∠B=180°—2∠C;
3、已知等腰三角形一個角的度數(shù),求其它兩個角的度數(shù):
。1)若已知角是鈍角或直角,則此角一定為頂角,于是由2中(2)可求出兩底角;
。2)若已知角是銳角,則此角可能是頂角,也可能是底角。若為前者,可按2中(2)求出兩底角。若為后者,則可按2中(1)求出頂角。
練習(xí):略
作業(yè):略
四、教學(xué)注意問題
1、等腰三角形的性質(zhì)在今后解(證)幾何題中有著重要的應(yīng)用,務(wù)必引起學(xué)生重視。且應(yīng)反復(fù)練習(xí)。
2、幾何計算題的一般解題步驟。
等腰三角形的性質(zhì)教學(xué)設(shè)計一等獎 7
教材分析
1、本小節(jié)內(nèi)容安排在第十四章“軸對稱”的第三節(jié)。等腰三角形是一種特殊的三角形,它是軸對稱圖形,可以借助軸對稱變換來研究等腰三角形的一些特殊性質(zhì)。這一節(jié)的主要內(nèi)容是等腰三角形的性質(zhì)與判定,以及等邊三角形的相關(guān)知識,重點是等腰三角形的性質(zhì)與判定,它是研究等邊三角形,是證明線段相等角相等的重要依據(jù),這也是全章的重點之一。
2、本節(jié)重在呈現(xiàn)一個動手操作得出概念、觀察實驗得出性質(zhì)、推理證明論證性質(zhì)的過程,學(xué)生通過學(xué)習(xí),既體會到一個觀察、實驗、猜想、論證的研究幾何圖形問題的全過程,又能夠運用等腰三角形的性質(zhì)解決有關(guān)的問題,提高運用知識和技能解決問題的能力。
學(xué)情分析
1、學(xué)生在此之前已接觸過等腰三角形,具有運用全等三角形的判定及軸對稱的知識和技能,本節(jié)教學(xué)要突出“自主探究”的特點,即教師引導(dǎo)學(xué)生通過觀察、實驗、猜想、論證,得出等腰三角形的性質(zhì),讓學(xué)生做學(xué)習(xí)的主人,享受探求新知、獲得新知的樂趣。
2、在與等腰三角形有關(guān)的一些命題的證明過程中,會遇到一些添加輔助線的問題,這會給學(xué)生的`學(xué)習(xí)帶來困難。另外,以前學(xué)生證明問題是習(xí)慣于找全等三角形,形成了依賴全等三角形的思維定勢,對于可直接利用等腰三角形性質(zhì)的問題,沒有注意選擇簡便方法。
教學(xué)目標(biāo)
知識技能:
1、理解掌握等腰三角形的性質(zhì)。
2、運用等腰三角形的性質(zhì)進(jìn)行證明和計算。
數(shù)學(xué)思考:
1、觀察等腰三角形的對稱性,發(fā)展形象思維。
2、通過時間、觀察、證明等腰三角形性質(zhì),發(fā)展學(xué)生合情推理能力和演繹推理能力。
情感態(tài)度:引導(dǎo)學(xué)生對圖形的觀察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在運用數(shù)學(xué)知識解決問題的活動中獲取成功的體驗,建立學(xué)習(xí)的自信心。
教學(xué)重點和難點
重點:等腰三角形的性質(zhì)及應(yīng)用。
難點:等腰三角形的性質(zhì)證明。
等腰三角形的性質(zhì)教學(xué)設(shè)計一等獎 8
一、教材的地位和作用
現(xiàn)實生活中,等腰三角形的應(yīng)用比比皆是、所以,利用“軸對稱”的知識,進(jìn)一步研究等腰三角形的特殊性質(zhì),不僅是現(xiàn)實生活的需要,而且從思想方法和知識儲備上,為今后研究“四邊形”和“圓”的性質(zhì)打下堅實的基礎(chǔ)、
性質(zhì)“等腰三角形的兩個底角相等”是幾何論證過程中,證明“兩個角相等”的重要方法之一、“等腰三角形底邊上的三條重要線段重合”的性質(zhì)是今后證明“兩條線段相等” “兩條直線互相垂直”“兩個角相等”等結(jié)論的重要理論依據(jù)、
教學(xué)重點:
1、讓學(xué)生主動經(jīng)歷思考和探索的過程、
2、掌握等腰三角形性質(zhì)及其應(yīng)用、
教學(xué)難點:等腰三角形性質(zhì)的理解和探究過程、
二、學(xué)情分析
本年級的學(xué)生已經(jīng)研究過一般三角形的性質(zhì),積累了一定的經(jīng)驗,動手能力強(qiáng),善于與同伴交流,這就為本節(jié)課的學(xué)習(xí)做好了知識、能力、情感方面的準(zhǔn)備、不同層次的學(xué)生因為基礎(chǔ)不同,在學(xué)習(xí)中必然會出現(xiàn)相異構(gòu)想,這也將是我在教學(xué)過程中著重關(guān)注的一點、
三、目標(biāo)分析
知識與技能
1、了解等腰三角形的有關(guān)概念和掌握等腰三角形的性質(zhì)
2、了解等邊三角形的概念并探索其性質(zhì)
3、運用等腰三角形的性質(zhì)解決問題
過程與方法
1、通過觀察等腰三角形的對稱性,發(fā)展學(xué)生的形象思維、
2、探索等腰三角形的性質(zhì)時,經(jīng)歷了觀察、動手實踐、猜想、驗證等數(shù)學(xué)過程,積累數(shù)學(xué)活動經(jīng)驗,發(fā)展了學(xué)生的歸納推理,類比遷移的能力、在與他人交流的過程中,能運用數(shù)學(xué)語言合乎邏輯的進(jìn)行討論和質(zhì)疑,提高了數(shù)學(xué)語言表達(dá)能力、
情感態(tài)度價值觀:
1、通過情境創(chuàng)設(shè),使學(xué)生感受到等腰三角形就在自己的身邊,從而使學(xué)生認(rèn)識到學(xué)習(xí)等腰三角形的必要性、
2、通過等腰三角形的性質(zhì)的歸納,使學(xué)生認(rèn)識到科學(xué)結(jié)論的發(fā)現(xiàn),是一個不斷完善的過程,培養(yǎng)學(xué)生堅強(qiáng)的意志品質(zhì)、
3、通過小組合作,發(fā)展學(xué)生互幫互助的精神,體驗合作學(xué)習(xí)中的樂趣和成就感、
四、教法分析
根據(jù)學(xué)生已有的認(rèn)知,采取了激疑引趣——猜想探究——應(yīng)用體驗——建構(gòu)延伸的教學(xué)模式,并利用多媒體輔助教學(xué)、
設(shè)計意圖
同學(xué)們,我們在七年級已研究了一般三角形的性質(zhì),今天我們一起來探究特殊的'三角形:等腰三角形、
等腰三角形的定義
有兩條邊相等的三角形叫做等腰三角形、
等腰三角形中,相等的兩邊都叫做腰,另一邊叫做底邊,兩腰的夾角叫做頂角、腰和底邊的夾角叫做底角、
提出問題:生活中有哪些現(xiàn)象讓你聯(lián)想到等腰三角形?
