1. <rp id="zsypk"></rp>

      2. 高一數(shù)學(xué)教案

        時(shí)間:2023-11-24 17:45:23 教案 我要投稿

        高一數(shù)學(xué)教案(20篇)

          作為一名默默奉獻(xiàn)的教育工作者,可能需要進(jìn)行教案編寫工作,借助教案可以有效提升自己的教學(xué)能力。那么大家知道正規(guī)的教案是怎么寫的嗎?下面是小編為大家收集的高一數(shù)學(xué)教案,歡迎閱讀與收藏。

        高一數(shù)學(xué)教案(20篇)

          高一數(shù)學(xué)教案1

          第一節(jié) 集合的含義與表示

          學(xué)時(shí):1學(xué)時(shí)

          [學(xué)習(xí)引導(dǎo)]

          一、自主學(xué)習(xí)

          1.閱讀課本 .

          2.回答問(wèn)題:

          ⑴本節(jié)內(nèi)容有哪些概念和知識(shí)點(diǎn)?

         、茋L試說(shuō)出相關(guān)概念的含義?

          3完成 練習(xí)

          4小結(jié)

          二、方法指導(dǎo)

          1、要結(jié)合例子理解集合的概念,能說(shuō)出常用的數(shù)集的名稱和符號(hào)。

          2、理解集合元素的特性,并會(huì)判斷元素與集合的關(guān)系

          3、掌握集合的表示方法,并會(huì)正確運(yùn)用它們表示一些簡(jiǎn)單集合。

          4、在學(xué)習(xí)中要特別注意理解空集的意義和記法

          [思考引導(dǎo)]

          一、提問(wèn)題

          1.集合中的元素有什么特點(diǎn)?

          2、集合的`常用表示法有哪些?

          3、集合如何分類?

          4.元素與集合具有什么關(guān)系?如何用數(shù)學(xué)語(yǔ)言表述?

          5集合 和 是否相同?

          二、變題目

          1.下列各組對(duì)象不能構(gòu)成集合的是( )

          A.北京大學(xué)2008級(jí)新生

          B.26個(gè)英文字母

          C.著名的藝術(shù)家

          D.2008年北京奧運(yùn)會(huì)中所設(shè)定的比賽項(xiàng)目

          2.下列語(yǔ)句:①0與 表示同一個(gè)集合;

         、谟1,2,3組成的集合可表示為 或 ;

         、鄯匠 的解集可表示為 ;

         、芗 可以用列舉法表示。

          其中正確的是( )

          A.①和④ B.②和③

          C.② D.以上語(yǔ)句都不對(duì)

          [總結(jié)引導(dǎo)]

          1.集合中元素的三特性:

          2.集合、元素、及其相互關(guān)系的數(shù)學(xué)符號(hào)語(yǔ)言的表示和理解:

          3.空集的含義:

          [拓展引導(dǎo)]

          1.課外作業(yè): 習(xí)題11第 題;

          2.若集合 ,求實(shí)數(shù) 的值;

          3.若集合 只有一個(gè)元素,則實(shí)數(shù) 的值為 ;若 為空集,則 的取值范圍是 .

          撰稿:程曉杰 審稿:宋慶

          高一數(shù)學(xué)教案2

          一、教學(xué)目標(biāo)

          1、知識(shí)與技能

         。1)通過(guò)實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。

         。2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。

          (3)會(huì)用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。

         。4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類。

          2、過(guò)程與方法

         。1)讓學(xué)生通過(guò)直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。

         。2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。

          3、情感態(tài)度與價(jià)值觀

         。1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。

          (2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

          二、教學(xué)重點(diǎn)、難點(diǎn)

          重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。 難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。

          三、教學(xué)用具

         。1)學(xué)法:觀察、思考、交流、討論、概括。

         。2)實(shí)物模型、投影儀 四、教學(xué)思路

          (一)創(chuàng)設(shè)情景,揭示課題

          1、教師提出問(wèn)題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對(duì)學(xué)生的活動(dòng)及時(shí)給予評(píng)價(jià)。

          2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體),你能通過(guò)觀察。根據(jù)某種標(biāo)準(zhǔn)對(duì)這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。

          (二)、研探新知

          1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對(duì)物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。

          2、觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?

          3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。

          (1)有兩個(gè)面互相平行;

         。2)其余各面都是平行四邊形;

         。3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

          4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。

          5、提出問(wèn)題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對(duì)棱柱分類?

          請(qǐng)列舉身邊具有已學(xué)過(guò)的幾何結(jié)構(gòu)特征的`物體,并說(shuō)出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?

          6、以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

          7、讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。

          8、引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。

          9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。

          10、現(xiàn)實(shí)世界中,我們看到的物體大多由具有柱、錐、臺(tái)、球等幾何結(jié)構(gòu)特征的物體組合而成。請(qǐng)列舉身邊具有已學(xué)過(guò)的幾何結(jié)構(gòu)特征的物體,并說(shuō)出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?

          (三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問(wèn)題,讓學(xué)生思考。

          1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說(shuō)明,如圖)

          2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?

          3、課本P8,習(xí)題1.1 A組第1題。

          4、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

          5、棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?

          四、鞏固深化

          練習(xí):課本P7 練習(xí)1、2(1)(2) 課本P8 習(xí)題1.1 第2、3、4題 五、歸納整理

          由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容 六、布置作業(yè)

          課本P8 練習(xí)題1.1 B組第1題

          課外練習(xí) 課本P8 習(xí)題1.1 B組第2題

          高一數(shù)學(xué)教案3

          教學(xué)目標(biāo):①掌握對(duì)數(shù)函數(shù)的性質(zhì)。

          ②應(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)可以解決:對(duì)數(shù)的大小比較,求復(fù)

          合函數(shù)的定義域、值 域及單調(diào)性。

         、 注重函數(shù)思想、等價(jià)轉(zhuǎn)化、分類討論等思想的滲透,提高

          解題能力。

          教學(xué)重點(diǎn)與難點(diǎn):對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用。

          教學(xué)過(guò)程設(shè)計(jì):

         、睆(fù)習(xí)提問(wèn):對(duì)數(shù)函數(shù)的概念及性質(zhì)。

         、查_(kāi)始正課

          1 比較數(shù)的大小

          例 1 比較下列各組數(shù)的大小。

         、舕oga5.1 ,loga5.9 (a>0,a≠1)

         、苐og0.50.6 ,logЛ0.5 ,lnЛ

          師:請(qǐng)同學(xué)們觀察一下⑴中這兩個(gè)對(duì)數(shù)有何特征?

