- 相關推薦
北師大四年級下冊《三角形內角和》的教學設計范文(通用15篇)
作為一名為他人授業(yè)解惑的教育工作者,就有可能用到教學設計,借助教學設計可以更大幅度地提高學生各方面的能力,從而使學生獲得良好的發(fā)展。教學設計要怎么寫呢?下面是小編整理的北師大四年級下冊《三角形內角和》的教學設計范文,歡迎大家分享。
北師大四年級下冊《三角形內角和》的教學設計 1
【教學目標】
1、使學生知道三角形的內角和是180 ,并能運用三角形的內角和是180 解決生活中常見的問題。
2、讓學生經(jīng)歷量一量、折一折、拼一拼等動手操作的過程。通過觀察、 判斷、 交流和推理探索用多種方法證明三角形的內角和是180
3、培養(yǎng)學生自主學習、互動交流、合作探究的能力和習慣,培養(yǎng)學習數(shù)學的興趣,感受學習數(shù)學的樂趣。
【教學重點】
使學生知道三角形的內角和是180 ,并能運用它解決生活中常見的問題。
【教學難點】
通過多種方法驗證三角形的內角和是180 。
【教學準備】
課件。四組教學用三角板。鉛筆。大帆布兜子。固體膠。剪刀。筷子若干。
【教學過程】
一、激趣導入,提煉學習方法
1、課程開始,教師耳朵上別著一根鉛筆,肩背大帆布兜子,里面裝著一個量角器和幾把缺了直角的三角板,手拿一張不規(guī)則的白紙,以一位老木匠的身份出現(xiàn)在學生面前。激發(fā)學生的好奇心。然后自述:“你們好,我是一個有三十多年工作經(jīng)驗的老木匠了。我收了三個徒弟,他們已經(jīng)從師學藝三年了,今天我想讓他們下山掙錢,可又不放心,想出幾道題考驗考驗他們,又不知我的題合不合適,大家想不想先當一會我的徒弟試試這幾道題呢?”
2、繼續(xù)以老木匠的身份說:前幾天我造了一架柁,徒弟們能不能用我手中的工具驗證一下橫木和立柱是不是成直角的。
3、選擇工具,總結方法。
讓選擇不同工具的同學用自己的方法驗證。教師隨機板書:量一量、拼一拼、折一折。
師:你們真是愛動腦筋的好徒弟,那么請聽好師傅的第二個問題。
4、導入新課。
圖中有很多三角形,不論什么樣的三角形都有三個角,這三個角就叫做三角形的內角,徒弟們能不能用學過的方法或者你喜歡的方法求一求三角形三個內角的和是多少?(板書課題:三角形的內角和)
二、動手操作,探索交流新知
1、分組活動,探索新知
根據(jù)學生的選擇把學生分成三組,分別采用量一量、折一折和拼一拼的方法探索新知。
量一量組同學發(fā)給以下幾種學具:
折一折組同學發(fā)給上面的三角形一組。
拼一拼組同學發(fā)給上面的三角形一組、剪刀一把還有下面這樣的白紙一張。
在學生探索的過程中教師要走近學生,與他們共同交流探討,在學生有困難的時候要適當給予引導。
2、多方互動,交流新知
師:請我的大徒弟(量一量組)的同學先來匯報你們的研究成果。
(1)首先要求學生說一說你們小組是怎樣進行探究的。
。2)說出你們組的探究結果怎樣。(在此過程中教師不能急于糾正學生不正確的結論,因為這是知識的形成過程。)
。3)請學生說說通過探究活動你們組得出的結論是什么。
師:大徒弟就是大徒弟,匯報的真不錯。二徒弟(折一折組)你們有沒有更好的辦法呢?
引導這一組從探究的過程和結論與同學、老師交流。
師:別看小徒弟(拼一拼組)這么小,方法可能是最好的?靵戆涯銈兊姆椒ńo大家匯報匯報。
同樣引導這一組從探究的過程和結論與同學、老師交流。
3、思想碰撞,夯實新知
師:三個徒弟你們能說說誰的方法最好嗎?
學生都會說自己的方法最好,再讓其他同學發(fā)表自己的意見,此時生生之間,師生之間交流。(教師要引導學生說出量一量的方法可能由于量的'不夠準確,所以結果可能比180 大一些,或小一些。而其他兩種方法沒有改變角的大小,所以他們的是正確的。)
師:不論你量的怎樣認真都會有不準確的地方,這就叫誤差。而其他兩組同學的方法更準確。三角形的內角和就是180 。(板書:三角形的內角和是180 )
四、走進生活,提升運用能力
1、出示課前那架柁標出它的頂角是120 ,求它的一個底角是多少度?
2、給你三根木條,能做出一個有兩個直角的三角形嗎?
五、總結
師:徒弟們你們經(jīng)過三年的苦學,終于學有所成了。今天,能說說你們在我這里都學到了什么手藝嗎?
六、拓展新知,課外延伸
師:俗話說“活到老,學到老!蹦銈兿律胶筮要繼續(xù)探索,所以我要把我畢生都沒有完成的任務交給你們去研究。
大屏幕出示:
能用你今天學過的知識和方法探索一下四邊形的內角和是多少度嗎?
北師大四年級下冊《三角形內角和》的教學設計 2
一、教學目標
1、知識目標:通過測量、撕拼(剪拼)、折疊等方法,探索和發(fā)現(xiàn)三角形三個內角的度數(shù)和等于180°這一規(guī)律,并能實際應用。
2、能力目標:培養(yǎng)學生主動探索、動手操作的能力。使學生養(yǎng)成良好的合作習慣。
3、情感目標:讓學生體會幾何圖形內在的結構美。并充分體會到學習數(shù)學的快樂。
二、教學過程
。ㄒ唬﹦(chuàng)設情境,導入新課
1、師:我們已經(jīng)認識了三角形,你知道哪些關于三角形的知識?
。▽W生暢所欲言。)
2、師:我們在討論三角形知識的時候,三角形中的三個好朋友卻吵了起來,想知道是怎么回事嗎?讓我們一起去看看吧!
師口述:一個大的直角三角形說:“我的個頭大,我的內角和一定比你們大!币粋鈍角三角形說:“我有一個鈍角,我的內角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”,
3、到底誰說的對呢?今天我們就來研究有關三角形內角和的知識。(板書課題:三角形內角和)
。ǘ┳灾魈骄浚l(fā)現(xiàn)規(guī)律
1、認識什么是三角形的內角和。
師:你知道什么是三角形的內角和嗎?
通過學生討論,得出三角形的內角和就是三角形三個內角的度數(shù)和。
2、探究三角形內角和的特點。
①讓學生想一想、說一說怎樣才能知道三角形的內角和?
學生會想到量一量每個三角形的內角,再相加的方法來得到三角形的內角和。(如果學生想到別的方法,只要合理的,教師就給予肯定,并鼓勵他們對自己想到的方法進行)
②小組合作。
通過小組合作后交流,匯報。(教師同時板書出幾個小組匯報的結果)讓學生們發(fā)現(xiàn)每個三角形的內角和都在180°左右。
引導學生推測出三角形的內角和可能都是180°。
3、驗證推測。
讓學生動腦筋想一想,怎樣才能驗證自己的推想是否正確,學生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。
。ㄐ〗M合作驗證,教師參與其中。)
4、全班交流,共同發(fā)現(xiàn)規(guī)律。
當學生匯報用折拼或剪拼的方法的時候,指名學生上黑板展示結果。
學生交流、師生共同總結出三角形的內角和等于180°。教師同時板書(三角形內角和等于180°。)
5、師談話:三個三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么嗎?(讓學生暢所欲言,對得出的三角形內角和是180°做系統(tǒng)的整理。)
。ㄈ╈柟叹毩暎卣箲
根據(jù)發(fā)現(xiàn)的三角形的新知識來解決問題。
1、完成“試一試”
讓學生獨立完成后,集體交流。
2、游戲:選度數(shù),組三角形。
請選出三個角的度數(shù)來組成一個三角形。
150°10°15°18°20°32°
35°50°52°54°56°58°
130°70°72°75°60°
學生回答的同時,教師操作課件,把學生選擇的度數(shù)拖入方框內,通過電腦計算相加是否等于180°,來驗證學生的選擇是否正確。驗證學生選的對了以后,再讓學生判斷選擇的度數(shù)所組成的三角形按角的大小分類,屬于哪種三角形。并說出理由。
3、“想想做做”第1題
生獨立完成,集體訂正,并說說解題方法。
4、“想想做做”第2題
提問:為什么兩個三角形拼成一個三角形后,內角和還是180度?
5、“想想做做”第3題
生動手折折看,填空。
提問:三角形的內角和與三角形的大小有關系嗎?三角形越大,內角和也越大嗎?
6、“想想做做”第5題
生獨立完成,說說不同的解題方法。
7、“想想做做”第6題
學生說說自己的想法。
8、思考題
教師拿一個大三角形,提問學生內角和是多少?用剪刀剪成兩個三角形,提問學生內角和是多少?為什么?再剪下一個小三角形,提問學生內角和是多少?為什么?最后建成一個四邊形,提問學生內角和是多少?你能推導出四邊形的內角和公式嗎?