首先讓學(xué)生明確:本學(xué)段的幾何圖形都是按一般的到特殊的順序研究的
通過學(xué)生描述等腰三角形在生活中的應(yīng)用,讓學(xué)生感受到數(shù)學(xué)就在我們身邊,以及研究等腰三角形的必要性、
剪紙游戲
你能利用手中的這個矩形紙片剪出一個等腰三角形嗎?注意安全呦!
學(xué)情分析:
大部分學(xué)生會有自己的想法,根據(jù)軸對稱圖形的性質(zhì),利用對折紙片,再“剪一刀”就是就得到了兩條“腰”;
可能還有的同學(xué)會利用正方形的折法,獲得特殊的等腰直角三角形;
可能還有同學(xué)先畫圖,再依線條剪得、
在這個過程中,注重落實三維目標(biāo)、讓學(xué)生在獲取新知的過程中更好的認(rèn)識自我,建立自信、我不失時機(jī)的對學(xué)生給予鼓勵和表揚,使活動更加深入,課堂充滿愉悅和溫馨、
知其然,更重要的是知其所以然、因此,我力求讓學(xué)生關(guān)注剪法的理性思考、
我設(shè)計了問題:你是如何想到的?為的是剖析學(xué)生的思維過程:“折疊”就是為了得到“對稱軸”,“剪一刀”就是就得到了兩條“腰”,由“重合”保證了“等腰”、這樣就建立了“操作”與“證明”的中間橋梁、從實際操作中得到證明的方法,也為發(fā)現(xiàn)“三線合一”做了鋪墊、
提出問題:
等腰三角形還有什么性質(zhì)?請?zhí)岢瞿愕牟孪耄炞C你的猜想?并填寫在學(xué)案上、
合作小組活動規(guī)則:
1、有主記錄員記錄小組的結(jié)論;
2、定出小組的主發(fā)言人(其它同學(xué)可作補(bǔ)充);
3、小組探究出的結(jié)論是什么?
4、說明你們小組所獲得結(jié)論的理由、
等腰三角形的性質(zhì):
性質(zhì)一:等腰三角形的兩個底角相等(簡稱“等邊對等角”)、
性質(zhì)二:等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(簡稱“三線合一”)、
學(xué)情分析:這個環(huán)節(jié)是本節(jié)課的重點,也是教學(xué)難點、盡管在教學(xué)過程中,因為學(xué)生的相異構(gòu)想,數(shù)學(xué)猜想的初始敘述不準(zhǔn)確,甚至不正確,但我不會立即去糾正他們,而是讓同學(xué)們不斷地質(zhì)疑﹑辨析、研討和歸納,逐漸完善結(jié)論、讓他們真正經(jīng)歷數(shù)學(xué)知識的形成過程,真正的體現(xiàn)以人為本的教學(xué)理念,努力創(chuàng)設(shè)和諧的教育教學(xué)的生態(tài)環(huán)境、
通過設(shè)置恰當(dāng)?shù)膭邮謱嵺`活動,引導(dǎo)學(xué)生經(jīng)歷觀察、動手實踐、猜想、驗證等數(shù)學(xué)探究活動,這種探究的學(xué)習(xí)過程,恰恰是研究幾何圖形性質(zhì)的一般規(guī)律和方法、
(1)在此環(huán)節(jié)中,我的教學(xué)要充分把握好“四讓”:能讓學(xué)生觀察的,盡量讓學(xué)生觀察;能讓學(xué)生思考的,盡量讓學(xué)生思考;能讓學(xué)生表達(dá)的,盡量讓學(xué)生表達(dá);能讓學(xué)生作結(jié)論的,盡量讓學(xué)生作結(jié)論、
這種教學(xué)方式,把學(xué)習(xí)的過程真正還給學(xué)生,不怕學(xué)生說不好,不怕學(xué)生出問題,其實學(xué)生說不好的地方、學(xué)生出問題的地方都正是我們應(yīng)該教的地方,是教學(xué)的切入點、著眼點、增長點、
(2)教師在這個過程中,充分聽取和參與學(xué)生的小組討論,對有困難的學(xué)生,及時指導(dǎo)、
鞏固知識
1、等腰三角形頂角為70°,它的另外兩個內(nèi)角的度數(shù)分別為________;
2、等腰三角形一個角為70°,它的另外兩個內(nèi)角的度數(shù)分別為_____;
3、等腰三角形一個角為100°,它的另外兩個內(nèi)角的度數(shù)分別為_____、
內(nèi)化知識
如圖1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度數(shù)嗎?
知識遷移
等邊三角形有什么特殊的性質(zhì)?簡單地敘述理由、
等邊三角形的性質(zhì)定理:
等邊三角形的各角都相等,并且每一個角都等于60°、
拓展延伸
如圖2,在△ABC中,AB=AC,點D,E在BC上,AD=AE,你能說明BD=EC?