          生:這兩個(gè)對(duì)數(shù)底相等。

          師:那么對(duì)于兩個(gè)底相等的對(duì)數(shù)如何比大小?

          生:可構(gòu)造一個(gè)以a為底的對(duì)數(shù)函數(shù),用對(duì)數(shù)函數(shù)的單調(diào)性比大小。

          師:對(duì),請(qǐng)敘述一下這道題的解題過(guò)程。

          生:對(duì)數(shù)函數(shù)的'單調(diào)性取決于底的大。寒(dāng)0

          調(diào)遞減,所以loga5.1>loga5.9 ;當(dāng)a>1時(shí),函數(shù)y=logax單調(diào)遞

          增,所以loga5.1

          板書:

          解:Ⅰ)當(dāng)0

          ∵5.1<5.9 loga5.1="">loga5.9

         、)當(dāng)a>1時(shí),函數(shù)y=logax在(0,+∞)上是增函數(shù),

          ∵5.1<5.9 ∴l(xiāng)oga5.1

          師:請(qǐng)同學(xué)們觀察一下⑵中這三個(gè)對(duì)數(shù)有何特征?

          生:這三個(gè)對(duì)數(shù)底、真數(shù)都不相等。

          師:那么對(duì)于這三個(gè)對(duì)數(shù)如何比大小?

          生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,

          log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

          板書:略。

          師:比較對(duì)數(shù)值的大小常用方法:①構(gòu)造對(duì)數(shù)函數(shù),直接利用對(duì)數(shù)函

          數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對(duì)數(shù)

          函數(shù)圖象的位置關(guān)系來(lái)比大小。

          2 函數(shù)的定義域, 值 域及單調(diào)性。

          高一數(shù)學(xué)教案4

          目標(biāo):

          1.讓學(xué)生熟練掌握二次函數(shù)的圖象,并會(huì)判斷一元二次方程根的存在性及根的個(gè)數(shù) ;

          2.讓學(xué)生了解函數(shù)的零點(diǎn)與方程根的聯(lián)系 ;

          3.讓學(xué)生認(rèn)識(shí)到函數(shù)的圖象及基本性質(zhì)(特別是單調(diào)性)在確定函數(shù)零點(diǎn)中的作用 ;

          4。培養(yǎng)學(xué)生動(dòng)手操作的能力 。

          二、教學(xué)重點(diǎn)、難點(diǎn)

          重點(diǎn):零點(diǎn)的概念及存在性的判定;

          難點(diǎn):零點(diǎn)的確定。

          三、復(fù)習(xí)引入

          例1:判斷方程 x2-x-6=0 解的存在。

          分析:考察函數(shù)f(x)= x2-x-6, 其

          圖像為拋物線容易看出,f(0)=-60,

          f(4)0,f(-4)0

          由于函數(shù)f(x)的圖像是連續(xù)曲線,因此,

          點(diǎn)B (0,-6)與點(diǎn)C(4,6)之間的那部分曲線

          必然穿過(guò)x軸,即在區(qū)間(0,4)內(nèi)至少有點(diǎn)

          X1 使f(X1)=0;同樣,在區(qū)間(-4,0) 內(nèi)也至

          少有點(diǎn)X2,使得f( X2)=0,而方程至多有兩

          個(gè)解,所以在(-4,0),(0,4)內(nèi)各有一解

          定義:對(duì)于函數(shù)y=f(x),我們把使f(x)=0的實(shí)數(shù) x叫函數(shù)y=f(x)的零點(diǎn)

          抽象概括

          y=f(x)的圖像與x軸的交點(diǎn)的橫坐標(biāo)叫做該函數(shù)的零點(diǎn),即f(x)=0的解。

          若y=f(x)的'圖像在[a,b]上是連續(xù)曲線,且f(a)f(b)0,則在(a,b)內(nèi)至少有一個(gè)零點(diǎn),即f(x)=0在 (a,b)內(nèi)至少有一個(gè)實(shí)數(shù)解。

          f(x)=0有實(shí)根(等價(jià)與y=f(x))與x軸有交點(diǎn)(等價(jià)與)y=f(x)有零點(diǎn)

          所以求方程f(x)=0的根實(shí)際上也是求函數(shù)y=f(x)的零點(diǎn)

          注意:1、這里所說(shuō)若f(a)f(b)0,則在區(qū)間(a,b)內(nèi)方程f(x)=0至少有一個(gè)實(shí)數(shù)解指出了方程f(x)=0的實(shí)數(shù)解的存在性,并不能判斷具體有多少個(gè)解;

          2、若f(a)f(b)0,且y=f(x)在(a,b)內(nèi)是單調(diào)的,那么,方程f(x)=0在(a,b)內(nèi)有唯一實(shí)數(shù)解;

          3、我們所研究的大部分函數(shù),其圖像都是連續(xù)的曲線;

          4、但此結(jié)論反過(guò)來(lái)不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)

          5、缺少條件在[a,b]上是連續(xù)曲線則不成立,如:f(x)=1/ x,有f(-1)xf(1)0但沒(méi)有零點(diǎn)。

          四、知識(shí)應(yīng)用

          例2:已知f(x)=3x-x2 ,問(wèn)方程f(x)=0在區(qū)間[-1,0]內(nèi)沒(méi)有實(shí)數(shù)解?為什么?