。ㄋ模┱n堂總結
本節(jié)課我們學習了哪些內容?(生自由說),同學們說得真好,我們要勇于從事實中尋找規(guī)律,再將規(guī)律運用到實踐當中去。
三教后反思:
“三角形的內角和”是小學數(shù)學教材第八冊“認識圖形”這一單元中的一個內容。通過鉆研教材,研究學情和學法,與同組老師交流,我將本課的教學目標確定為:
1、通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內角的度數(shù)和等于180度。
2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。
本節(jié)教學是在學生在學習“認識三角形”的基礎上進行的,“三角形內角和等于180度”這一結論學生早知曉,但為什么三角形內角和會一樣?這也正是本節(jié)課要與學生共同研究的問題。所以我將這節(jié)課教學的重難點設定為:通過動手操作驗證三角形的內角和是180°。教學方法主要采用了實驗法和演示法。學生的折、拼、剪等實踐活動,讓學生找到了自己的驗證方法,使他們體驗了成功,也學會了學習。下面結合自己的教學,談幾點體會。
。ㄒ唬﹦(chuàng)設情景,激發(fā)興趣
俗話說:“良好的開端是成功的一半”。一堂課的開頭雖然只有短短幾分鐘,但它卻往往影響一堂課的成敗。因此,教師必須根據(jù)教學內容和學生實際,精心設計每一節(jié)課的開頭導語,用別出心裁的導語來激發(fā)學生的學習興趣,讓學生主動地投入學習。本節(jié)課先創(chuàng)設畫角質疑的情景,當學生畫不出來含有兩個直角的'三角形時,學生想說為什么又不知怎么說,學生探究的興趣因此而油然而生。
。ǘ┙o學生空間,讓他們自主探究
“給學生一些權利,讓他們自己選擇;給學生一個條件,讓他們自己去鍛煉;給學生一些問題,讓他們自己去探索;給學生一片空間,讓他們自己飛翔。”我記不清這是誰說過的話,但它給我留下深刻的印象。它正是新課改中學生主體性的表現(xiàn),是以人為本新理念的體現(xiàn)。所以在本節(jié)課中我注重創(chuàng)設有助于學生自主探究的機會,通過“想辦法驗證三角形內角和是180度”這一核心問題,引發(fā)學生去思考、去探究。我讓他們將課前準備好的三角形拿出來進行研究,學生通過折一折、拼一拼、剪一剪等活動找到自己的驗證方法。學生拿著他們手中的三角形,在講臺上講述自己的驗證方法,雖然有的方法很不成熟,但也可以看出這個過程中,滲透了他們發(fā)現(xiàn)的樂趣。這樣,學生在經(jīng)歷“再創(chuàng)造”的過程中,完成了對新知識的構建和創(chuàng)造。
(三)以學定教,注重教學的有效性
新課表指出:數(shù)學教學活動必須建立在學生的認知發(fā)展水平和已有的知識經(jīng)驗基礎之上。要把學生的個人知識、直接經(jīng)驗和現(xiàn)實世界作為數(shù)學教學的重要資源,即以學定教,注重每個教學環(huán)節(jié)的有效性。本課中當我提出“為什么一個三角形中不能有兩個角是直角”時,有學生指出如果有兩個直角,它就拼不成了一個三角形;也有學生說如果有兩個直角,它就趨向于長方形或正方形!盀槭裁磿@樣呢”?學生沉默片刻后,忽然有個學生舉手了:“因為三角形的內角和是180度,兩個直角已經(jīng)有180度了,所以不可能有兩個角是直角!边@樣的回答把本來設計的教學環(huán)節(jié)打亂了,此時我靈機把問題拋給學生,“你們理解他說的話嗎、你怎么知道內角和是180度、誰都知道三角形的內角和是180度”等,當我看到大多數(shù)的已經(jīng)知道這一知識時,我就把學生直接引向主題“想不想自己研究證明一下三角形的內角和是不是180度!奔ぐl(fā)了學生探究的興趣,使學生馬上投入到探究之中。
在練習的時候,由于形式多樣,所以學生的興趣非常高漲,效果很好。通過多邊形內角和的思考以及驗證,發(fā)展了學生的空間想象力,使課堂的知識得以延伸。
北師大四年級下冊《三角形內角和》的教學設計 3
教學目標:
1、讓學生通過量、剪、拼、折等活動,主動探究推導出三角形內角和是180度,并運用所學知識解決簡單的實際問題。
2、讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透"轉化"數(shù)學思想。
3、在學生親自動手和歸納中,使學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。
教學重點:
讓學生經(jīng)歷"三角形內角和是180°"這一知識的形成、發(fā)展和應用的全過程。
教學難點:
通過小組內量一量、折一折、撕一撕等活動,驗證"三角形的內角和是180°。"
教師準備:
4組學具、課件
學生準備:
量角器、練習本
教學過程:
一、興趣導入,揭示課題
1、導入:"同學們,這幾天我們都在研究什么知識?能說說你們都認識了哪些三角形嗎?它們各有什么特點?"
。ㄉ鍪救切尾R報各類三角形及特點)
2、今天老師也帶來了兩個三角形,想不想看看?(播放大屏幕)。"咦,不好,它們怎么吵起來了?快聽聽它們?yōu)槭裁闯称饋砹耍?"哦,它們?yōu)榱巳齻內角和的大小而吵起來。"(設置矛盾,使學生在矛盾中去發(fā)現(xiàn)問題、探究問題。)
3、我們來幫幫它們好嗎?
4、那么什么叫內角啊?你們明白嗎?誰來說說?來指指。
你能標出三角形的三個角嗎?(生快速標好)
數(shù)學中把三角形的這三個角稱為三角形的內角,三個內角加起來就叫內角和。這節(jié)課我們就來研究一下"三角形的內角和"(課件片頭1)
"同學們,用什么方法能知道三角形的內角和?"
二、猜想驗證,探究規(guī)律 (動手操作,探究新知)
1、量角求和法證明:
先聽合作要求:拿出準備的一大一小的兩個三角形,現(xiàn)在我們以小組為單位來量一量它們的內角,注意分工:最好兩個人 量,一人記錄,一人計算,看哪一小組完成的好?
。1)學生聽合作要求后分組合作,將各種三角形的內角和計算出來并填在小組活動記錄表中。(觀察哪組配合好)。
。2)指名匯報各組度量和計算內角和的.結果。
。3)觀察:從大家量、算的結果中,你發(fā)現(xiàn)什么?
歸納:大家算出的三角形內角和都等于或接近180°。
。5)思考、討論:
通過測量計算,我們發(fā)現(xiàn)三角形的內角和不一定等于180度,因為是測量所以能有誤差,那么還有更好的方法能驗證呢?
大家討論討論。
現(xiàn)在各小組就行動起來吧,看哪些小組的方法巧妙?纯茨艿贸鍪裁唇Y論?
看同學們拼得這樣開心,老師也想拼拼,行嗎?演示課件。
看老師最終把三個角拼成了一個什么角?平角。是多少角?
"180°是一個什么角?想一想,怎樣可以把三角形的三個內角拼在一起?如果拼成一個180 度的平角就可以驗證這個結論,對嗎?"(課件3)
現(xiàn)在,我們可驗證三角形的內角和是(180度)?
2、那么對任意三角形都是這個結論?請看大屏幕。
演示銳角三角形折角。 (三個頂點重合后是一個平角,折好后是一個長方形。)
你們想不想去試一試。
1、小組探究活動,師巡視過程中加入探究、指導(如生有困難,師可引導、有可能出現(xiàn)折不到一起的情況,可演示以幫助學生)
2、"你通過哪種三角形驗證(鈍角、銳角、直角逐一匯報)",生邊出示三角形邊匯報。(如有實物投影,直接在實物投影上展示最好,也可用大三角形示范,可隨機改變順序)
a、驗證直角三角形的內角和
折法1中三個角拼在一起組成了一個什么角?我們可以得出什么結論?
引導生歸納出:直角三角形的內角和是180°
折法2 我們還可以得出什么結論?
引導生歸納出:直角三角形中兩個銳角的和是90°。
(即:不必三個角都折,銳角向直角方向折,兩個銳角拼成直角與直角重合即可)
b、驗證銳角、鈍角三角形的內角和。
歸納:銳角、鈍角三角形的內角和也是180°。
放手發(fā)動學生獨立完成 ,逐一種類匯報 師給予鼓勵
三、總結規(guī)律
剛才,我們將直角三角形、銳角三角形、鈍角三角形的三個內角量、剪、撕,能不能給三角形內角下一個結論呢?(生:三角形的內角和是180°)對!不論是哪種三角形,不論大!我們可以得出一個怎樣的結論?
(三角形的內角和是180°。)
。ń處煱鍟喝切蔚膬冉呛褪180°學生齊讀一遍。)
為什么用測量計算的方法不能得到統(tǒng)一的結果呢?
。康牟粶省S械牧拷瞧饔姓`差。)
老師的大三角形內角和大小三角形內角和大呀?(一樣大)首尾呼應
四、應用新知,知識升華。
(讓學生體驗成功的喜悅)
現(xiàn)在,我們已經(jīng)知道了三角形的內角和是180°,它又能幫助我們解決那些問題呢?
。ㄕn件5……)
在一個三角形中,有沒有可能有兩個鈍角呢?
。ú豢赡。)
追問:為什么?
。ㄒ驗閮蓚銳角和已經(jīng)超過了180°。)
有兩個直角的一個三角形
。ㄒ驗槿切蔚膬冉呛褪180°,在一個三角形中如果有兩個直角,它的內角和就大于180°。)
問:那有沒有可能有兩個銳角呢?
(有,在一個三角形中最少有兩個內角是銳角。)
1、 看圖求出未知角的度數(shù)。(知識的直接運用,數(shù)學信息很淺顯)
2、做一做:
在一個三角形中,∠1=140度, ∠3=35度,求∠2的度數(shù)、
3、27頁第3題(數(shù)學信息較為隱藏和生活中的實際問題)
4.思考題、
五、總結
今天,我們在研究三角形的內角和時經(jīng)歷了猜想、驗證、得出結論的過程,并且運用這一結論解決了一些問題。人們在進行科學研究中,常常都要經(jīng)歷這樣的過程,同時,它也是一種科學的研究方法。
板書設計:
三角形內角和
量一量 拼一拼 折一折
三角形內角和是180°
北師大四年級下冊《三角形內角和》的教學設計 4
【教材分析】
《三角形內角和》是北師大版《數(shù)學》四年級下冊的內容。是在學生學習了三角形的概念及特征之后進行的,它是掌握多邊形內角和及其他實際問題的基礎,因此,掌握“三角形的內角和是180度”這一規(guī)律具有重要意義。教材首先出示了兩個三角形比內角和這一情境,讓學生通過測量、折疊、拼湊等方法,發(fā)現(xiàn)三角形的內角和是180度。教材還安排了“試一試”,“練一練”的內容。已知三角形兩個內角的度數(shù),求出第三個角的度數(shù)。
【學生分析】
經(jīng)過近四年的課改實驗,孩子們已經(jīng)有了一定的自主探究,合作交流的能力。他們喜歡在實踐中感悟,在實踐中發(fā)表自己的見解,對數(shù)學產生了濃厚的興趣。1、知識方面:學生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、平角這些角的知識。2、能力方面:已具備了初步的動手操作能力和探究能力,并且能夠進行簡單的微機操作。
【學習目標】
知識目標:掌握三角形內角和是180度這一規(guī)律,并能實際應用。
能力目標: 培養(yǎng)學生主動探索、動手操作的能力。培養(yǎng)學生收集、整理、歸納信息的能力。使學生養(yǎng)成良好的合作習慣。
情感目標: 讓學生體會幾何圖形內在的結構美。
【教學過程】
一、 情景激趣,質疑猜想。
播放動畫片:在圖形王國中,有一天三角形大家庭里為“三角形內角和的大小”爆發(fā)了一場激烈的爭吵。
鈍角三角形大聲叫著:“我的鈍角大,我的內角和一定比你們的內角和大!变J角三角形也不示弱:“我的銳角雖然比鈍角小,但我的內角和并不比你小!敝苯侨切握f:“別爭了,三角形的內角和都是180°。我們的內角和是一樣大的!