由于學(xué)生之間存在知識基礎(chǔ)、經(jīng)驗和能力的差異,我為學(xué)生提供了層次分明的反饋練習(xí)、將練習(xí)從易到難,從簡到繁,以適應(yīng)不同階段、不同層次的學(xué)生的需要、讓學(xué)生拾階而上,逐步掌握知識,使學(xué)困生達(dá)到簡單運用水平,中等生達(dá)到綜合運用水平,優(yōu)等生達(dá)到創(chuàng)建水平、
暢談收獲
總結(jié)活動情況,重在肯定與鼓勵、引導(dǎo)學(xué)生從本課學(xué)習(xí)中所得到的新知識,運用的數(shù)學(xué)思想方法,新舊知識的聯(lián)系等方面進(jìn)行反思,提高學(xué)生自主建構(gòu)知識網(wǎng)絡(luò)、分析解決問題的能力、
幫助學(xué)生梳理知識,回顧探究過程中所用到的從特殊到一般的數(shù)學(xué)方法,啟發(fā)學(xué)生更深層次的思考,為學(xué)生的下一步學(xué)習(xí)做好鋪墊、
反思過程不僅是學(xué)生學(xué)習(xí)過程的繼續(xù),更重要的是一種提高和發(fā)展自己的過程、
基礎(chǔ)性作業(yè):P65習(xí)題1、2、3、4
等腰三角形的性質(zhì)教學(xué)設(shè)計一等獎 9
一、教學(xué)目標(biāo)
1、知識與技能
。1)理解公理,能夠舉一反三,證明等腰三角形的性質(zhì)定理;
。2)能夠通過全等三角形的判定定理證明等腰三角形的定理,進(jìn)一步感受證明過程;
(3)熟悉證明的基本步驟和書寫格式。
2、過程與方法
3、通過誘導(dǎo)、啟發(fā)學(xué)生利用全等三角形證明等腰三角形的定理。發(fā)展學(xué)生的初步演繹邏輯推理的能力,鼓勵學(xué)生在交流探索中發(fā)現(xiàn)證明的多樣性,提高邏輯思維水平。
4、情感態(tài)度及價值觀
使學(xué)生滲透數(shù)學(xué)思想,培養(yǎng)學(xué)生合作交流的意識,同時使學(xué)生通過獨立思考去考慮問題的能力加強(qiáng),培養(yǎng)良好的.學(xué)習(xí)習(xí)慣。
二、教學(xué)重點、難點
重點:探索證明等腰三角形的性質(zhì)定理的思路與方法,掌握證明的基本要求和方法。
難點:通過探索利用全等三角形的判定與定義證明等腰三角形的性質(zhì)定理,明確推理證明的基本要求。
三、教具準(zhǔn)備
。▋蓚等腰三角形、彩色粉筆、教案、尺子)
四、教學(xué)過程
1、復(fù)習(xí)舊知,引入新知
。1)請同學(xué)們回憶判定三角形全等的公理有哪些? ? 公理:三邊對應(yīng)相等的兩個三角形全等(SSS)。 ? 公理:兩邊及其夾角對應(yīng)相等的兩個三角形全等(SAS)。 ? 公理:兩角及其夾邊對應(yīng)相等的兩個三角形全等(ASA)
。2)推論呢?
兩角分別相等且其中一組等角的對邊相等的兩個三角形全等(AAS)。
(3)根據(jù)全等三角形的定義,我們可以得到 定理:全等三角形的對應(yīng)邊相等、對應(yīng)角相等。
學(xué)生討論:等腰三角形有哪些性質(zhì)嗎? 根據(jù)等腰三角形的性質(zhì)給予證明。
設(shè)計意圖:為學(xué)生對本節(jié)課證明等腰三角形的定理作鋪墊。
2、新授課
猜想:如果一個三角形是等腰三角形,那么這個三角形的兩個底角有什么關(guān)系呢?如何證明呢?
。1) 畫出圖形;
。2) 根據(jù)圖形寫出已知求證;
。3) 寫出推理過程。
已知:如圖1—1,在△ABC中,AB=AC。 求證:∠B=∠C。
分析:(折疊法)要證明兩底角相等,將等腰三角形對折,折痕將等腰三角形分成了兩個全等三角形,可作一條輔助線(注意輔助線要畫成虛線)。
設(shè)計意圖:鍛煉學(xué)生的動手操作能力。
證明:如圖1—2,取BC的中點D,連接AD。
(已知),?AB?AC ?在△BAD和△CAD中,?BD?CD (已作),AD?AD (公共邊),∴ △BAD ≌ △CAD (SSS)。
∴ ∠B=∠C (全等三角形的對應(yīng)角相等)。 你還有其他證明方法嗎?與同伴交流。
作出底邊上的高或作出頂角的平分線,大家可以自己證明。
3、鞏固練習(xí)
在 △ ABC中,AB=AC。
。1)若∠ A=40°, 則∠ C 等于多少度?
。2)若∠B= 72°,則∠ A 等于多少度?