          解:f(x)=3x-x2的圖像是連續(xù)曲線, 因?yàn)?/p>

          f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,

          所以f(-1) f(0) 0,在區(qū)間[-1,0]內(nèi)有零點(diǎn),即f(x)=0在區(qū)間[-1,0]內(nèi)有實(shí)數(shù)解

          練習(xí):求函數(shù)f(x)=lnx+2x-6 有沒(méi)有零點(diǎn)?

          例3 判定(x-2)(x-5)=1有兩個(gè)相異的實(shí)數(shù)解,且有一個(gè)大于5,一個(gè)小于2。

          解:考慮函數(shù)f(x)=(x-2)(x-5)-1,有

          f(5)=(5-2)(5-5)-1=-1

          f(2)=(2-2)(2-5)-1=-1

          又因?yàn)閒(x)的圖像是開(kāi)口向上的拋物線,所以拋物線與橫軸在(5,+)內(nèi)有一個(gè)交點(diǎn),在( -,2)內(nèi)也有一個(gè)交點(diǎn),所以方程式(x-2)(x-5)=1有兩個(gè)相異數(shù)解,且一個(gè)大于5,一個(gè)小于2。

          練習(xí):關(guān)于x的方程2x2-3x+2m=0有兩個(gè)實(shí)根均在[-1,1]內(nèi),求m的取值范圍。

          五、課后作業(yè)

          p133第2,3題

          高一數(shù)學(xué)教案5

          一、教學(xué)目標(biāo)

         。1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;

         。2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;

          (3)能用邏輯聯(lián)結(jié)詞和簡(jiǎn)單命題構(gòu)成不同形式的復(fù)合命題;

          (4)能識(shí)別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡(jiǎn)單命題;

          (5)會(huì)用真值表判斷相應(yīng)的復(fù)合命題的真假;

         。6)在知識(shí)學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡(jiǎn)單推理的技能.

          二、教學(xué)重點(diǎn)難點(diǎn):

          重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對(duì)“或”的含義的理解.

          三、教學(xué)過(guò)程

          1.新課導(dǎo)入

          在當(dāng)今社會(huì)中,人們從事任何工作、學(xué)習(xí),都離不開(kāi)邏輯.具有一定邏輯知識(shí)是構(gòu)成一個(gè)公民的文化素質(zhì)的重要方面.?dāng)?shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識(shí),將會(huì)在我們學(xué)習(xí)的過(guò)程中不知不覺(jué)地經(jīng)常犯邏輯性的錯(cuò)誤.其實(shí),同學(xué)們?cè)诔踔幸呀?jīng)開(kāi)始接觸一些簡(jiǎn)易邏輯的知識(shí).

          初一平面幾何中曾學(xué)過(guò)命題,請(qǐng)同學(xué)們舉一個(gè)命題的例子.(板書:命題.)

         。◤某踔薪佑|過(guò)的“命題”入手,提出問(wèn)題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識(shí).)

          學(xué)生舉例:平行四邊形的對(duì)角線互相平. ……(1)

          兩直線平行,同位角相等.…………(2)

          教師提問(wèn):“……相等的角是對(duì)頂角”是不是命題?……(3)

         。ㄍ瑢W(xué)議論結(jié)果,答案是肯定的.)

          教師提問(wèn):什么是命題?

         。▽W(xué)生進(jìn)行回憶、思考.)

          概念總結(jié):對(duì)一件事情作出了判斷的語(yǔ)句叫做命題.

         。ń處熆隙送瑢W(xué)的回答,并作板書.)

          由于判斷有正確與錯(cuò)誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.

         。ń處熇猛队捌,和學(xué)生討論以下問(wèn)題.)

          例1 判斷以下各語(yǔ)句是不是命題,若是,判斷其真假:

          命題一定要對(duì)一件事情作出判斷,(3)、(4)沒(méi)有對(duì)一件事情作出判斷,所以它們不是命題.

          初中所學(xué)的命題概念涉及邏輯知識(shí),我們今天開(kāi)始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡(jiǎn)易邏輯的.知識(shí).

          2.講授新課

          大家看課本(人教版,試驗(yàn)修訂本,第一冊(cè)(上))從第25頁(yè)至26頁(yè)例1前,并歸納一下這段內(nèi)容主要講了哪些問(wèn)題?

         。ㄆ毯笳(qǐng)同學(xué)舉手回答,一共講了四個(gè)問(wèn)題.師生一道歸納如下.)

         。1)什么叫做命題?

          可以判斷真假的語(yǔ)句叫做命題.

          判斷一個(gè)語(yǔ)句是不是命題,關(guān)鍵看這語(yǔ)句有沒(méi)有對(duì)一件事情作出了判斷,疑問(wèn)句、祈使句都不是命題.有些語(yǔ)句中含有變量,如 x2-5x+6=0

          中含有變量 ,在不給定變量的值之前,我們無(wú)法確定這語(yǔ)句的真假(這種含有變量的語(yǔ)句叫做“開(kāi)語(yǔ)句”).

          (2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.

          “或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.

          命題可分為簡(jiǎn)單命題和復(fù)合命題.

          不含邏輯聯(lián)結(jié)詞的命題叫做簡(jiǎn)單命題.簡(jiǎn)單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.

          由簡(jiǎn)單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡(jiǎn)單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.

         。4)命題的表示:用p ,q ,r ,s ,……來(lái)表示.

          (教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對(duì)復(fù)合命題的概念作出分析和展開(kāi).)

          我們接觸的復(fù)合命題一般有“p 或q ”“p且q ”、“非p ”、“若p 則q ”等形式.

          給出一個(gè)含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說(shuō)出構(gòu)成它的簡(jiǎn)單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個(gè)簡(jiǎn)單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.

          對(duì)于給出“若p 則q ”形式的復(fù)合命題,應(yīng)能找到條件p 和結(jié)論q .