師:想一想,什么是三角形的三個內角的和。
生:三角形的三個內角的`度數(shù)和。
師:同學們剛才看了動畫片你們知道誰說對了嗎?不知道的話想一想,猜一猜誰說的對?
學生進行猜想,自由發(fā)言。
。ㄔO計意圖:教師借助多媒體技術創(chuàng)設問題情境,架起數(shù)學學習與現(xiàn)實生活,抽象數(shù)學與具體問題之間的橋梁,激發(fā)了學生的學習興趣。鼓勵學生主動質疑猜想是培養(yǎng)學生學會學習的重要途徑。)
二、自主探究,驗證猜想
師:剛才大部分同學都猜直角三角形說的對。三角形的三個內角的和都是 180°,你能設法驗證這個猜想嗎?
生1:能。我量出三角形的三個內角和度數(shù),加起來是否接近180°(量的時候可能會有些誤差)。
生2:我把三角形的三個角剪下來拼一拼是否能拼成一個平角。
生3:我把三角形的三個角撕下來,拼一拼是否180°。
生4:我把三角形的三個角往里折,看一看這三個角是否折成一個平角。
……
師:上面你們說了不少的驗證猜想的方法,請大家用準備好的材料用你喜歡的方法,動手驗證自己的猜想吧。▽W生把三角形的三個內角分別標上∠1、∠2、∠3,以免在剪拼時把內角搞混了。)
學生邊實驗邊整理信息,完成實驗報告單后,學習小組內進行交流討論。
。ㄔO計意圖:驗證猜想為學生提供了“做數(shù)學”的機會,讓每個學生圍繞自己的猜想、決定自己的探索方向、選擇自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,讓學生在操作中自主探究數(shù)學知識的產生發(fā)展過程。驗證自己的猜想,鼓勵學生用不同的方法進行驗證,促進學生創(chuàng)新能力的發(fā)展。)
三、交流評價,歸納結論。
學生操作驗證,完成實驗報告單后,利用投影儀展示學生填寫的實驗報告單。
實驗報告單
實驗名稱
三角形內角和
實驗目的
探究三角形內角和是多少度。
實驗材料
尺子
剪刀
量角器
銳角三角形紙片
直角三角形紙片
鈍角三角形紙片
我的方法
我的發(fā)現(xiàn)
我的表現(xiàn)
自評
互評
學生在展示過程中,充分交流和討論實驗中各自使用的方法和發(fā)現(xiàn),教師要對學生的閃光點及時進行表揚和鼓勵。
師生共同歸納,得出結論:
三角形內角和等于180°
。ㄔO計意圖:各學習小組匯報自己的驗證過程,展示探究的成果。對學生探索發(fā)現(xiàn)的方法、策略進行總結歸納,集思廣益,取長補短達到共識。在交流、歸納過程中,及時肯定其中的閃光點給予表揚和鼓勵,使他們體驗到成功的愉悅,促使他們獲得更大的成功。)
四、分層練習,鞏固創(chuàng)新。
、僬n件出示:
師:這個三角形是什么三角形?知道幾個內角的度數(shù)?
生:直角三角形,知道一個角是30°,還有一個角是90°!螦=90°-30°=60°。
師:根據(jù)今天所學的知識,誰能求出A的度數(shù)?大家自己試一試。
學生做完后反饋講評時讓學生說說自己的方法。
生1:用三角形內角的和(180°)減去30°再減去90°,算出∠A是60°。
∠A=180°-30°-90°=60°。
生2:先用30°加上90°得120°再用180°減去120°也可得∠A =60°。
、趯W生完成完成P29的第一題。
引導學生按照前面的方法獨立完成,教師巡視,集體訂正。
、鄄乱徊氯切蔚牧硗鈨蓚角可能各是多少度。
同桌同學互相說一說。(答案不唯一)
、苄〗M操作探究活動。
讓學生剪出幾個不同的四邊形,按表中所給的方法以做一做,并填一填。
方 法
四邊形內角和
用量角器量出每個內角的度數(shù),并相加。
把四邊形四個角剪下來,拼在一起。
把四邊形分為兩個三角形。
填表后讓學生想一想、互相說一說,四邊形內角和是多少度?
(設計意圖:引導學生將探究學習活動中所獲得的結論經(jīng)驗和方法運用于探索解決簡單的實際問題。組織學生參與具有趣味性、操作性和開放性的練習活動,讓學生在鞏固練習中培養(yǎng)動手能力、實踐能力和創(chuàng)新思維。)
北師大四年級下冊《三角形內角和》的教學設計 5
【教學目標】
1、學生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內角和等于180度”的規(guī)律。
2、在探究過程中,經(jīng)歷知識產生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。
3、體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。
【教學重點】
探究發(fā)現(xiàn)和驗證“三角形的內角和180度”這一規(guī)律的過程,并歸納總結出規(guī)律。
【教學難點】
對不同探究方法的指導和學生對規(guī)律的靈活應用。
【教具準備】
課件、表格、學生準備不同類型的三角形各一個,量角器。
【教學過程】
一、激趣引入。
1、猜謎語
師:同學們喜歡猜謎語嗎?
生:喜歡。
師:那么,下面老師給大家出個謎語。請聽謎面:
形狀似座山,穩(wěn)定性能堅,三竿首尾連,學問不簡單。(打一圖形)大家一起說是什么?
生:三角形
2、介紹三角形按角的分類
師:真聰明!!板書“三角形”!那么,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類
師分別出示卡片貼于黑板。
3、激發(fā)學生探知心里
師:大家會不會畫三角形啊?
生:會
師:下面請你拿出筆在本子上畫出一個三角形,但是我有個要求:畫出一個有兩個直角的三角形。試一試吧!
生:試著畫
師:畫出來沒有?
生:沒有
師:畫不出來了,是嗎?
生:是
師:有兩個直角的三角形為什么畫不出來呢?這就是三角形中角的奧秘!這節(jié)課我們就來學習有關三角形角的知識“三角形內角和”(板書課題)
二、探究新知。
1、認識三角形的內角
看看這三個字,說說看,什么是三角形的內角?
生:就是三角形里面的角。
師:三角形有幾個內角?
生:3個。
師:那么為了研究的時候比較方便,我們把這三個內角標上角1角2角3,請同學們也拿出桌子上三角形標出(教師標出)
師:你知道什么是三角形“內角和”嗎?
生:三角形里面的.角加起來的度數(shù)。
2、研究特殊三角形的內角和
師:分別拿出一個直角三角板,請同學們看看這屬于什么三角形,說出每個角的度數(shù),那這個三角形的內角和是多少度?
生:算一算:90°+60°+30°=180° 90°+45°+45°=180°
師:180°也是我們學習過的什么角?
生:平角
師:從剛才兩個三角形的內角和的計算中,你發(fā)現(xiàn)了什么?
3、研究一般三角形的內角和
師:猜一猜,其它三角形的內角和是多少度呢?
生:
4、操作、驗證
師:同學們猜的結果各不相同,那怎么辦呀?你能想個辦法驗證一下嗎?
要求:
(1)每4人為一個小組。
。2)每個小組都有不同類型的三角形,每種類型都需要驗證,先討論一下,怎樣才能較快的完成任務?
(3)驗證的方法不只一種,同學們要多動動腦子。
師:好,開始活動!
師:巡視指導
師:好!請一組匯報測量結果。
生:通過測量我們發(fā)現(xiàn)每個三角形的三個內角和都在180度左右。
師:其實三角形的內角和就是180度,只是因為我們在測量時存在了一些誤差,所以測量出的結果不準確。
生:我是用撕的方法,把直角三角形三個內角撕下來,拼在一起,拼成一個平角,是180度。
師:好!非常好!
師:有其它同學操作銳角三角形和鈍角三角形的嗎?誰愿意到前面來展示一下?生:展示銳角三角形(撕拼)
生:展示折一折我是用折的方法把銳角三角形三個角折在一起,組成一個平角,是180°。
師:老師也做了一個實驗看一看是不是和大家得到結果一樣呢?(多媒體展示)
現(xiàn)在老師問同學們,三角形的內角和是多少?
生:180度。
師:通過驗證:我們知道了無論是銳角三角形,直角三角形還是鈍角三角形,它們的內角和都是180°。板書:三角形內角和等于180度,F(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內角和是180°”。
三、解決疑問
師:好!請同學們回憶一下,剛才課前老師讓同學們畫出有兩個直角的三角形畫出來了嗎?
生:沒有
師:那你能用這節(jié)課的知識解釋一下為什么畫不出來嗎?
生:兩個直角是180度,沒有第三個角了。
師:如果想畫出有兩個角是鈍角的三角形你能畫出來嗎?
生:大于180度,也畫不出第三個角。師:所以,生活中不存在這樣的三角形。
師:學會了知識,我們就要懂得去運用。
四、鞏固提高。
1、填空。
。1)三角形的內角和是()度。
。2)一個三角形的兩個內角分別是80°和75°,它的另一個角是()。
2、求下面各角的度數(shù)。
。1)∠1=27° ∠2=53° ∠3=()這是一個()三角形。
。2)∠1=70° ∠2=50° ∠3=()這是一個()三角形。
3、判斷每組中的三個角是不是同一個三角形中的三個內角。
。1)80° 95° 5°( )
(2)60° 70° 90°( )
。3)30° 40° 50°( )
4、紅領巾是一個等腰三角形,求底角的度數(shù)。(多媒體出示)
對學生進行思品教育。
5、思考延伸。
根據(jù)三角形內角和是180度,算一算四邊形和八邊形的內角和是多少?