設(shè)計意圖:加強(qiáng)學(xué)生對等腰三角形定理的認(rèn)識。
4、引出推論
在圖1—2 中,觀察AD還具有怎樣的性質(zhì)?為什么?由此能得到什么結(jié)論? 我們作出了底邊上的中線,已證明△BAD ≌ △CAD。
所以∠BAD=∠CAD(全等三角形對應(yīng)角相等),即AD也是頂角的平分線,∠ADB=∠ADC(全等三角形對應(yīng)角相等)。因為∠BDC=180°(平角的定義),所以∠ADB=90°,即AD也是底邊上的高線。
由此我們得到以下推論:等腰三角形頂角的角平分線、底邊上的中線及底邊上的高線互相重合。(簡稱“三線合一”)
5、隨堂練習(xí)
。1)如圖1—3,在△ABC中,AB=AC,且AD⊥BC,已知BD=2 cm,則DC=___cm, BC=___cm。
。2)如圖1—4,在△ABD中,AC⊥BD,垂足為C,AC=BC=BD。
①求證:△ABD是等腰三角形。
、谇蟆螧AD的度數(shù)。
圖1—4
6、課堂小結(jié)
等腰三角形的性質(zhì)定理:
等腰三角形的兩個底角相等(簡寫成“等邊對等角”)。 等腰三角形頂角的平分線平分底邊并且垂直于底邊。
等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。簡稱“三線合一”。
7、教學(xué)反思
等腰三角形的性質(zhì)教學(xué)設(shè)計一等獎 10
一、學(xué)習(xí)目標(biāo)
、僦R與技能目標(biāo):
掌握等腰三角形的有關(guān)概念和相關(guān)性質(zhì)。熟練運用等腰三角形的性質(zhì)解決等腰三角形內(nèi)角以及邊的計算問題。②過程與方法目標(biāo):
通過對性質(zhì)的探究活動和例題的分析,培養(yǎng)學(xué)生多角度思考問題的習(xí)慣,提高學(xué)生分析問題和解決問題的能力。③情感與態(tài)度目標(biāo):
通過對等腰三角形的觀察、試驗、歸納,體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性,突出數(shù)學(xué)就在我們身邊。在操作活動中,培養(yǎng)學(xué)生之間的合作精神,在獨立思考的同時能夠認(rèn)同他人。
學(xué)習(xí)重難點
重點:探索等腰三角形“等邊對等角”和“三線合一”的性質(zhì)。難點:等腰三角形中關(guān)于底和腰,底角和頂角的計算問題。
二、教學(xué)過程:
1、創(chuàng)設(shè)情景
、僬埻瑢W(xué)們拿出事先準(zhǔn)備好的剪刀和半透明矩形紙一張,將紙對折,剪得一個等腰三角形。
②引入新課:
問題:等腰三角形是軸對稱圖形嗎?
、巯嚓P(guān)概念:定義:兩條邊相等的三角形叫做等腰三角形。
邊:等腰三角形中,相等的兩條邊叫做腰,另一條邊叫做底邊。角:等腰三角形中,兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角。
2、探究問題
、賱觿邮郑鹤屚瑢W(xué)們把做出的等腰三角形的半透明紙片對折,讓兩腰重合在一起,你能發(fā)現(xiàn)什么現(xiàn)象?請你盡可能多的寫出結(jié)論。
、诘贸鼋Y(jié)論:可讓學(xué)生有充分的時間觀察、思考、交流、可能得到的結(jié)論:
(1)等腰三角形是軸對稱圖形
。2)∠b =∠c
(3)bd=cd, ad為底邊上的中線
(4)∠adb =∠adc =90°,ad為底邊上的高線
。5)∠bad =∠cad , ad為頂角平分線
得出性質(zhì)
性質(zhì)1:等腰三角形的兩底角相等。(簡寫成“等邊對等角”)
性質(zhì)2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。
。ê喎Q“三線合一”)
如圖,在△abc中,ab =ac,點d在bc上(1)如果∠bad =∠cad ,那么ad⊥bc,bd=cd(2)如果bd=cd,那么∠bad =∠cad,ad⊥bc(3)如果ad⊥bc,那么∠bad =∠cad,bd=cd
。榱朔奖阌洃浛梢哉f成“知一求二!”)
3、例題部分:
例一:
1、在等腰△abc中,ab =3,ac = 4,則△abc的周長=________
2、在等腰△abc中,ab =3,ac = 7,則△abc的周長=________此例題的重點是運用等腰三角形的定義,以及等腰三角形腰和底邊的關(guān)系,仔細(xì)比較以上兩個例題,并強(qiáng)調(diào)在沒有明確腰和底邊之前,應(yīng)該分兩種情況討論。而且在討論后還應(yīng)該思考一個問題,就是這樣的三條邊能否夠成三角形。
例二:
1、在等腰△abc中,ab =ac, ∠a = 50°,則∠b =_____,∠c=______
2、在等腰△abc中,∠a =100°,則∠b =______,∠c=______此例題的重點是運用等腰三角形“等邊對等角”這一性質(zhì),突出頂角和底角的關(guān)系,強(qiáng)調(diào)等腰三角形中頂角和底角的取值范圍:0°<頂角<180°, 0°<底角<90°。仔細(xì)比較以上兩個例題,得出結(jié)論一個經(jīng)驗:在等腰三角形中,已知一個角就可以求出另外兩個角。
例三:在等腰△abc中,∠a = 40°,則∠b =______此題是一道陷阱題,可以先讓學(xué)生進(jìn)行分析,和例二的2小題比較,估計會出一些狀況,大多數(shù)學(xué)生會按照兩種情況討論,得到兩個答案。然后跟學(xué)生
2畫出圖形進(jìn)行分析,分兩種情況討論,但是答案是“三個”。強(qiáng)調(diào)需要自己畫圖解題時,一定要三思而后行!
例四:在△abc中,ab =ac,點d是bc的中點,∠b = 40°,求∠bad的度數(shù)?
此題的目的在于等腰三角形“等邊對等角”和“三線合一”性質(zhì)的`綜合運用,以及怎么書寫解答題,強(qiáng)調(diào)“三線合一”的表達(dá)過程。
4、練習(xí)部分:
練功房。ɑA(chǔ)知識)填空題
1、在△abc中,若ab=ac,若頂角為80°,則底角的外角為_________。
2、在△abc中,若ab=ac,∠b=∠a,則∠c=____________。
3、在△abc中,若ab=ac,∠b的余角為25°,則∠a=____________。
4、已知:如圖,在△abc中,d是ab邊上的一點,ad=dc,∠b=35°,∠acd=43°,則∠bcd=____________
練功房ⅱ(實踐運用)實踐題
如圖,是一屋頂?shù)慕孛鎺缀魏唸D,已經(jīng)知道它的兩邊ab和ac是相等的建筑工人師傅對這個建筑物做出了兩個判斷:
①工人師傅在測量了∠b為37°以后,并沒有測量∠c,就說∠c的度數(shù)也是37°。
、诠と藥煾狄庸涛蓓,他們通過測量找到了橫梁bc的中點d,然后在ad兩點之間釘上一根木樁,他們認(rèn)為木樁是垂直橫梁的。請同學(xué)們想想,工人師傅的說法對嗎?請說明理由。
三、小結(jié)部分
提問:今天我們學(xué)習(xí)了什么?你覺得在等腰三角形的學(xué)習(xí)中要注意哪些問題?