          在判斷一個(gè)命題是簡(jiǎn)單命題還是復(fù)合命題時(shí),不能只從字面上來(lái)看有沒(méi)有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無(wú)“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無(wú)“或”,但它們都是復(fù)合命題.

          3.鞏固新課

          例2 判斷下列命題,哪些是簡(jiǎn)單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡(jiǎn)單命題.

         。1)5 ;

          (2)0.5非整數(shù);

         。3)內(nèi)錯(cuò)角相等,兩直線平行;

         。4)菱形的對(duì)角線互相垂直且平分;

         。5)平行線不相交;

         。6)若ab=0 ,則a=0 .

          (讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對(duì)“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)

          高一數(shù)學(xué)教案6

          一、課標(biāo)要求:

          理解充分條件、必要條件與充要條件的意義,會(huì)判斷充分條件、必要條件與充要條件.

          二、知識(shí)與方法回顧:

          1、充分條件、必要條件與充要條件的概念:

          2、從邏輯推理關(guān)系上看充分不必要條件、必要不充分條件與充要條件:

          3、從集合與集合之間關(guān)系上看充分條件、必要條件與充要條件:

          4、特殊值法:判斷充分條件與必要條件時(shí),往往用特殊值法來(lái)否定結(jié)論

          5、化歸思想:

          表示p等價(jià)于q,等價(jià)命題可以進(jìn)行相互轉(zhuǎn)化,當(dāng)我們要證明p成立時(shí),就可以轉(zhuǎn)化為證明q成立;

          這里要注意原命題 逆否命題、逆命題 否命題只是等價(jià)形式之一,對(duì)于條件或結(jié)論是不等式關(guān)系(否定式)的命題一般應(yīng)用化歸思想.

          6、數(shù)形結(jié)合思想:

          利用韋恩圖(即集合的包含關(guān)系)來(lái)判斷充分不必要條件,必要不充分條件,充要條件.

          三、基礎(chǔ)訓(xùn)練:

          1、 設(shè)命題若p則q為假,而若q則p為真,則p是q的 ( )

          A.充分不必要條件 B.必要不充分條件

          C.充要條件 D.既不充分也不必要條件

          2、 設(shè)集合M,N為是全集U的兩個(gè)子集,則 是 的 ( )

          A.充分不必要條件 B.必要不充分條件

          C.充要條件 D.既不充分也不必要條件

          3、 若 是實(shí)數(shù),則 是 的 ( )

          A.充分不必要條件 B.必要不充分條件

          C.充要條件 D.既不充分也不必要條件

          四、例題講解

          例1 已知實(shí)系數(shù)一元二次方程 ,下列結(jié)論中正確的是 ( )

          (1) 是這個(gè)方程有實(shí)根的充分不必要條件

          (2) 是這個(gè)方程有實(shí)根的必要不充分條件

          (3) 是這個(gè)方程有實(shí)根的充要條件

          (4) 是這個(gè)方程有實(shí)根的充分不必要條件

          A.(1)(3) B.(3)(4) C.(1)(3)(4) D.(2)(3)(4)

          例2 (1)已知h 0,a,bR,設(shè)命題甲: ,命題乙: 且 ,問(wèn)甲是乙的 ( )

          (2)已知p:兩條直線的斜率互為負(fù)倒數(shù),q:兩條直線互相垂直,則p是q的 ( )

          A.充分不必要條件 B.必要不充分條件

          C.充要條件 D.既不充分也不必要條件

          變式:a = 0是直線 與 平行的 條件;

          例3 如果命題p、q都是命題r的必要條件,命題s是命題r的充分條件,命題q是命題s

          的充分條件,那么命題p是命題q的 條件;命題s是命題q的 條件;命題r是命題q的 條件.

          例4 設(shè)命題p:|4x-3| 1,命題q:x2-(2a+1)x+a(a+1) 0,若﹁p是﹁q的必要不充分條件,求實(shí)數(shù)a的取值范圍;

          例5 設(shè) 是方程 的兩個(gè)實(shí)根,試分析 是兩實(shí)根 均大于1的什么條件?并給予證明.

          五、課堂練習(xí)

          1、設(shè)命題p: ,命題q: ,則p是q的 ( )

          A.充分不必要條件 B.必要不充分條件

          C.充要條件 D.既不充分也不必要條件

          2、給出以下四個(gè)命題:①若p則q②若﹁r則﹁q③ 若r則﹁s

         、苋籀鑣則q若它們都是真命題,則﹁p是s的 條件;

          3、是否存在實(shí)數(shù)p,使 是 的充分條件?若存在,求出p的取值范圍;若不存在說(shuō)明理由.

          六、課堂小結(jié):

          七、教學(xué)后記:

          高三 班 學(xué)號(hào) 姓名 日期: 月 日

          1、 A B是AB=B的. ( )

          A.充分不必要條件 B.必要不充分條件

          C.充要條件 D.既不充分也不必要條件

          2、 是 的 ( )

          A.充分不必要條件 B.必要不充分條件

          C.充要條件 D.既不充分也不必要條件

          3、 2x2-5x-30的一個(gè)必要不充分條件是 ( )

          A.-

          4、2且b是a+b4且ab的 ( )

          A.充分不必要條件 B.必要不充分條件

          C.充要條件 D.既不充分也不必要條件

          5、設(shè)a1、b1、c1、a2、b2、c2均為非零實(shí)數(shù),不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分別為集合M和N,那么 是 M=N 的 ( )

          A.充分不必要條件 B.必要不充分條件

          C.充要條件 D.既不充分又不必要條件

          6、若命題A: ,命題B: ,則命題A是B的 條件;

          7、設(shè)條件p:|x|=x,條件q:x2-x,則p是q的 條件;

          8、方程mx2+2x+1=0至少有一個(gè)負(fù)根的充要條件是 ;

          9、關(guān)于x的方程x2+mx+n = 0有兩個(gè)小于1的正根的一個(gè)充要條件是 ;

          10、已知 ,求證: 的充要條件是 ;

          11、已知p:-210,q:1-m1+m,若﹁p是﹁q的必要不充分條件,求實(shí)數(shù)m的取值范圍。

          12、已知關(guān)于x的方程(1-a)x2+(a+2)x-4=0,aR,求:

          (1)方程有兩個(gè)正根的充要條件;

          (2)方程至少有一正根的充要條件.