6、游戲:幫角找朋友每組卡片中,哪三個角可以組成三角形?)每組卡片中,哪三個角可以組成三角形?)60°、90°、45°、30°、60°、90°、45°、30°、54°、46°、52°
五、總結。
北師大四年級下冊《三角形內角和》的教學設計 6
教學目標:
1.知道三角形的內角和是180度,理解三角形內角和與三角形的大小無關。
2.通過測量、計算、猜想、實驗等數(shù)學活動,積累認識圖形的方法和經(jīng)驗,逐步推理、歸納出三角形內角和。
3.關注學生在操作活動中遇到的真問題,培養(yǎng)學生誠實嚴謹?shù)膶嶒瀾B(tài)度,實事求是的科學的態(tài)度。
教學重點:
知道三角形的內角和是180度,理解三角形的內角和與三角形的大小、形狀無關。
教學難點:
經(jīng)歷操作活動,推理、歸納出三角形的內角和。
教學資源:
多煤體課件,各種三角形,三角板,量角器,剪刀。
教學活動:
一、創(chuàng)設情境,導入新課。
1.昨天我們學習了三角形的分類,三角形按角的特征怎么分類?按邊的特征怎么分類?
2.信封中裝一個三角形露出一個銳角,猜一猜信封中裝的是一個什么三角形?能確定嗎?(露出一個鈍角)現(xiàn)在能確定了嗎?為什么現(xiàn)在就能確定了?(有一個鈍角,兩個銳的三角形是鈍角三角形)。
3.三角形中還隱藏著那些知識?三角形的三個內角的和是多少度?這節(jié)課我們研究三角形的內角和。(板書課題:三角形的內角和)
二、合件交流,操作發(fā)現(xiàn)。
1.(課件)你知道三角尺內角的度數(shù)分別是多少嗎?每個直角三角尺的內角度數(shù)之和都是多少度?我們能根據(jù)三角尺的內角和是180度,就得出三角形的內角和的結論嗎?應該怎么研究?(應該把三角形中所有的類型銳角三角形、直角三角形、鈍角三角形都研究后,才能得出結論)(課件出示學習單)。
2.組織學生小組合作:
請同學們以4人為一個小組,三個人分別量一量,算一算一種三角形的內角的度數(shù),小組長填寫學習單。老師巡視。
、賻煟耗懿荒苤涣砍鰞蓚角的度數(shù),不量第三個角的'度數(shù),就開始填表、計算?(我們的研究必須是科學的、實事求是的,測量的數(shù)據(jù)必須是真實的,來不的半點馬虎)。
②同桌交流,你們有什么發(fā)現(xiàn)?
3.組織學生匯報交流:
、倌莻組說一說你們組測量的數(shù)據(jù)和計算的結果?(學生的計算不是正好180度時,問:大約是多少度?)
、谀銈冇惺裁窗l(fā)現(xiàn)?(銳角三角形、直角三角形、鈍角三角形的內角和大約都是180度。
、勰隳芴岢鍪裁床孪?(我猜三角形的內角和是180度)老師板書:三角形的內角和是180°我們的猜想對不對,(在板書后面打上“?”),就需要我們驗證,請同學們想辦法驗證我們的猜想對不對?(學生通過折的方法剪拼進行驗證;學生通過剪、拼的方法進行驗證。)
4.學生展臺展示自己的難方法。通過驗證,我們發(fā)現(xiàn)三角形的內角和是180度。老師把“?”改為“!”。
5.操作總會有誤差,有沒有別的方法說明呢?(老師課件演示長方形的四個角都是直角,所以長方形的內角和應為:90°×4=360°。將長方形沿對角線分割,可以分成兩個完全相等的直角三角形,所以直角三角形內角和應為:360°÷2=180°;沿高可以將任意三角形分成兩個直角三角形。由于前面證明了任意直角三角形的內角和是180°,因此兩個直角三角形的內角和應為:180°×2=360°。而直角三角形的兩個直角不屬于分割前三角形的內角,因此任意三角形的內角和應為:360°-180°=180°。)
三、實踐應用,拓展延伸。
1.這里有一條紅領巾,它的形狀是等腰三角形,其中∠1=110°,請計算出∠2=()°,∠3=()°。
2.把下面這個三角形沿虛線剪成兩個小三角形,每個小三角形的內角和是多少度?(把一個三角形剪成兩個小三角形,雖然大小發(fā)生了變化,可是內角和依然是180度,說明三角形的內角和與三角形大小無關)。
四、反思總結,自我建構。
這節(jié)課你有什么收獲?
這節(jié)課我們就研究到這兒,同學們再見!
北師大四年級下冊《三角形內角和》的教學設計 7
學情分析:
學生已經(jīng)掌握了角的概念、角的分類和角的度量等知識。在本課之前,學生又掌握了三角形的穩(wěn)定性研究了三角形的分類。這些都為進一步研究三角形內角和作了知識儲備和心理準備,為本課內容的教學作了鋪墊。三角形的內角和是三角形的一個重要性質。它有助于理解三角形的三個內角之間的關系,是進一步學習、研究幾何問題的基礎。
教學目標:
1、知識與技能:通過操作活動探索發(fā)現(xiàn)和驗證“三角形的內角和是180度”的規(guī)律。
2、過程與方法:通過量一量、剪一剪、拼一拼,培養(yǎng)學生的合作能力、動手實踐能力,并運用新知識解決問題的能力。
3、情感態(tài)度:使學生體驗數(shù)學學習成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。
教學重點:
探索發(fā)現(xiàn)和驗證三角形的內角和是180度。
教學難點:
對不同探究方法的指導和學生對規(guī)律的靈活應用。
教具準備:
教師準備:多媒體課件、不同類形大小不一的三角形若干個、記錄表
學生準備:量角器、直尺、剪刀
教學過程:
一、激趣導入
多媒體展示三角形
出示謎語:形狀似座山,穩(wěn)定性能堅
三竿首尾連,學問不簡單(打一圖形名稱)
。A設:三角形)
師:誰能介紹介紹三角形?
。ㄉ1:三角形有三條邊、三個頂點、三個角。
生2:三角形按角分類,分為鈍角三角形、銳角三角形、直角三角形。)
師:你喜歡哪種三角形?(鈍角三角形、銳角三角形、直角三角形)
師:同學們會畫三角形嗎?請你在練習本上畫一個你喜歡的三角形。
師:鈍角、直角、銳角三角形三兄弟吵起來了?我們快去看一看。
師:今天我們就來研究一下三角形的內角和。
二、學習目標
1、通過動手操作,使學生理解并掌握三角形內角和是180度的結論。
2、能運用三角形的內角和是180度這一規(guī)律,求三角形中未知角的度數(shù)。
3、培養(yǎng)動手動腦及分析推理能力。
三、自主學習(展示量角法)
1.理解三角形的內角、內角和
(1)板書展示三角形
師:要想知道什么是三角形的內角和,我們得先知道什么是三角形的內角?(三角形里面的三個角都是三角形的內角。)
師:你能過來指指嗎?同意嗎?內角有幾個?
師:為了研究方便,我們把三角形的三個內角分別標上∠1、∠2、∠3。
師:你能像老師一樣把你的三角形標上∠1、∠2、∠3嗎?
。2)三角形的內角和
師:什么是三角形的內角和?
。ㄈ切稳齻角的度數(shù)的和,就是三角形的內角和,即:∠1+∠2+∠3)
師:就是把∠1+∠2+∠3加起來。
師:根據(jù)我們以前的經(jīng)驗,我們怎么知道∠1、∠2、∠3的度數(shù)呢?(預設:用量角器量)
師:請同學們拿出量角器,量一量你畫的三角形的三個內角,并算出他們的和。(4分鐘)
學生測量(1分40)匯報結果(5人)。
教師填寫測量匯報單。
師:觀察匯報的結果,你有什么發(fā)現(xiàn)?(所有三角形內角和度數(shù)不一樣、三角形內角和都在180度左右)
四、合作探究
師:這是同學們親自測量發(fā)現(xiàn)的,沒有得到統(tǒng)一的結果,這個辦法不能使人信服,有沒有別的方法驗證?老師給每個小組都提供了很多個三角形,現(xiàn)在請你們以小組為單位,拿出三角形來研究研究三角形的內角和到底是多少度。?(8分鐘)(剪拼法)
1、操作驗證探索三角形內角和的規(guī)律(6分鐘)
。1)操作驗證:小組合作
拿出裝有學具的信封[信封里面有老師為學生事先準備的各種類型的三角形若干個(小組之間的三角形大小都不同)];拿出自備的直尺?剪刀
。ɡ蠋熞o學生充裕的時間,保證學生能真正地試驗,操作和探索,通過量一量、折一折、拼一拼、畫一畫等方式去探究問題。)
2、學生匯報
。1)轉化法:
生:兩個同樣的'直角三角形可以拼成一個長方形,長方形每個直角都是90度,內角和就是360度,所以三角形的內角和就是360度的一半180度。
師:他們用長方形的內角和來研究今天所學的知識,得到三角形的內角和是180度。
。2)折拼法
生:把三角形三個內角分別向下邊折疊,拼成了一個平角,平角是180度,所以三角形的內角和是180度。
師:他們是用折拼法驗證三角形的內角和是180度(動手能力真強)
(3)剪拼法
生:把三角形三個內角撕下來,拼成一個平角,平角是180,所以三角形的內角和是180度。(師:提問怎樣能很快的找到三個角?把他們做上標記。)
標記上之后再拼一拼,可見標記的方法很科學。(20分鐘)
3、教師演示
師:我們再來感受一下怎么驗證三角形的內角和的?
師:這是什么三角形?把他折一折。
師:這是什么三角形?我們也可以把他折一折。你有什么發(fā)現(xiàn)?(折完以后都有一個平角,平角是180度,所以三角形的內角和是180度)
師分別通過剪拼法驗證直角三角形、鈍角三角形、銳角三角形內角和。
師:注意觀察。
師:演示完畢有什么發(fā)現(xiàn)?(預設這些三角形剪接后都拼成了平角)平角是180度,所以三角形的內角和是180度。
師:剛剛我們研究了什么三角形。他們的內角和都是180度,那我們研究的這些三角形能不能代表所有的三角形,能。(因為三角形按角分類只能分成這三種。)(22分鐘)
4、演示任意一個三角形的內角和都是180度。
出示一些三角形,讓學生指出內角和。
師:你有什么發(fā)現(xiàn)?(無論是什么樣的三角形他的內角和都是180度,與三角形的形狀大小沒有關系。)(板書三角形的內角和是180度。)
師:那我們再看看剛剛匯報的結果。為什么之前測量的時候并沒有得到這樣得到結果呢?(測量的不夠精確,存在誤差)
師:如果測量儀器再精密一些,測量的更準確一些都可以得到三角形內角和是180度,F(xiàn)在確定這個結論了嗎?(25分鐘)
師:除了這節(jié)課大家想到的方法,還有很多方法也能證明三角形的內角和是180°到初中我們還有更嚴密的方法證明三角形的內角和是180°。早在300多年前就有一位法國著名的科學家帕斯卡,他在12歲時就驗證了任何三角形的內角和都是180°
師:你們能用今天的發(fā)現(xiàn)做一些練習嗎?