1、等腰三角形是軸對稱圖形,等腰三角形的定義,以及相關(guān)概念。
2、等腰三角形的兩底角相等。(簡寫成“等邊對等角”)
3、等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。(簡稱“三線合一”)
4、注意等腰三角形關(guān)于底和腰的計算題,特別是需要的討論的時候,最后還要進(jìn)行檢驗,看看這樣的三條邊是否可以構(gòu)成三角形。
5、注意等腰三角形的頂角和底角的取值范圍:0°<頂角<180°,0°<底角<90°
6、重視需要自己畫圖解題時一定要“三思而后行”!
四、作業(yè)部分
1、教科書p86習(xí)題9.3 1,2,3,4題
2、請問:在等腰三角形中,等腰三角形兩腰上的中線(高線)是否相等?為什么?
3。已知:如圖,在△abc中,ab=ac,e在ac上,d在ba的延長線上,ad=ae,連結(jié)de。請問:de⊥bc成立嗎?、4、等腰三角形是特殊的三角形,思考一下,什么三角形又是特殊的等腰三角形呢?帶著問題預(yù)習(xí)教科書p83—84。
等腰三角形的性質(zhì)教學(xué)設(shè)計一等獎 11
一、教學(xué)目標(biāo)
1、知識技能:
(1)掌握等腰三角形的性質(zhì)。
(2)運用等腰三角形的性質(zhì)進(jìn)行證明和計算。
2、數(shù)學(xué)思考:
。1)觀察等腰三角形的對稱性,發(fā)展形象思維。
(2)經(jīng)歷等腰三角形性質(zhì)的探究過程,在實驗操作、觀察猜想、推理論證的過程中發(fā)展學(xué)生合情推理和演繹推理能力。
3、問題解決:
(1)通過觀察等腰三角形的對稱性,培養(yǎng)學(xué)生觀察、分析、歸納問題的能力。
。2)通過運用等腰三角形的性質(zhì)解決有關(guān)問題,提高運用知識和技能解決問題的能力,發(fā)展學(xué)生的應(yīng)用意識、創(chuàng)新意識、反思意識。
4、情感態(tài)度:引導(dǎo)學(xué)生對圖形的觀察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在運用數(shù)學(xué)知識解決問題的活動中獲取成功的體驗,建立學(xué)習(xí)的自信心。
二、教學(xué)方法:
實驗法和探究法。
三、重難點:
重點是等腰三角形的性質(zhì)及應(yīng)用。
難點是等腰三角形性質(zhì)的證明。
四、教學(xué)過程
。ㄒ唬﹦(chuàng)設(shè)情境,引入新課
人類的聰明智慧讓我們看到了一個又一個令人驚嘆的奇跡,下面請同學(xué)們觀察這幾幅圖片,看看這些偉大的人類建筑中都含有一個什么樣的基本圖形?師1:同學(xué)們,這幾張圖片中共同存在的基本圖形是什么?
等腰三角形以它那對稱、和諧、莊重、典雅之美成為我們數(shù)學(xué)殿堂的一枚瑰寶,可現(xiàn)實生活中為什么這些建筑要設(shè)計成等腰三角形的形式呢?等腰三角形有什么特殊的性質(zhì)嗎?今天就讓我們一同來走進(jìn)這個美妙的圖形。
(二)探究發(fā)現(xiàn),學(xué)習(xí)新知
1、認(rèn)識等腰三角形師1:在小學(xué)時我們就知道兩條邊相等的三角形叫做等腰三角形。
下面我們利用剪紙的方法將手中的矩形紙片變變形。請大家跟著老師一起做:先將紙片向下對折,再把角斜向下折疊,沿折痕剪下,打開就得到一個等腰三角形。
觀察這個等腰三角形,我們稱相等的邊叫做——腰,那么另一邊叫做——底邊,兩腰的夾角叫做——頂角,腰和底邊的夾角叫做——底角。
2、探究等腰三角形的性質(zhì)
。1)觀察猜想
師1:接下來,我們再度觀察手中的等腰三角形,它是軸對稱圖形嗎?為什么?
師2:仔細(xì)觀察:將等腰三角形abc沿折痕對折,請大家找出其中重合的線段和角。哪位同學(xué)可以發(fā)表一下自己的看法?
師3:這些線段是互相重合的,它們存在什么數(shù)量關(guān)系?重合的角呢?
師4:通過剛才的分析,由這些重合的線段和角,你能發(fā)現(xiàn)等腰三角形的性質(zhì)嗎?說一說你的猜想。
(板書)猜想①等腰三角形的兩個底角相等。猜想②等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。
。2)實驗操作
師1:請同學(xué)們用心觀察等腰三角形abc:隨著等腰三角形的形狀變化,觀察兩個底角是否永遠(yuǎn)相等?這說明什么?
師2:請同學(xué)們再認(rèn)真觀察,隨著等腰三角形的形狀變化,ad是否永遠(yuǎn)是頂角的平分線、底邊上的中線、底邊上的高?這又能說明什么?
。3)推理論證
師1:來看猜想1等腰三角形的兩個底角相等。將這個命題改寫成“如果—那么—”的形式,該如何敘述?
師2:這個命題的題設(shè)和結(jié)論分別是什么?師3:如何進(jìn)行證明呢?師4:誰還有其它證明方法嗎?
今天大家從不同角度添加輔助線,將等腰三角形問題轉(zhuǎn)化成全等三角形問題,進(jìn)而證明出等腰三角形的`性質(zhì)1,接下來,請大家將性質(zhì)1齊讀1遍。性質(zhì)1簡稱:等邊對等角。下面我們用符號語言描述性質(zhì)的因果關(guān)系。同學(xué)們一定要注意,在應(yīng)用“等邊對等角”時必須是在同一個三角形中。師5:由性質(zhì)1的證明過程,你能不能證明出猜想2呢?下面讓我們一同觀察性質(zhì)1的證明過程,在作出等腰三角形頂角平分線的基礎(chǔ)上,由三角形全等,我們還能得到什么結(jié)論?
師6:類比這種證明方法,當(dāng)我們作出等腰三角形底邊上的中線時,又能得到什么結(jié)論呢?