          高一數(shù)學(xué)教案7

          教學(xué)準(zhǔn)備

          教學(xué)目標(biāo)

          熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長(zhǎng)率、存款利息等問(wèn)題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問(wèn)題的能力,強(qiáng)化應(yīng)用儀式。

          教學(xué)重難點(diǎn)

          熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長(zhǎng)率、存款利息等問(wèn)題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問(wèn)題的能力,強(qiáng)化應(yīng)用儀式。

          教學(xué)過(guò)程

          【復(fù)習(xí)要求】熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長(zhǎng)率、存款利息等問(wèn)題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問(wèn)題的能力,強(qiáng)化應(yīng)用儀式。

          【方法規(guī)律】應(yīng)用數(shù)列知識(shí)界實(shí)際應(yīng)用問(wèn)題的關(guān)鍵是通過(guò)對(duì)實(shí)際問(wèn)題的綜合分析,確定其數(shù)學(xué)模型是等差數(shù)列,還是等比數(shù)列,并確定其首項(xiàng),公差或公比等基本元素,然后設(shè)計(jì)合理的計(jì)算方案,即數(shù)學(xué)建模是解答數(shù)列應(yīng)用題的`關(guān)鍵。

          一、基礎(chǔ)訓(xùn)練

          1、某種細(xì)菌在培養(yǎng)過(guò)程中,每20分鐘*一次一個(gè)*為兩個(gè),經(jīng)過(guò)3小時(shí),這種細(xì)菌由1個(gè)可繁殖成

          A、511B、512C、1023D、1024

          2、若一工廠的生產(chǎn)總值的月平均增長(zhǎng)率為p,則年平均增長(zhǎng)率為

          A、B、

          C、D、

          二、典型例題

          例1:某人每期期初到銀行存入一定金額A,每期利率為p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是n—1Ap……,第n期即最后一期的利息是Ap,問(wèn)到第n期期末的本金和是多少?

          評(píng)析:此例來(lái)自一種常見(jiàn)的存款叫做零存整取。存款的方式為每月的某日存入一定的金額,這是零存,一定時(shí)期到期,可以提出全部本金及利息,這是整取。計(jì)算本利和就是本例所用的有窮等差數(shù)列求和的方法。用實(shí)際問(wèn)題列出就是:本利和=每期存入的金額[存期+1/2存期存期+1利率]

          例2:某人從1999到20xx年間,每年6月1日都到銀行存入m元的一年定期儲(chǔ)蓄,若每年利率q保持不變,且每年到期的存款本息均自動(dòng)轉(zhuǎn)為新的一年定期,到20xx年6月1日,此人到銀行不再存款,而是將所有存款的本息全部取回,則取回的金額是多少元?

          例3、某地區(qū)位于沙漠邊緣,人與自然進(jìn)行長(zhǎng)期頑強(qiáng)的斗爭(zhēng),到1999年底全地區(qū)的綠化率已達(dá)到30%,從20xx年開(kāi)始,每年將出現(xiàn)以下的變化:原有沙漠面積的16%將栽上樹(shù),改造為綠洲,同時(shí),原有綠洲面積的4%又被侵蝕,變?yōu)樯衬。?wèn)經(jīng)過(guò)多少年的努力才能使全縣的綠洲面積超過(guò)60%。lg2=0.3

          例4、流行性感冒簡(jiǎn)稱流感是由流感病毒引起的急性呼吸道傳染病。某市去年11月分曾發(fā)生流感,據(jù)資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內(nèi)感染該病毒的患者共有8670人,問(wèn)11月幾日,該市感染此病毒的新的患者人數(shù)最多?并求這一天的新患者人數(shù)。

          高一數(shù)學(xué)教案8

          教學(xué)目標(biāo)

          1.理解等比數(shù)列的概念,掌握等比數(shù)列的通項(xiàng)公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題.

         。1)正確理解等比數(shù)列的定義,了解公比的概念,明確一個(gè)數(shù)列是等比數(shù)列的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是等比數(shù)列,了解等比中項(xiàng)的概念;

         。2)正確認(rèn)識(shí)使用等比數(shù)列的表示法,能靈活運(yùn)用通項(xiàng)公式求等比數(shù)列的首項(xiàng)、公比、項(xiàng)數(shù)及指定的項(xiàng);

         。3)通過(guò)通項(xiàng)公式認(rèn)識(shí)等比數(shù)列的性質(zhì),能解決某些實(shí)際問(wèn)題.

          2.通過(guò)對(duì)等比數(shù)列的研究,逐步培養(yǎng)學(xué)生觀察、類比、歸納、猜想等思維品質(zhì).

          3.通過(guò)對(duì)等比數(shù)列概念的歸納,進(jìn)一步培養(yǎng)學(xué)生嚴(yán)密的思維習(xí)慣,以及實(shí)事求是的科學(xué)態(tài)度.

          教學(xué)建議

          教材分析

         。1)知識(shí)結(jié)構(gòu)

          等比數(shù)列是另一個(gè)簡(jiǎn)單常見(jiàn)的數(shù)列,研究?jī)?nèi)容可與等差數(shù)列類比,首先歸納出等比數(shù)列的定義,導(dǎo)出通項(xiàng)公式,進(jìn)而研究圖像,又給出等比中項(xiàng)的概念,最后是通項(xiàng)公式的應(yīng)用.

         。2)重點(diǎn)、難點(diǎn)分析

          教學(xué)重點(diǎn)是等比數(shù)列的定義和對(duì)通項(xiàng)公式的認(rèn)識(shí)與應(yīng)用,教學(xué)難點(diǎn)在于等比數(shù)列通項(xiàng)公式的推導(dǎo)和運(yùn)用.