五、測評反饋
1、判斷。
。1)直角三角形的兩個銳角的和是90°。
。2)一個等腰三角形的底角可能是鈍角。
。3)三角形的內角和都是180°,與三角形的大小無關。
4、剪一剪。
把一個三角形紙板沿直線剪一刀,剩下的紙板的內角和是多少度?
六、課后作業(yè)
69頁第1題、第3題。
七、板書設計
北師大四年級下冊《三角形內角和》的教學設計 8
教學目標:
1、教會學生主動探究新識的方法,學會運用轉化遷移數(shù)學思想。
2、學生通過量、剪、拼、擺、分割等驗證三角形內角和方法的比較,主動掌握三角形內角和是180°,并運用所學知識解決簡單的實際問題,發(fā)展學生的觀察、歸納、概括能力和初步的空間想象力。
教學重點:
理解并掌握三角形的內角和是180°。
教學難點:
驗證所有三角形的內角之和都是180°。
教具準備:
多媒體課件。
學具準備:
量角器、正方形、剪刀、各類三角形(包括直角三角形、銳角三角形、鈍角三角形)
教學過程:
一、導入
師:知道今天我們學習什么內容嗎?我們先來解讀一下課題,三角形,你手中有么?舉起來我看看,你拿的什么三角形?你呢?師:三角形按角分類,可分為直角三角形、鈍角三角形和銳角三角形。
師:什么是內角?你能把你手中三角形的三個內角用角1、角2、角3標出來嗎?
師:還有一個關鍵字“和”,什么是三角形的內角和?
師:你認為三角形的內角和是多少度?你呢?都知道?是多少度?看來都知道了,就不用再學了吧?你還想學什么?
師:看來我們不僅要知道三角形的內角和是180度,還要親自證明一下為什么是180度。這才真了不起呢。能證明嗎?你想怎么證明阿?
生:量一量的方法。
師:光量就知道了?還要算一算。
師:這種方法可行嗎?下面咱就來試試,請同學們4人一組,分工合作,先測量內角,再計算求和。小組長把計算的過程記錄下來。開始吧。
驗證:量角、求和
小組匯報
生一:我們組量的是銳角三角形,三個角分別是50度、60度、70度,銳角三角形的內角和是180度。
生二:我們組量的是直角三角形,三個角分別是90度、35度、55度,直角三角形的內角和是180度。
生三:我們組量的是鈍角三角形,三個角分別是120度、40度、20度,鈍角三角形的內角和是180度。
師:從剛才的交流中,你發(fā)現(xiàn)了什么?
生:不管是銳角三角形、直角三角形,還是鈍角三角形,內角和都是180度。
師:下面同學測量得出180度的請你舉手,有沒有不是180度的?為什么有不同的答案呢?反思一下。我們在測量的時候容易出現(xiàn)誤差,得出的結論就難以讓人信服?磥硭坪跤昧康姆椒ㄟ不能充分證明。(劃問號)
師:還敢接受更大挑戰(zhàn)嗎?把量角器和你的工具都收起來,只借助這張三角形紙片證明出三角形的內角和是180度,你有辦法嗎?或許下面的同學還有別的方法,下面就請同學們互相交流交流,動手試一試吧!
師:這種方法怎么樣?(鼓掌)老師感到非常的驚喜,你看他們沒有破壞三角形,就這樣輕輕的一折,就解決了問題,真是很巧妙。
師:你們小組每個同學都動腦筋了,謝謝你們。
師:還有那個小組用的這種方法?你們也非常的聰明。還有別的方法嗎?
師:其實大家能用3種方法證明已經(jīng)很不簡單了,現(xiàn)在我們就能很自信的說三角形的內角和是180度。(擦別的)
師:其實對我來說重要的不是知識的`結論,讓老師感動的是你們那種渴望求知,敢于探索的精神。更讓老師高興的是你們積極思考所得出的創(chuàng)造性的方法,F(xiàn)在我們再來一塊回顧一下。
師:這幾種方法都足以說明三角形的內角和是180度。(結論)
師:剛才同學們發(fā)揮自己的聰明才智,想了很多方法來證明。王老師也有一種方法能證明。老師這里有一個活動角,借助課本的一邊就構成了一個三角形,請你睜大眼睛仔細觀察,你發(fā)現(xiàn)了什么?
請你再仔細觀察,你發(fā)現(xiàn)了什么?其實兩個底角減少的度數(shù),正是頂角增大的度數(shù)。如果我繼續(xù)按下去你覺得會怎樣?我們來看看是不是這樣,三角形呢?兩個底角呢?剛才三角形的動態(tài)過程是不是也能證明三角形的內角和是180度?
師:看來只要大家肯動腦筋,面對同一問題就會有不同的解決方法。
師:現(xiàn)在我們知道了“三角形的內角和是180度”,能不能用這個知識來解決一些問題?
生:能。
二、遷移和應用
。ㄒ唬c將臺:
下面哪三個角是同一個三角形的內角?
。1)30 °、60 °、45 °、90 °
。2)52 °、46 °、54 °、80 °
。3)45 °、46 °、90 °、45 °
。ǘ┪視
1、已知∠1,∠2,∠3是三角形的三個內角。
。1)∠1=38° ∠2=49°求∠3
(2)∠2=65° ∠3=73° 求∠1
2、已知∠1和∠2是直角三角形中的兩個銳角
(1)∠1=50°求∠2
。2)∠2=48°求∠1
3、已知等腰三角形的一個底角是70°,它的頂角是多少度?
(三)。變變變!
。1)一個三角形中, ∠1 、∠2、∠3。
(2)如果把∠3剪掉,變成了幾邊形?它的內角和變成多少度呢?
。3)如果再把∠2剪掉,剩下圖形的內角和是多少度呢?
三、全課小結
師:通過一節(jié)課的探索,你有什么收獲?
生答(略)
我的幾點認識:
結合《三角形的內角和》這節(jié)課,我對空間與圖形這一部分內容,簡單的談一下自己的認識。
空間與圖形這一部分內容,可以用這幾個字來概括:難理解,難受,難掌握。在本節(jié)課的教學中,三角形的內角和概念比較抽象,學生比較難理解。尤其是讓學生探究三角形的內角和是180度,對學生來說更是難上加難。如果光憑在頭腦中想,不動手實踐,對于三角形的內角和,學生也只能機械記憶是180度。那如何更好的讓學生掌握和接受呢?針對這些特點我采用了一下幾點做法:
1、根據(jù)學生的知識特點和生活經(jīng)驗,在原有基礎上創(chuàng)造性的使用教材。
在教學本節(jié)課的內容時,學生在自己的日常生活或大部分都已經(jīng)知道三角形的內角和是180。因材在這樣的情況下,我創(chuàng)造性的使用教材。不是讓學生通過自己動手操作之后才發(fā)現(xiàn)三角形的內角和是180,而是直接把問題拋給學生,你們知道三角形的內角和是多少度嗎?
你們怎么知道的?能自己證明么?這樣學生從被動學習者的角色,
立刻轉入主動學習者的角色之中。這樣既能使學生很好的掌握知識,又能使學生激發(fā)興趣,提高積極性。
2、讓學生在小組交流中進行思維的碰撞,在動手操作的實踐過程中得到知識情感價值的升華。
在探究的過程中,我們采用了小組合作學習方式,這樣既能給學生提供交流的空間,又能在短時間內有效學習。學生先交流方法,商定出可行的辦法和方略,然后合作進行實踐。學生會為了一個問題爭的面紅耳赤,在這個過程中我們驚喜的看到生在交流和動手操作過程中得到了提高。通過自己的實踐證明,學生發(fā)現(xiàn)三角形的內角和的確是180度。
總之,在教學空間與圖形的內容時,一定要讓學生看到“圖形",讓學生想象"空間”。
北師大四年級下冊《三角形內角和》的教學設計 9
設計思路
本節(jié)課我先引導學生任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內角和是180°或接近180°(測量誤差),再引導學生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個內角都可以拼成一個平角。再引導學生通過折角的方法也發(fā)現(xiàn)這個結論,由此獲得三角形的內角和是180°的結論。概念的形成沒有直接給出結論,而是通過量、算、拼、折等活動,讓學生探索、實驗、發(fā)現(xiàn)、推理歸納出三角形的內角和是180°。
最后讓學生運用結論解決實際問題,練習的安排上,注意練習層次性和趣味性,還設計了開放性的練習,由一個同學出題,其它同學回答。先給出三角形兩個內角的度數(shù),說出另外一個內角,有唯一的答案。給出三角形一個內角,說出其它兩個內角,答案不唯一,可以得出無數(shù)個答案。讓學生在游戲中拓展學生思維。
教學目標
1、讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。
2、讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數(shù)學思想。
3、使學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。
教學重點
讓學生經(jīng)歷“三角形內角和是180°”這一知識的形成、發(fā)展和應用的全過程。
教學準備
教具:多媒體課件、用彩色卡紙剪的相同的兩個直角三角形、一個鈍角三角形、一個銳角三角形。
學具:三角形
教學過程
一、引入
。ㄒ唬┱J識三角形的內角及三角形的內角和
師:我們已經(jīng)學習了三角形的分類,誰能說說老師手上的是什么三角形?
師:今天我們來學習新的知識《三角形內角和》,誰能說說哪些角是三角形的內角?(讓學生邊說邊指出來)
師:那三角形的內角和又是什么意思?(把三角形三個內角的度數(shù)合起來就叫三角形的內角和。)
。ǘ┰O疑,激發(fā)學生探究新知的心理
師:請同學們幫老師畫一個三角形,能做到嗎?(激發(fā)學生主動學習的心理)
生:能。
師:請聽要求,畫一個有兩個內角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發(fā)現(xiàn)問題、探究問題。)
師:有誰畫出來啦?