師7:當(dāng)我們作出底邊上的高呢?
經(jīng)過證明它平分頂角并平分底邊。通過剛才的證明,我們得到三個結(jié)論,這三個結(jié)論我們能否用一句話概括?也就證明出了性質(zhì)2。接下來,我們來看一組填空題,這就是性質(zhì)2的數(shù)學(xué)符號表述。仔細(xì)觀察這三組符號語言,在等腰三角形的前提下,我們只要知道頂角平分線、底邊上的中線、底邊上的高這三個條件中的任意一條,即可推出其余兩個是成立的。
等腰三角形的性質(zhì)為我們今后證明兩條線段相等、兩個角相等提供了重要依據(jù)。
3、辯證思考等腰三角形的性質(zhì):
我們再來看性質(zhì)2“等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合”,那么底角的平分線,腰上的中線和高是否互相重合?請大家動手折疊來說明。師1:重合嗎?
所以等腰三角形的性質(zhì)2必須強(qiáng)調(diào)的是頂角平分線、底邊上的中線、底邊上的高互相重合。
。ㄈ├斫庥洃洠瑢嶋H應(yīng)用
利用我們今天所學(xué)的主要內(nèi)容:等腰三角形的性質(zhì),能解決什么樣的具體問題?請看例1,獨立思考第(1)(2)問,有答案,請舉手。
師1:請大家觀察∠bdc是等腰△abd的外角,思考∠bdc與∠a有何數(shù)量關(guān)系?
師2:思考第(3)問,如何求各角的度數(shù)?請同學(xué)們在練習(xí)本上求解第(3)問。
師3:答案是什么?
這道題目我們結(jié)合圖形,利用方程進(jìn)行求解,可以使我們的表述更加清晰。下面請大家再看一個例題,齊讀例2,有思路,請舉手回答。師4:誰還有其它不同的方法得出∠1?
。ㄋ模┓答佇轮,鞏固練習(xí)。下面,我們進(jìn)行兩組小練習(xí),看看誰的速度快?
師1:通過這兩個題目,你有什么發(fā)現(xiàn)?我們發(fā)現(xiàn)在等腰三角形中,若已知角為銳角,則它既可以作為頂角,也可以作為底角,需要分情況討論;若已知角為鈍角,則它只能作為頂角。
。ㄎ澹┗仡櫡此,歸納升華。
通過今天的數(shù)學(xué)學(xué)習(xí),你有哪些收獲?
(六)劃分層次,布置作業(yè)。
。╝)p56 1,4;(b)p56 1,4,6。最后,給大家布置一個興趣作業(yè):利用等腰三角形設(shè)計一個電子作品。同學(xué)們,讓我們用心去體悟圖形的美,努力去創(chuàng)造美,炫出我們的精彩吧!
等腰三角形的性質(zhì)教學(xué)設(shè)計一等獎 12
【教學(xué)目標(biāo)】:
1、使學(xué)生了解等腰三角形的有關(guān)概念,掌握等腰三角形的性質(zhì)。
2、通過探索等腰三角形的性質(zhì),使學(xué)生進(jìn)一步經(jīng)歷觀察、實驗、推理、交流等活動。
3、應(yīng)用性質(zhì)解決實際問題。
【教學(xué)難點】:通過操作,如何觀察、分析、歸納得出等腰三角形性質(zhì)。
【教學(xué)突破點】:通過折疊重合實驗探索等邊對等角的性質(zhì),通過分別畫等腰三角形底邊上的高、中線、頂角平分線和一般三角形一邊上的高、中線、頂角平分線進(jìn)行對比,發(fā)現(xiàn)歸納“三線合一”的性質(zhì),通過例題與練習(xí)訓(xùn)練學(xué)生的推理敘述能力。
【教法、學(xué)法設(shè)計】:教法:教授法;學(xué)法:觀察、探索、推理
教師應(yīng)創(chuàng)造一種環(huán)境,采用發(fā)現(xiàn)教學(xué)法,設(shè)疑思考法,逐步滲透法和師生交際相結(jié)合的方法,發(fā)掘不同層次學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
【課前準(zhǔn)備】:課件
教學(xué)環(huán)節(jié)
教學(xué)活動
設(shè)計意圖
一、情景導(dǎo)入
1、請同學(xué)們欣賞精美的圖片,這些圖片中有等腰三角形嗎。
在我們生活中,有許多等腰三角形構(gòu)成的圖形,本節(jié)課我們將研究等腰三角形的有關(guān)性質(zhì)、
2、如圖,在△ABC中,AB=AC,標(biāo)出各部分名稱
情景引入,為學(xué)習(xí)新知識做準(zhǔn)備、
1、探究:教材P49
把活動中剪出的△ABC沿折痕AD對折,找出其中重合的線段和角,填入下表
重合的線段
重合的角
3、歸納等腰三角形的性質(zhì):
性質(zhì)1等腰三角形的兩個相等(簡寫成“ ”)
性質(zhì)2等腰三角形 互相重合(簡寫)
4、證明以上性質(zhì)
5、運用新知
。5)等腰直角三角形的每一個銳角為,作斜邊上的高,圖中共有個等腰直角三角形。
引導(dǎo)學(xué)生從已知的、熟悉的知識入手,讓學(xué)生自己在某一種環(huán)境下不知不覺中運用舊知識的.鑰匙去打開新知識的大門,進(jìn)入新知識的領(lǐng)域,從不同角度去分析、解決新問題。
例
1:在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)、
例
2:已知:如圖,點D、E在△ABC的邊上,AB=AC,AD=AE、求證:BD=CE、
證明:作AF⊥BC,垂足為F,則AF⊥DE
∵AB=AC,AD=AE、
AF⊥BC, AF⊥DE
∴BF=CF, DF=EF(等腰三角形底邊上的高與底邊上的中線互相重合、)
∴BD=CE
已知在Rt△ABC中,∠ABC=90°,D、E在CA上,且AB=AD,CB=CE,求∠EBD的度數(shù)。
(3)如果等腰三角形的頂角為50°,那么它的一個底角為___________、
7、紙上畫出5個點,任意3個點組成的三角形都是等腰三角形、問這5個點該怎么放。畫出你認(rèn)為可能的一種情況、
8、如圖, AB=AC, D為BC中點, DE⊥AB, DF⊥AC,試說明DE=DF