         、倥c等差數(shù)列一樣,等比數(shù)列也是特殊的數(shù)列,二者有許多相同的性質(zhì),但也有明顯的區(qū)別,可根據(jù)定義與通項(xiàng)公式得出等比數(shù)列的特性,這些是教學(xué)的重點(diǎn).

          ②雖然在等差數(shù)列的學(xué)習(xí)中曾接觸過(guò)不完全歸納法,但對(duì)學(xué)生來(lái)說(shuō)仍然不熟悉;在推導(dǎo)過(guò)程中,需要學(xué)生有一定的觀察分析猜想能力;第一項(xiàng)是否成立又須補(bǔ)充說(shuō)明,所以通項(xiàng)公式的推導(dǎo)是難點(diǎn).

          ③對(duì)等差數(shù)列、等比數(shù)列的綜合研究離不開(kāi)通項(xiàng)公式,因而通項(xiàng)公式的靈活運(yùn)用既是重點(diǎn)又是難點(diǎn).

          教學(xué)建議

          (1)建議本節(jié)課分兩課時(shí),一節(jié)課為等比數(shù)列的概念,一節(jié)課為等比數(shù)列通項(xiàng)公式的應(yīng)用.

         。2)等比數(shù)列概念的引入,可給出幾個(gè)具體的例子,由學(xué)生概括這些數(shù)列的相同特征,從而得到等比數(shù)列的定義.也可將幾個(gè)等差數(shù)列和幾個(gè)等比數(shù)列混在一起給出,由學(xué)生將這些數(shù)列進(jìn)行分類,有一種是按等差、等比來(lái)分的,由此對(duì)比地概括等比數(shù)列的定義.

          (3)根據(jù)定義讓學(xué)生分析等比數(shù)列的公比不為0,以及每一項(xiàng)均不為0的特性,加深對(duì)概念的理解.

         。4)對(duì)比等差數(shù)列的表示法,由學(xué)生歸納等比數(shù)列的各種表示法. 啟發(fā)學(xué)生用函數(shù)觀點(diǎn)認(rèn)識(shí)通項(xiàng)公式,由通項(xiàng)公式的結(jié)構(gòu)特征畫數(shù)列的圖象.

         。5)由于有了等差數(shù)列的研究經(jīng)驗(yàn),等比數(shù)列的研究完全可以放手讓學(xué)生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn).

         。6)可讓學(xué)生相互出題,解題,講題,充分發(fā)揮學(xué)生的主體作用.

          教學(xué)設(shè)計(jì)示例

          課題:等比數(shù)列的`概念

          教學(xué)目標(biāo)

          1.通過(guò)教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項(xiàng)公式.

          2.使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力.

          3.培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度.

          教學(xué)重點(diǎn),難點(diǎn)

          重點(diǎn)、難點(diǎn)是等比數(shù)列的定義的歸納及通項(xiàng)公式的推導(dǎo).

          教學(xué)用具

          投影儀,多媒體軟件,電腦.

          教學(xué)方法

          討論、談話法.

          教學(xué)過(guò)程

          一、提出問(wèn)題

          給出以下幾組數(shù)列,將它們分類,說(shuō)出分類標(biāo)準(zhǔn).(幻燈片)

         、伲2,1,4,7,10,13,16,19,…

         、8,16,32,64,128,256,…

         、1,1,1,1,1,1,1,…

         、243,81,27,9,3,1, , ,…

         、31,29,27,25,23,21,19,…

          ⑥1,-1,1,-1,1,-1,1,-1,…

         、1,-10,100,-1000,10000,-100000,…

         、0,0,0,0,0,0,0,…

          由學(xué)生發(fā)表意見(jiàn)(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無(wú)妨,得出定義后再考察③是否為等比數(shù)列).

          二、講解新課

          請(qǐng)學(xué)生說(shuō)出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲(chóng)分裂問(wèn)題.假設(shè)每經(jīng)過(guò)一個(gè)單位時(shí)間每個(gè)變形蟲(chóng)都分裂為兩個(gè)變形蟲(chóng),再假設(shè)開(kāi)始有一個(gè)變形蟲(chóng),經(jīng)過(guò)一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲(chóng),經(jīng)過(guò)兩個(gè)單位時(shí)間就有了四個(gè)變形蟲(chóng),…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲(chóng)個(gè)數(shù)得到了一列數(shù) 這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——等比數(shù)列. (這里播放變形蟲(chóng)分裂的多媒體軟件的第一步)

          等比數(shù)列(板書)

          1.等比數(shù)列的定義(板書)

          根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義.學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來(lái)的.教師寫出等比數(shù)列的定義,標(biāo)注出重點(diǎn)詞語(yǔ).

          請(qǐng)學(xué)生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無(wú)數(shù)列既是等差數(shù)列又是等比數(shù)列.學(xué)生通過(guò)觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問(wèn),還有沒(méi)有其他的例子,讓學(xué)生再舉兩例.而后請(qǐng)學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說(shuō)形如 的數(shù)列都滿足既是等差又是等比數(shù)列,讓學(xué)生討論后得出結(jié)論:當(dāng) 時(shí),數(shù)列 既是等差又是等比數(shù)列,當(dāng) 時(shí),它只是等差數(shù)列,而不是等比數(shù)列.教師追問(wèn)理由,引出對(duì)等比數(shù)列的認(rèn)識(shí):

          2.對(duì)定義的認(rèn)識(shí)(板書)

         。1)等比數(shù)列的首項(xiàng)不為0;

         。2)等比數(shù)列的每一項(xiàng)都不為0,即 ;

          問(wèn)題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為等比數(shù)列的什么條件?

         。3)公比不為0.

          用數(shù)學(xué)式子表示等比數(shù)列的定義.