生1:不能畫。
生2:只能畫兩個直角。
生3:……
師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?那就讓我們一起來研究吧!
(揭示矛盾,巧妙引入新知的探究)
二、動手操作,探究三角形內角和
(一)猜一猜。
師:猜一猜三角形的內角和是多少度呢?同桌互相說說自己的看法。
生1:180°。
生2:不一定。
……
(二)操作、驗證三角形內角和是180°。
1、量一量三角形的內角
動手量一量自己手中的三角形的內角度數(shù)。
師:所有三角形的內角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?
生:可以先量出每個內角的.度數(shù),再加起來。
師:哦,也就是測量計算,是嗎?
學生匯報結果。
師:請匯報自己測量的結果。
生1:180°。
生2:175°。
生3:182°。
……
2、拼一拼三角形的內角
學生操作
師:沒有得到統(tǒng)一的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?
生1:有。
生2:用拼合的辦法,就是把三角形的三個內角放在一起,可以拼成一個平角。
師:怎樣才能把三個內角放在一起呢?(學生操作)
生:把它們剪下來放在一起。
師:很好。
匯報驗證結果。
師:通過拼合我們得出什么結論?
生1:銳角三角形的內角拼在一起是一個平角,所以銳角三角形的內角和是180°。
生2:直角三角形的內角和也是180°。
生3:鈍角三角形的內角和還是180°。
課件演示驗證結果。
師:請看屏幕,老師也來驗證一下,是不是跟你們得到的結果一樣?(播放課件)
師:我們可以得出一個怎樣的結論?
生:三角形的內角和是180°。
(教師板書:三角形的內角和是180°學生齊讀一遍。)
師:為什么用測量計算的方法不能得到統(tǒng)一的結果呢?
生1:量的不準。
生2:有的量角器有誤差。
師:對,這就是測量的誤差。
3、折一折三角形的內角
師:除了量、拼的方法,還有沒有別的方法可以驗證三角形的內角和是180°。
如果學生說不出來,教師便提示或示范。
學生操作
4、小結:三角形的內角和是180°。
三、解決疑問。
師:現(xiàn)在誰能說說不能畫出有兩個直角的一個三角形的原因?(讓學生體驗成功的喜悅)
生:因為三角形的內角和是180°,在一個三角形中如果有兩個直角,它的內角和就大于180°。
師:在一個三角形中,有沒有可能有兩個鈍角呢?
生:不可能。
師:為什么?
生:因為兩個銳角和已經(jīng)超過了180°。
師:那有沒有可能有兩個銳角呢?
生:有,在一個三角形中最少有兩個內角是銳角。
四、應用三角形的內角和解決問題。
1、下面說法是否正確。
鈍角三角形的內角和一定大于銳角三角形的內角和。()
在直角三角形中,兩個銳角的和等于90度。()
在鈍角三角形中兩個銳角的和大于90度。()
、芤粋三角形中不可能有兩個鈍角。()
、萑切沃杏幸粋銳角是60度,那么這個三角形一定是個銳角三角形。()
2、看圖求出未知角的度數(shù)。(知識的直接運用,數(shù)學信息很淺顯)
3、游戲鞏固。
由一個同學出題,其它同學回答。
。1)給出三角形兩個內角,說出另外一個內角(有唯一的答案)。
。2)給出三角形一個內角,說出其它兩個內角(答案不唯一,可以得出無數(shù)個答案)。
4、根據(jù)所學的知識算出四邊形、正五邊形、正六邊形的內角和。
五、全課總結。
今天你學到了哪些知識?是怎樣獲取這些知識的?你感覺學得怎么樣?
反思:
在本節(jié)課的學習活動過程中,先讓學生進行測量、計算,但得不到統(tǒng)一的結果,再引導學生用把三個角拼在一起得到一個平角進行驗證。這時,有部分學生在拼湊的過程中出現(xiàn)了困難,花費的時間較長,在這里用課件再演示一遍正好解決了這個問題。再引導學生用折三角形的方法也能驗證三角形的內角和是180°。練習設計也具有許多優(yōu)點,注意到練習的梯度,并由淺入深,照顧到不同層次學生的需求,也很有趣味性。在整個教學設計中,本著“學貴在思,思源于疑”的思想,不斷創(chuàng)設問題情境,讓學生去實驗、去發(fā)現(xiàn)新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力。
但因為是借班上課,對學生了解不多,學生前面的內容(三角形的特性和分類)還沒學好,所以有些練習學生就沒有預想的那么得心應手,如:知道等腰三角形的頂角求底角的題,學生掌握比較困難。
北師大四年級下冊《三角形內角和》的教學設計 10
教學內容:
四年級下冊第78~79頁的例4和“練一練”,練習十二第10~13題。
教學目標:
1、使學生通過觀察、操作、比較、歸納等活動,發(fā)現(xiàn)三角形的內角和等于180°,并能應用這一知識求三角形中一個未知角的度數(shù)。
2、使學生經(jīng)歷探索和發(fā)現(xiàn)三角形內角和等于180°的過程,進一步增強自主探索的意識,積累類比、歸納等活動經(jīng)驗,發(fā)展空間觀念。
3、使學生在參與學習活動的過程中,形成互助合作的學習氛圍,培養(yǎng)大膽猜想、敢于質疑、勇于實踐的科學精神。
教學重點:
讓學生經(jīng)歷“三角形內角和等于180°”這一知識的形成、發(fā)展和應用的全過程。
教學難點:
探究和驗證“三角形內角和等于180°”。
教學準備:
學生準備三角板一副、量角器;教師準備多媒體課件、信封里裝三角形紙片若干。
教學過程:
一、創(chuàng)設情境,產生疑問
1、理解內角和含義。
2、故事激趣
提問:三兄弟圍繞什么問題在爭吵?你有什么看法?
二、自主學習,合作探究
1、提出猜想。
(1)計算三角板的內角和。
。2)提出猜想。
提問:通過剛才的計算,你能得出什么結論?有同學懷疑嗎?
指出:“三角形的內角和等于180°”只是根據(jù)這兩個特殊三角形得到的一個猜想。
引導:需用更多的三角形驗證。
2、進行驗證。
。1)驗證教師提供的三角形。
測量:任意三角形的內角和。
、傩〗M合作:用量角器量出信封里不同三角形的內角和。
、诮涣鳒y量結果。
、厶釂枺焊鶕(jù)測量結果,你能得出什么結論?
拼一拼:把一個三角形的三個角拼在一起。
、偎伎迹撼肆,還可以用什么方法驗證呢?
、谕篮献鳎簢L試把三個內角拼成一個平角。
③反饋不同的拼法。
④提問:既然三角形的三個內角能拼成一個平角,你能得出什么結論?有懷疑嗎?
解釋誤差問題。
(2)驗證學生自己畫的三角形。
學生任意畫一個三角形,用自己喜歡的.方法去驗證。
交流:自己畫的三角形驗證出來內角和是180°嗎?有誰驗證
出來不是180°的嗎?
提問:你又能得到什么結論?還有懷疑嗎?
3、得出結論。
指出:三角形有無窮多,課上得到的還只是一個猜想。隨著驗證的深入,能越來越確定這個猜想是對的。
說明:科學家們已經(jīng)經(jīng)過嚴格的論證,證明了所有三角形的內角和確實都是180°。
解決爭吵:學生用三角形內角和的知識勸解三兄弟。
三、鞏固應用,深刻感悟
1、算一算:求三角形中未知角的度數(shù)。
2、拼一拼:用兩塊相同的三角尺拼成一個三角形。
思考:拼成的三角形內角和是多少?
3、畫一畫:(1)你能畫出一個有兩個銳角的三角形嗎?
。2)你能畫出一個有兩個直角的三角形嗎?
。3)你能畫出一個有兩個鈍角的三角形嗎?
四、全課總結,課后延伸
1、學生自主總結一節(jié)課的收獲。
2、介紹帕斯卡。
3、用三角形拼成四邊形、五邊形、六邊形,引發(fā)新的問題。
北師大四年級下冊《三角形內角和》的教學設計 11
教學內容:
北師版小學數(shù)學四年級下冊《探索與發(fā)現(xiàn)(一)—三角形內角和》
教材分析:
《三角形內角和》是北師大版小學數(shù)學四年級下冊第二單元第三節(jié)的內容,是在學生認識了直角三角形、銳角三角形、鈍角三角形、等腰三角形和等邊三角形的特點的基礎上進一步探究三角形有關性質中的三個內角和的性質,是“空間與圖形”領域的重要內容之一。教材在呈現(xiàn)教學內容時,不但重視知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間。三角形的內角和的性質沒有直接給出,而是提供了豐富多彩的動手實踐的素材,讓學生通過探索、實驗、討論、交流而獲得,從而讓學生在動手操作,積極探索的活動過程中掌握知識,積累數(shù)學經(jīng)驗,同時發(fā)展空間觀念和推理能力,不斷提高自己的思維水平。
學情分析:
本節(jié)課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的,學生已經(jīng)具備一定的關于三角形的認識的直接經(jīng)驗,也已具備了一些相應的三角形知識,這為感受、理解、抽象“三角形的內角和”的性質,打下了堅實的基礎。同時,通過近四年的數(shù)學學習,學生已初步掌握了一些學習數(shù)學的基本方法,具備了一定的動手操作、觀察比較和合作交流的能力。能在小組長帶領下,圍繞數(shù)學問題開展初步的討論活動,能比較清楚的表達自己的意見,認真傾聽他人的.發(fā)言,具備了初步的數(shù)學交流能力。
教學目標:
1、讓學生經(jīng)歷“猜想、驗證、歸納、應用”等知識形成的全過程,探索并發(fā)現(xiàn)“三角形內角和等于180°,”,并能應用規(guī)律解決一些實際問題。
2、在探索過程中培養(yǎng)學生的動手實踐能力、協(xié)作能力及創(chuàng)新意識和探究精神,發(fā)展學生的空間思維能力,同時使學生養(yǎng)成獨立思考的習慣。
3、在活動中,讓學生體驗主動探究數(shù)學規(guī)律的樂趣,體驗學數(shù)學的價值,激發(fā)學生學習數(shù)學的熱情。
教學重點:
讓學生經(jīng)歷“猜想、驗證、歸納、應用”等知識形成的全過程,探索并發(fā)現(xiàn)三角形內角和等于180°,并能應用規(guī)律解決一些實際問題。
教學難點:
掌握探究方法(猜想-驗證-歸納總結),學會用“轉化”的數(shù)學思想探究三角形內角和。
教學用具:
表格、課件。
學具準備:
各種三角形、剪刀、量角器。
一、創(chuàng)設情境揭示課題。
1、復習
提問:前面我們已經(jīng)學習了三角形的一些知識,誰能介紹一下呢?