9、如圖,BD平分∠ABC,DE⊥AB,DF⊥BC,E、F為垂足,連結(jié)EF。
。1)圖中有等腰三角形嗎。如有,寫出來,并說理。
。2)BD與EF垂直嗎。
為什么
11、如圖11,∠BAC=105o,若MP和NQ分別垂直平分AB和AC,求∠PAQ的度數(shù)。
圖11
12、如圖,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度數(shù)、
答案
8、∵AB=AC ∴∠B=∠C, ∵D為BC中點∴BD=CD,又DE⊥AB, DF⊥AC, ∴△BDE≌△CDF,∴DE=DF
9、
。1)△DEF是等腰三角形
(2)BD與EF垂直10、7 11、30o
12、77°,38、5°。
等腰三角形的性質(zhì)教學(xué)設(shè)計一等獎 13
學(xué)情分析
八年級學(xué)生普遍具有強(qiáng)烈的好奇心和求知欲,抽象思維趨于成熟,形象直觀思維能力較強(qiáng),具有一定的獨立思考、實踐操作、合作交流、歸納概括等能力,能進(jìn)行簡單的推理。八年級也是學(xué)生開始分層的一個敏感年級。
教材分析
等腰三角形的性質(zhì)是華東師大版八年級數(shù)學(xué)第十三章第三節(jié)第一課時5的內(nèi)容,它是在認(rèn)識了軸對稱性以及了解了全等三角形的判定的基礎(chǔ)上進(jìn)行的。主要學(xué)習(xí)等腰三角形的“等邊對等角”和“等腰三角形的三線合一”。本節(jié)內(nèi)容既是前面知識的深化和應(yīng)用,又是今后學(xué)習(xí)等邊三角形的預(yù)備知識,還是證明角相等、線段相等及兩直線互相垂直的依據(jù),因此本節(jié)內(nèi)容在教材中起著非常重要的承前啟后的作用。
目標(biāo)分析
根據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》中關(guān)于“等腰三角形”相關(guān)教學(xué)要求,結(jié)合教材特點和學(xué)生的實際情況,從而確定了“知識與技能、過程與方法、情感態(tài)度與價值觀”的三維教學(xué)目標(biāo)。
教學(xué)目標(biāo):
1、知識與技能
通過探究性學(xué)習(xí)實驗,使學(xué)生發(fā)現(xiàn)等腰三角形“等邊對等角”及底邊上的高、底邊上的中線、頂點的平分線互相重合的性質(zhì)。
2、過程與方法目標(biāo)
通過性質(zhì)的證明和例題的分析,培養(yǎng)學(xué)生多角度分析問題的習(xí)慣,提高學(xué)生分析問題和解決問題的能力。
3、態(tài)度價值觀目標(biāo)
要求學(xué)生在學(xué)習(xí)中運用發(fā)現(xiàn)法,體驗幾何發(fā)現(xiàn)的樂趣,使學(xué)生進(jìn)一步了解發(fā)現(xiàn)真理的方法。讓實際操作動手中感受數(shù)學(xué)之美,探究之趣。
教學(xué)重點和難點:
重點:等腰三角形兩底角相等、等腰三角形“三線合一”。因為等腰三角形的性質(zhì)是今后學(xué)習(xí)線段垂直平分線的基礎(chǔ),也是今后論證角、邊相等的重要依據(jù),所以是本節(jié)教學(xué)的重點。
難點:等腰三角形“三線合一”的推理應(yīng)用
教學(xué)方法和手段:
數(shù)學(xué)教育應(yīng)該是數(shù)學(xué)再發(fā)現(xiàn)的教育,因此我設(shè)計本節(jié)課的教學(xué)與學(xué)法為探究發(fā)現(xiàn)法。
教法:以引導(dǎo)發(fā)現(xiàn)為主,直觀演示為輔。
學(xué)法:自主探究,合作交流。
在教學(xué)中以學(xué)生參與為主,便于激發(fā)學(xué)生學(xué)習(xí)熱情,體驗成功的喜悅,通過直觀的演示和學(xué)生自己動手,使學(xué)生在獲得感性知識的同時,為掌握理性知識創(chuàng)造條件,這樣更有利于調(diào)動學(xué)生積極性,激發(fā)學(xué)生興趣,使學(xué)生變被動學(xué)習(xí)為積極主動愉快學(xué)習(xí),也符合數(shù)學(xué)教學(xué)的直觀性和可接受性。
課前準(zhǔn)備:
教師:多媒體課件、三角板
學(xué)生:剪刀,矩形紙片
教學(xué)過程:
一、創(chuàng)設(shè)情境,導(dǎo)入新課
1、影片引入
伴隨著教師制作的一段微視頻,師生一起走進(jìn)生活中經(jīng)常能見到的等腰三角形圖形,品味數(shù)學(xué)。
設(shè)計目的:使學(xué)生感受到等腰三角形在生活中有著廣泛的應(yīng)用,同時感受數(shù)學(xué)之美。
2、溫故而知新
回憶等腰三角形的有關(guān)概念。
二、動手操作,猜想論證
1、動手剪一剪
學(xué)生利用手里的矩形紙片和剪刀,剪紙并回答問題。
設(shè)計目的:直觀感受等腰三角形的對稱性,激發(fā)學(xué)生的學(xué)習(xí)興趣。
2、動手做一做
師:將手中的等腰三角形對折,讓兩腰重合,啟發(fā)學(xué)生大膽猜想。
設(shè)計目的:由學(xué)生自己動手參與折紙游戲,大膽猜測等腰三角形的性質(zhì),這種直觀的低起點的方式引入新課更能提高學(xué)生興趣,激發(fā)他們的求知欲,讓每位學(xué)生都涌躍參與,領(lǐng)悟數(shù)學(xué)學(xué)習(xí)的價值。
3、千古數(shù)學(xué)一大猜
學(xué)生對等腰三角形有一定的認(rèn)識與了解,很容易從角這個角度猜想出:等腰三角形的兩個底角相等。
三、證明猜想,形成定理
1、猜想與論證
猜想的結(jié)論不一定正確,要經(jīng)過合理的推理證明才能確認(rèn)正確,所以我設(shè)計了兩個問題。
首先PPT展示“猜想一:等腰三角形的兩個底角相等。”
提出問題一:你能把這句話用數(shù)學(xué)語言表達(dá)嗎?