          是等比數(shù)列 ①.在這個(gè)式子的寫法上可能會(huì)有一些爭(zhēng)議,如寫成 ,可讓學(xué)生研究行不行,好不好;接下來(lái)再問(wèn),能否改寫為 是等比數(shù)列 ?為什么不能?

          式子 給出了數(shù)列第 項(xiàng)與第 項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)等比數(shù)列?(不能)確定一個(gè)等比數(shù)列需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式.

          3.等比數(shù)列的通項(xiàng)公式(板書)

          問(wèn)題:用 和 表示第 項(xiàng) .

         、俨煌耆珰w納法

          ②疊乘法

          ,… , ,這 個(gè)式子相乘得 ,所以 .

          (板書)(1)等比數(shù)列的通項(xiàng)公式

          得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式.

          (板書)(2)對(duì)公式的認(rèn)識(shí)

          由學(xué)生來(lái)說(shuō),最后歸結(jié):

          ①函數(shù)觀點(diǎn);

         、诜匠趟枷耄ㄒ蛟诘炔顢(shù)列中已有認(rèn)識(shí),此處再?gòu)?fù)習(xí)鞏固而已).

          這里強(qiáng)調(diào)方程思想解決問(wèn)題.方程中有四個(gè)量,知三求一,這是公式最簡(jiǎn)單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類問(wèn)題).解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)

          如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究.同學(xué)可以試著編幾道題.

          三、小結(jié)

          1.本節(jié)課研究了等比數(shù)列的概念,得到了通項(xiàng)公式;

          2.注意在研究?jī)?nèi)容與方法上要與等差數(shù)列相類比;

          3.用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用.

          高一數(shù)學(xué)教案9

          一、教材

          首先談?wù)勎覍?duì)教材的理解,《兩條直線平行與垂直的判定》是人教A版高中數(shù)學(xué)必修2第三章3.1.2的內(nèi)容,本節(jié)課的內(nèi)容是兩條直線平行與垂直的判定的推導(dǎo)及其應(yīng)用,學(xué)生對(duì)于直線平行和垂直的概念已經(jīng)十分熟悉,并且在上節(jié)課學(xué)習(xí)了直線的傾斜角與斜率,為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ)。

          二、學(xué)情

          教材是我們教學(xué)的工具,是載體。但我們的教學(xué)是要面向?qū)W生的,高中學(xué)生本身身心已經(jīng)趨于成熟,管理與教學(xué)難度較大,那么為了能夠成為一個(gè)合格的高中教師,深入了解所面對(duì)的學(xué)生可以說(shuō)是必修課。本階段的學(xué)生思維能力已經(jīng)非常成熟,能夠有自己獨(dú)立的思考,所以應(yīng)該積極發(fā)揮這種優(yōu)勢(shì),讓學(xué)生獨(dú)立思考探索。

          三、教學(xué)目標(biāo)

          根據(jù)以上對(duì)教材的分析以及對(duì)學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):

          (一)知識(shí)與技能

          掌握兩條直線平行與垂直的判定,能夠根據(jù)其判定兩條直線的位置關(guān)系。

          (二)過(guò)程與方法

          在經(jīng)歷兩條直線平行與垂直的判定過(guò)程中,提升邏輯推理能力。

          (三)情感態(tài)度價(jià)值觀

          在猜想論證的過(guò)程中,體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn)性。

          四、教學(xué)重難點(diǎn)

          我認(rèn)為一節(jié)好的`數(shù)學(xué)課,從教學(xué)內(nèi)容上說(shuō)一定要突出重點(diǎn)、突破難點(diǎn)。而教學(xué)重點(diǎn)的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點(diǎn)是:兩條直線平行與垂直的判定。本節(jié)課的教學(xué)難點(diǎn)是:兩條直線平行與垂直的判定的推導(dǎo)。

          五、教法和學(xué)法

          現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過(guò)程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動(dòng)都必須以強(qiáng)調(diào)學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的年齡特征,本節(jié)課我采用講授法、練習(xí)法、小組合作等教學(xué)方法。

          六、教學(xué)過(guò)程

          下面我將重點(diǎn)談?wù)勎覍?duì)教學(xué)過(guò)程的設(shè)計(jì)。

          (一)新課導(dǎo)入

          首先是導(dǎo)入環(huán)節(jié),那么我采用復(fù)習(xí)導(dǎo)入,回顧上節(jié)課所學(xué)的直線的傾斜角與斜率并順勢(shì)提問(wèn):能否通過(guò)直線的斜率,來(lái)判斷兩條直線的位置關(guān)系呢?

          利用上節(jié)課所學(xué)的知識(shí)進(jìn)行導(dǎo)入,很好的克服學(xué)生的畏難情緒。

          (二)新知探索

          接下來(lái)是教學(xué)中最重要的新知探索環(huán)節(jié),我主要采用講解法、小組合作、啟發(fā)法等。

          高一數(shù)學(xué)教案10

          學(xué)習(xí)目標(biāo)

          1、掌握雙曲線的范圍、對(duì)稱性、頂點(diǎn)、漸近線、離心率等幾何性質(zhì)

          2、掌握標(biāo)準(zhǔn)方程中的幾何意義

          3、能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡(jiǎn)單的實(shí)際問(wèn)題

          一、預(yù)習(xí)檢查

          1、焦點(diǎn)在x軸上,虛軸長(zhǎng)為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、

          2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、

          3、雙曲線的漸進(jìn)線方程為、

          4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離是、

          二、問(wèn)題探究

          探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說(shuō)出它們的不同、

          探究2、雙曲線與其漸近線具有怎樣的關(guān)系、

          練習(xí):已知雙曲線經(jīng)過(guò),且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是、

          例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、

          (1)過(guò)點(diǎn),離心率、

          (2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、

          例2已知雙曲線,直線過(guò)點(diǎn),左焦點(diǎn)到直線的距離等于該雙曲線的虛軸長(zhǎng)的,求雙曲線的離心率、

          例3(理)求離心率為,且過(guò)點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、

          三、思維訓(xùn)練

          1、已知雙曲線方程為,經(jīng)過(guò)它的右焦點(diǎn),作一條直線,使直線與雙曲線恰好有一個(gè)交點(diǎn),則設(shè)直線的斜率是、