生回憶三角形的特征,三角形分類,三角形具有穩(wěn)定性等內容。
2、引入
三角形具有穩(wěn)定形,三角形家族是一個團結的家族,但今天家族內部卻發(fā)生了激勵的爭論。
播放課件,提問:它們在爭論什么?
什么是三角形的內角和?(板書:內角和)
講解:三角形內兩條邊所夾的角就叫做這個三角形的內角。每個三角形都有三個內角,這三個內角的度數(shù)加起來就是三角形的內角和。
二、自主探究,合作交流。
(一)提出問題:
1、你認為誰說得對?你是怎么想的?
2、你有什么辦法可以比較一下這兩個三角形的內角和呢?
學生可能會說:用量角器量一量三個內角各是多少度,把它們加起來,再比較。
。ǘ┨剿髋c發(fā)現(xiàn)
1、初步探索,提出猜想。
(1)量一量
①了解活動要求:(屏幕顯示)
A、在練習本上畫一個三角形,量一量三角形三個內角的度數(shù)并標注。(測量時要認真,力求準確)
B、把測量結果記錄在表格中,并計算三角形內角和。
C、討論:從剛才的測量和計算結果中,你發(fā)現(xiàn)了什么?
。ㄒ龑仡櫥顒右螅
②、小組合作。
、邸R報交流。
你們測量了幾個三角形?它們的內角和分別是多少?從測量和計算結果中你們發(fā)現(xiàn)了什么?
。ㄒ龑W生發(fā)現(xiàn)每個三角形的三個內角和都在180°,左右。)
。2)提出猜想
剛才我們通過測量和計算發(fā)現(xiàn)了三角形內角和都在180度左右,那你能不能大膽的猜測一下:三角形內角和是否相等?三角形的內角和等于多少度呢?(板書:猜測)
2、動手操作,驗證猜想
這個猜想是否成立呢?我們要想辦法來驗證一下。(板書驗證)
引導:180°,跟我們學過的什么角有關?我們課前準備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內角轉換成一個平角呢?
。1)、小組合作,討論驗證方法。
。2)分組匯報,討論質疑
學生可能會出現(xiàn)的方法:
A、撕拼的方法
把三個角撕下來,拼在一起,3個角拼成了一個平角,所以三角形內角和就是180°。
討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結論呢?
B、折一折的方法
把三角形的角1折向它的對邊,使頂點落在對邊上,然后另外兩個角相向對折,使它們的頂點與角1的頂點互相重合,也證明了三角形內角和等于180°。
討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結論?
C提問:還有沒有其它的方法?
3、回顧兩種方法,歸納總結,得出結論。
。1)課件演示:兩種方法的展示。
。2)引導學生得出結論。
孩子們,三角形內角和到底等于多少度呢?”
學生一定會高興地喊:“180°!
。3)總結方法,齊讀結論
我們通過動作操作,折一折,拼一拼,把三角形的三個內角轉換成了一個平角,成功的得到了這個結論,讓我們?yōu)樽约旱某晒恼!齊讀結論。(板書:得到結論)
。4)解釋測量誤差
為什么我們剛才通過測量,計算出來的三角形內角和不是180°,呢?
那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結果存在一定的誤差。實際上,三角形內角和就等于180°
。ㄈ、回顧問題:
現(xiàn)在你知道這兩個三角形誰說得對了嗎?(都不對。
為什么?請大家一起,自信肯定的告訴我。
生:因為三角形內角和等于180°。(齊讀)
三、鞏固深化,加深理解。
1、試一試:數(shù)學書28頁第3題
∠A=180°— 90°—30°
2、練一練:數(shù)學書29頁第一題(生獨立解決)
∠A=180°— 75°— 28°
3、小法官:數(shù)學書29頁第二題
4、拓展創(chuàng)新
A D G
B C E F H R
ABC的內角和是()
DEF的內角和是()
GHR的內角和呢?
小結:三角形的形狀和大小雖然不同,但是三角形的內角和都是180度。
四、回顧課堂,滲透數(shù)學方法。
1、總結:猜想—驗證—歸納—應用的數(shù)學方法。
2、介紹:三角形內角和等于180度這個結論的由來;數(shù)學領域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。
3、課堂延伸活動:探索——多邊形內角和
板書設計:
三角形內角和等于180°。
猜想驗證得出結論應用
北師大四年級下冊《三角形內角和》的教學設計 12
教學內容:
人教版四年級下冊第85面——87面。
教學目標:
1、讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。
2、讓學生在動手獲取知識的過程中,滲透“轉化”數(shù)學思想,掌握簡單的數(shù)學推理方法,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。
3、讓學生感受到數(shù)學的價值,體會成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。
教學重點:
讓學生經(jīng)歷“三角形內角和是180°”這一知識的發(fā)現(xiàn)過程。
教學準備:
教具:多媒體課件、三角板一個、兩個完全一樣的直角三角形。
學具:銳角三角形、直角三角形、鈍角三角形各一個。
教學過程:
。ㄒ唬﹦(chuàng)設情境,提出問題。
師:同學們的歌聲真嘹亮,老師站在這里和大家一起學習感到很高興,今天老師還給大家?guī)砹艘粋老朋友,請看,是什么?
生:三角形!
師:前面我們已經(jīng)認識了三角形,誰能給大家介紹一下?
學生講學過的三角形知識。
(學生敘述到部分主要內容即可)
師:看來大家對三角形已經(jīng)非常熟悉了,老師還為大家?guī)砹藘蓚特殊的三角形,請看,它們是什么三角形?(點擊FLASH出示直角三角形實物圖)
師:(師指第一個三角形)誰知道這個直角三角形每個角的度數(shù)嗎?
師:答的真準確,(FLASH:生說完后師邊說邊點出度數(shù))30度、60度、90度都在這個三角形的內部,我們把這樣的角叫做三角形的內角。
師:有誰知道這個三角形三個內角的度數(shù)?
。‵LASH:生說完后師點擊出第二個三角形,邊說邊點出度數(shù))
[U1]試一試,看誰算得快。
師:誰來說說自己的計算過程?
[U2]角的和叫做三角形的內角和。(板書課題)下面請大家認真觀察這兩個算式,從結果上看,你發(fā)現(xiàn)了什么?
生:它們的內角和都是180度。
師:觀察的真仔細。c擊課件,出示多種多樣的三角形后提問)同學們,咱們都知道,這兩個三角形是特殊三角形,在我們的生活中還有許許多多不是這個樣子的三角形,請看大屏幕,這些任意三角形,它們的內角和是不是都是180度呢?
。刍卮鹂赡苡卸荩
。ㄒ环N全部說是:)
師:請問,你們是怎么想的,為什么這么認為?
生:……
師:看來,大家是通過這兩個三角形猜想的,是嗎?想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內角和的秘密吧。◣熢谡n題“內角和”下面劃上橫線,打上問號)
。ㄒ环N有一部分同學說是,有一部分同學說不是:)
師:看來,大家的意見不一致,想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內角和的秘密吧。◣熢谡n題“內角和”下面劃上橫線,打上問號)
。ǘ﹦邮植僮,探究新知
[U3]
師:老師看你們有答案了,哪位同學愿意說一說你的奇思妙想?
生:我準備用量的方法。
師:然后呢?
生:然后把它們三個內角的度數(shù)相加起來,就知道了三角形的內角和是多少?
師:說的真不錯,還有沒有其它的方法?
生:我是把三角形的三個角剪下來,拼在一起(師鼓勵:你的想法很有創(chuàng)意,等一會兒用你的行動來驗證你的猜想吧!)
生:……
。ㄈ缟粫r想不到,師可引導:他是把三個內角的度數(shù)相加在一起,我們能不能想辦法把三個內角放在一起進行觀察,看看能不能發(fā)現(xiàn)些什么呢?)
師:好啦,老師相信咱們班的同學個個都是小數(shù)學家,一定能找出更多的方法的,請你們在研究之前,也像老師一樣,在三個內角上編上序號,角一、角二、角三,現(xiàn)在就請同學們對銳角三角形、直角三角形和鈍角三角形等各種類型的三角形進行研究,看看它們的內角和各有什么特點。咱們比一比,看一看,哪個小組的方法多,方法好!
[U4]開始吧。▽W生研究,師巡回指導)預設時間:5分鐘
師:老師看各小組已經(jīng)研究好了,哪位同學愿意上來交流一下?
師:請你告訴大家,你是怎么研究的,最后發(fā)現(xiàn)了什么結果?
(預設:如果第一類同學說的是量的方法)
師:你是用什么來研究的?
生:量角器。
師:那請你說一下你度量的結果好嗎?
。ㄉ鷧R報度量結果)
師:剛才有的同學測量的結果是180度,有的同學測量的結果是179度,有的同學測量的結果是182度,各不相同,但是這些結果都比較接近于多少?
生:180度。
師:那到底三角形的內角和是不是180度呢?還有哪位同學有其它的方法進行驗證嗎?
生:我是先把三角形的三個角剪掉以后粘在一起,然后在量出它們三個角組成的度數(shù)。
師:他演示的真好,你們聽明白了嗎?李老師把他的'過程給大家在大屏幕上演示一下。
。◣熯呏v解邊點擊FLASH:把三角形按照三個內角撕成三塊,先把角一放在右邊,再把角二放在左邊,最后把角三調個頭,插在角一角二的中間,這樣它們三個內角就形成了一個大角,角一的這條邊,角二這條邊看起來在一條直線上,那到底是不是在一條直線上呢,我們一起用直尺來量一下,師演示后問學生:是不是在一條直線上,那這個大角是個什么角呢?通過剛才拼的過程,你有什么發(fā)現(xiàn)?)
師:好極了,剛才這個小組的同學用拼的方法得到XX三角形的內角和是180度,你們還有別的方法嗎?
生:我們還用了折的方法(生介紹方法)
師:你們聽明白了嗎?李老師把他的過程給大家在大屏幕上演示一下。
(師邊講解邊點擊FLASH:先找到兩條邊的中點,把它連起來,把角一沿著中間的這條線向對邊對折,再把角二向里對折,使它的頂點與角一對齊,最后把角三也用同樣的方法對折,這樣它們三個內角就形成了一個大角,這個大角是個什么角呢?)