學(xué)生回答正確后,提出問題二:如何證明這兩個角相等呢?
設(shè)計目的:通過第一個問題的解答,使學(xué)生的思路會逐步變得清晰,化解了第二個問題的難度,引導(dǎo)學(xué)生為解決問題尋找做輔助線的方法。
學(xué)生會有三種添加輔助線的方法:做頂角的平分線、底邊上的高,底邊上的中線,請學(xué)生自選一種方法進(jìn)行證明。
2、請你分享
最有效的學(xué)習(xí)是講給別人聽,請學(xué)生分享自己的證明方法,發(fā)展他們的智慧,完善他們的人格。
給出其中一種即做底邊上高這種做輔助線方法的證明過程,并規(guī)范學(xué)生的書寫格式。
設(shè)計目的:讓學(xué)生自己證明猜想,有利于學(xué)生對全等三角形的判定的鞏固,既運用以舊引新的推理方式,又體現(xiàn)由特殊到一般的思維認(rèn)識規(guī)律。采用這種探索發(fā)現(xiàn)的方式,讓學(xué)生通過對直觀圖形的觀察猜想,實驗證明去揭示定理。同時也展示了猜想——證明這一數(shù)學(xué)認(rèn)知基本方法。
3、得到性質(zhì)1的結(jié)論
“等腰三角形的兩底角相等。”
用數(shù)學(xué)語言進(jìn)行書寫,并規(guī)范學(xué)生的書寫。
四、例題講解,練習(xí)提高
例題和練習(xí)一共有三個題目,設(shè)計了三個層次:一個層次是直接利用性質(zhì)1,第二個層次是需要分類討論,第三個層次在分類討論的基礎(chǔ)上需要考慮實際情況。
設(shè)計目的:1、鞏固學(xué)生對性質(zhì)1的理解
2、培養(yǎng)學(xué)生分類討論的思想,增加他們學(xué)習(xí)的'興趣。
五、回味兒,再次猜想
1、請學(xué)生利用手里的等腰三角形紙片折疊或者在直接在紙片上做出等腰三角形底邊上的高,底邊上的中線,頂角的平分線。學(xué)生在此過程中會發(fā)現(xiàn)這三條線段重合。
通過對線段AD的分析,使學(xué)生發(fā)現(xiàn)性質(zhì)2:“三線合一”。
設(shè)計目的:性質(zhì)探索的過程,不僅體現(xiàn)了知識的發(fā)生發(fā)展過程,還培養(yǎng)了學(xué)生的創(chuàng)新意識、合作意識、探究意識、轉(zhuǎn)化意識,在這個過程中教師要寬容的接納生成,理智的處理生成。
2、得到性質(zhì)2:等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。簡稱“三線合一”。
用數(shù)學(xué)符號語言進(jìn)行書寫,并規(guī)范學(xué)生的書寫。
設(shè)計目的:用符號語言表示性質(zhì),可以讓學(xué)生意識到“三線合一”是證明角相等,線段相等,直線垂直的重要依據(jù)。
3、請學(xué)生利用手里的等腰三角形紙片折疊或者在直接在紙片上做出等腰三形某一腰上的高,同一腰上的中線,底角的平分線。強(qiáng)調(diào)等腰三角形“三線合一”條件。
設(shè)計目的:學(xué)生對性質(zhì)2相對于性質(zhì)1要陌生,所以要求學(xué)生通過折紙或者在等腰三角形紙片上作圖來得到等腰三角的三線合一的條件必須和底邊有關(guān)。
六、千錘百煉,綜合運用
1、第一類題型:基礎(chǔ)類
設(shè)計目的:鞏固基礎(chǔ)知識
2、第二類題型:提高類
設(shè)計目的:學(xué)習(xí)方法的形成的本節(jié)課的一個難點。
七、暢所欲言,歸納總結(jié)
學(xué)生談收獲。
設(shè)計目的:學(xué)生自己歸納總結(jié),進(jìn)一步突出學(xué)生的主體地位,有利于學(xué)生學(xué)習(xí)后養(yǎng)成及時反思的習(xí)慣,教師也能及時的了解教學(xué)中的一些情況。
八、學(xué)無止境,課堂提升
這一部分我設(shè)計了一道能力提升的題目,上課時看課堂最后所剩的時間靈活處理。
設(shè)計目的:這個環(huán)節(jié)我主要設(shè)計了能力提升的題目,從學(xué)生知識和興趣的角度,有針對性的提高學(xué)生綜合應(yīng)用知識的能力,延續(xù)課堂,為下一節(jié)課等腰三角形的判定做準(zhǔn)備。
九、布置作業(yè)
必做部分:P81:1,2,3
選做部分:P81:4
板書設(shè)計:
13.3.1等腰三角形
性質(zhì)1:“等邊對等角”
性質(zhì)2:“三線合一”
反思:
本節(jié)課,我從學(xué)生身邊的生活入手引入,以學(xué)生自主探索、合作交流為主線,讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成與應(yīng)用過程,加深對所學(xué)知識的理解,從而突破重難點。整節(jié)課是一個動腦猜想、動眼觀察、動手操作、實踐驗證、鞏固應(yīng)用的動態(tài)生成過程,充分發(fā)揮了學(xué)生的主觀能動性,學(xué)生真正成為了學(xué)習(xí)的主人。
【等腰三角形的性質(zhì)教學(xué)設(shè)計一等獎】相關(guān)文章:
《減法性質(zhì)、除法性質(zhì)》教學(xué)設(shè)計07-21
小數(shù)的性質(zhì)教學(xué)設(shè)計07-20
《菱形的性質(zhì)》教學(xué)設(shè)計04-11
精選《小數(shù)的性質(zhì)》教學(xué)設(shè)計09-28