生:是個平角。180度。
師:除了用了量、拼、折的方法來研究以外,剛才在操作的過程中老師還發(fā)現(xiàn)了一個同學用了一種方法來進行研究,大家想知道嗎?
師:請這位同學來說給大家聽聽吧!
生:我把兩個相同的直角三角形拼成了一個長方形,因為長方形里面有四個直角,所以它的內角和是360度,那么一個三角形的內角和就是180度。
師:剛才我們用量、拼、折、推理的方法都得到了三角形的內角和是180度,同學們,現(xiàn)在我們回想一下,剛才測量的不同結果是一個準確數(shù)還是一個近似數(shù)?為什么會出現(xiàn)這種情況呢?
生1:量的不準。
生2:有的量角器有誤差。
師:對,這就是測量的誤差,如果測量儀器再精密一些,我們的方法再準確一些,那么任意一個三角形的內角和也將是180度。
師:同學們,我們剛才用不同的方法,不同的三角形研究了三角形的內角和,得到了一個相同的發(fā)現(xiàn),這個發(fā)現(xiàn)就是?
生:三角形的內角和是180度。(師板書)
師:把你們偉大的發(fā)現(xiàn)讀一讀吧!
(三)拓展應用,深化認識
師:請看老師手上的這兩個三角形,左邊這個內角和是多少度?(生:180度)右邊呢(生:也是180度)
師:現(xiàn)在老師把它們拼在一起,這個大三角形的內角和又是多少度呢?
。ㄉ鸷髱熞龑w納得出:三角形的內角和與形狀大小無關,組成的大三角形的內角和依然是180度。)
師:剛才我們在討論學習三角形知識的時候,三角形中的兩個好朋友卻爭執(zhí)了起來,想知道怎么回事嗎?讓我們一起去看看吧。ǔ鍪菊n件,課件內容:一個大一些的直角三角形說:“我的個頭比你大,我的內角和一定比你大”。另一個稍小的銳角三角形說:“是這樣嗎”?)
師:到底誰說的對呢?今天我們就用我們今天學到的知識來為它們解決解決吧!
師:真不錯,你們當了一回小法官,幫助三角形兄弟解決了問題,它倆很感謝你們,三角形王國中還有很多生活中的問題,小博士們,你們愿意解答嗎?
師:好,請看大屏幕!
。ǔ鍪净A練習)在一個三角形中角一是140度,角三是25度,求角二的度數(shù)。
生答后,師提問:你是怎樣想的?
生陳述后,師鼓勵:說的真好!
出示自行車、等邊三角形的路標牌、告訴頂角求底角的房頂、直角三角形的電線桿架進行練習。
。ǔ鍪荆┬〖t的爸爸給小紅買了一個等腰三角形的風箏,它的一個底角是70度,它的頂角是多少度?
師:看來啊,三角形的知識在咱們生活中還有著這么廣泛的運用呢!昨天,我們班發(fā)生了一件事情,小明不小心將鏡框上的一塊三角形玻璃摔破了,(課件呈現(xiàn)情境)他想重新買一塊玻璃安上,小明非常聰明,只帶了其中的一塊到玻璃店去,就配到了和原來一模一樣的玻璃了。你知道他帶的是哪一塊嗎?
。A設:師:根據(jù)三角形的內角和是180度,你能求出下面四邊形、五邊形、六邊形的內角和嗎?
師:太棒了,這位同學把這個四邊形分割成了二個三角形求出了它的內角和,你能像他一樣棒求出五邊形和六邊形的內角和嗎?
師:同學們,今天我們一起學習了三角形的內角和,你有哪些收獲呢?
師:嗯,真不錯,你們知道嗎?三角形的內角和等于180度是法國著名的數(shù)學家帕斯卡在1635年他12歲時獨自發(fā)現(xiàn)的,今天憑著同學們的聰明智慧也研究出了三角形的內角和是180度,老師為你們感到驕傲,老師相信在你們的勤奮學習和刻苦鉆研下,你們就是下一個“帕斯卡”!
師:好,下課!同學們再見!
北師大四年級下冊《三角形內角和》的教學設計 13
一、教材內容分析
三角形的內角和是三角形的一個重要特征。本課時安排在三角形的特性和分類之后進行的,它是學生以后學習多邊形的內角和的基礎。學生在掌握知識方面:基本掌握三角形的分類,角的分類等有關知識;能力方面:學生已具備了初步的動手操作能力和主觀探究能力以及合作學習的習慣。因此,教材特重視知識的探索宇發(fā)現(xiàn),安排了一系列的實驗操作活動。教材在呈現(xiàn)教學內容時,即重視知識的`形成過程,又注意提供學生自主探究的空間,為教師組織教學提供了清晰的思路。學生通過量;剪;拼;算等活動,讓學生探索。實驗。發(fā)現(xiàn)。驗證三角形內角和是180度。
二、教學目標(知識,技能,情感態(tài)度、價值觀)
知識于技能:讓學生通過親自動手量。剪。拼等活動,發(fā)現(xiàn)三角形內角和是180度,并會應用這一知識解決生活中簡單的實際問題。
過程與方法:讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”的數(shù)學思想
情感態(tài)度與價值觀:通過學習讓學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。
三、學習者特征分析
學生已經(jīng)認識了三角形,并掌握了三角形的分類,較熟悉平角等有關知識;具備了初步的動手操作能力和主動探究能力。因此概念的形成是通過量。算。拼等活動,讓學生探索。實驗。發(fā)現(xiàn)。討論。推理。歸納出三角形的內角和是180度。
四、教學策略選擇與設計
1、關注學生的學習過程,注意培養(yǎng)學生動手操作能力以及和作與交流的能力,培養(yǎng)應用和創(chuàng)新意識。
2、從學生已有的知識和生活經(jīng)驗出發(fā),讓學生通過操作。觀察。思考。交流。推理。歸等活動,培養(yǎng)學生的學習興趣,體驗數(shù)學的價值。
五、教學環(huán)境及資源準備
教具準備;多媒體課件。一副三角板。
學具準備:量角器。各種三角形。剪刀等。
北師大四年級下冊《三角形內角和》的教學設計 14
一、教學目標
1. 知識目標:理解并掌握三角形內角和為180°的規(guī)律,并能應用這一規(guī)律解決相關問題。
2. 能力目標:
培養(yǎng)學生的動手操作能力,如使用量角器、折疊、剪拼等。
增強學生的觀察、分析和推理能力。
促進學生合作交流的能力。
3. 情感目標:激發(fā)學生對數(shù)學學習的`興趣,培養(yǎng)他們解決問題的信心。
二、教學重難點
1. 重點:理解并掌握三角形內角和為180°的規(guī)律。
2. 難點:如何讓學生通過動手操作來驗證三角形內角和為180°的規(guī)律。
三、教學準備
1. 課件
2. 三角板
3. 量角器
4. 白紙
5. 剪刀
四、教學過程
1. 導入新課
通過展示幾個不同形狀和大小的三角形,引導學生觀察并思考三角形的內角和是否相等。
2. 探究新知
活動一:讓學生使用量角器測量三角形每個內角的度數(shù),并計算三個角的和,記錄結果。
活動二:引導學生通過折疊或剪拼的方法,將三角形的三個內角拼成一個平角,從而驗證三角形內角和為180°的規(guī)律。
3. 匯報交流
讓學生分享自己的測量和驗證結果,教師進行總結和點評。
4. 鞏固練習
給出一些三角形的內角度數(shù),讓學生求出第三個角的度數(shù)。
通過一些實際問題,讓學生應用三角形內角和的規(guī)律解決問題。
5. 課堂小結
總結三角形內角和為180°的規(guī)律,并強調其在實際生活中的應用。
五、作業(yè)布置
1. 完成課后練習冊的相關題目。
2. 思考如何用其他方法驗證三角形內角和為180°的規(guī)律。
北師大四年級下冊《三角形內角和》的教學設計 15
一、教學目標
1. 知識目標:
復習三角形的分類和性質。
掌握三角形內角和為180°的規(guī)律,并能靈活運用。
2. 能力目標:
培養(yǎng)學生的觀察、分析、推理和歸納能力。
提高學生的數(shù)學表達和溝通能力。
3. 情感目標:
激發(fā)學生對數(shù)學學習的興趣和好奇心。
培養(yǎng)學生的團隊合作精神和解決問題的能力。
二、教學重難點
1. 重點:三角形內角和為180°的規(guī)律及其應用。
2. 難點:如何引導學生通過實驗操作來發(fā)現(xiàn)和驗證三角形內角和的規(guī)律。
三、教學準備
1. 課件
2. 三角板(不同形狀和大。
3. 量角器
4. 白紙
5. 剪刀
四、教學過程
1. 復習導入
復習三角形的分類和性質,為新課學習做好鋪墊。
2. 探究新知
情境引入:通過故事或實際問題引出三角形內角和的問題。
猜想:讓學生猜想三角形內角和的可能值,并說明理由。
驗證:
方法一:讓學生使用量角器測量三角形每個內角的度數(shù),并計算三個角的和。
方法二:引導學生通過折疊或剪拼的方法將三角形的三個內角拼成一個平角,從而驗證猜想。
3. 歸納總結
引導學生總結三角形內角和為180°的'規(guī)律,并強調其重要性。
4. 拓展延伸
引導學生思考四邊形、五邊形等多邊形的內角和規(guī)律,并嘗試進行推導。
5. 鞏固練習
給出一些三角形的內角度數(shù),讓學生求出第三個角的度數(shù)。
通過一些實際問題,讓學生應用三角形內角和的規(guī)律解決問題。
6. 課堂小結
總結本節(jié)課學習的知識點和方法,并強調其在實際生活中的應用。
五、作業(yè)布置
1. 完成課后練習冊的相關題目。
2. 嘗試推導四邊形、五邊形等多邊形的內角和規(guī)律,并記錄在作業(yè)本上。
【北師大四年級下冊《三角形內角和》的教學設計】相關文章:
《三角形內角和》教學設計03-08
三角形內角和教學設計02-13
《三角形的內角和》教學設計05-08
《三角形內角和》教學設計04-07
《三角形內角和》教學設計06-08
三角形內角和教學設計03-09
《三角形的內角和》教學設計03-14
《三角形內角和》教學設計范文02-23
三角形內角和教學設計優(yōu)秀02-13