          2、橢圓的離心率為,則雙曲線的.離心率為、

          3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、

          4、(理)設(shè)是雙曲線上一點(diǎn),雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點(diǎn),若,則、

          四、知識(shí)鞏固

          1、已知雙曲線方程為,過(guò)一點(diǎn)(0,1),作一直線,使與雙曲線無(wú)交點(diǎn),則直線的斜率的集合是、

          2、設(shè)雙曲線的一條準(zhǔn)線與兩條漸近線交于兩點(diǎn),相應(yīng)的焦點(diǎn)為,若以為直徑的圓恰好過(guò)點(diǎn),則離心率為、

          3、已知雙曲線的左,右焦點(diǎn)分別為,點(diǎn)在雙曲線的右支上,且,則雙曲線的離心率的值為、

          4、設(shè)雙曲線的半焦距為,直線過(guò)、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率、

          5、(理)雙曲線的焦距為,直線過(guò)點(diǎn)和,且點(diǎn)(1,0)到直線的距離與點(diǎn)(-1,0)到直線的距離之和、求雙曲線的離心率的取值范圍、

          高一數(shù)學(xué)教案11

          教材分析:函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,同時(shí)還用集合與對(duì)應(yīng)的語(yǔ)言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想.

          教學(xué)目的:

         。1)通過(guò)豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;

         。2)了解構(gòu)成函數(shù)的要素;

         。3)會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;

         。4)能夠正確使用“區(qū)間”的符號(hào)表示某些函數(shù)的定義域;

          教學(xué)重點(diǎn):理解函數(shù)的模型化思想,用合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫函數(shù);

          教學(xué)難點(diǎn):符號(hào)“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;

          教學(xué)過(guò)程:

          一、引入課題

          1.復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;

          2.閱讀課本引例,體會(huì)函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:

         。1)炮彈的射高與時(shí)間的變化關(guān)系問(wèn)題;

         。2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問(wèn)題;

          (3)“八五”計(jì)劃以來(lái)我國(guó)城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系問(wèn)題

          備用實(shí)例:

          我國(guó)xxxx年4月份非典疫情統(tǒng)計(jì):

          日期222324252627282930

          新增確診病例數(shù)1061058910311312698152101

          3.引導(dǎo)學(xué)生應(yīng)用集合與對(duì)應(yīng)的語(yǔ)言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴關(guān)系;

          4.根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的.關(guān)系是否是函數(shù)關(guān)系.

          二、新課教學(xué)

         。ㄒ唬┖瘮(shù)的有關(guān)概念

          1.函數(shù)的概念:

          設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù)(function).

          記作:y=f(x),x∈A.

          其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).

          注意:

          ○1“y=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;

          ○2函數(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x.

          2.構(gòu)成函數(shù)的三要素:

          定義域、對(duì)應(yīng)關(guān)系和值域

          3.區(qū)間的概念

         。1)區(qū)間的分類:開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間;

         。2)無(wú)窮區(qū)間;

         。3)區(qū)間的數(shù)軸表示.

          4.一次函數(shù)、二次函數(shù)、反比例函數(shù)的定義域和值域討論

         。ㄓ蓪W(xué)生完成,師生共同分析講評(píng))

         。ǘ┑湫屠}

          1.求函數(shù)定義域

          課本P20例1

          解:(略)

          說(shuō)明:

          ○1函數(shù)的定義域通常由問(wèn)題的實(shí)際背景確定,如果課前三個(gè)實(shí)例;

          ○2如果只給出解析式y(tǒng)=f(x),而沒(méi)有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;

          ○3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

          鞏固練習(xí):課本P22第1題

          2.判斷兩個(gè)函數(shù)是否為同一函數(shù)

          課本P21例2

          解:(略)

          說(shuō)明:

          ○1構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))

          ○2兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無(wú)關(guān)。

          鞏固練習(xí):

          ○1課本P22第2題

          ○2判斷下列函數(shù)f(x)與g(x)是否表示同一個(gè)函數(shù),說(shuō)明理由?

         。1)f(x)=(x-1)0;g(x)=1

         。2)f(x)=x;g(x)=

          (3)f(x)=x2;f(x)=(x+1)2

         。4)f(x)=|x|;g(x)=

         。ㄈ┱n堂練習(xí)

          求下列函數(shù)的定義域

         。1)

          (2)

         。3)

         。4)

         。5)

          (6)

          三、歸納小結(jié),強(qiáng)化思想

          從具體實(shí)例引入了函數(shù)的的概念,用集合與對(duì)應(yīng)的語(yǔ)言描述了函數(shù)的定義及其相關(guān)概念,介紹了求函數(shù)定義域和判斷同一函數(shù)的典型題目,引入了區(qū)間的概念來(lái)表示集合。

          四、作業(yè)布置

          課本P28習(xí)題1.2(A組)第1—7題(B組)第1題

          高一數(shù)學(xué)教案12

          案例背景:

          對(duì)數(shù)函數(shù)是函數(shù)中又一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過(guò)對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解.對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問(wèn)題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ).

          案例敘述:

          (一).創(chuàng)設(shè)情境

          (師):前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù).

          反函數(shù)的實(shí)質(zhì)是研究?jī)蓚(gè)函數(shù)的關(guān)系,所以自然我們應(yīng)從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個(gè)熟悉的函數(shù)就是指數(shù)函數(shù).

          (提問(wèn)):什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?

          (學(xué)生): 是指數(shù)函數(shù),它是存在反函數(shù)的.

          (師):求反函數(shù)的步驟

          (由一個(gè)學(xué)生口答求反函數(shù)的過(guò)程):

          由 得 .又 的值域?yàn)?,

          所求反函數(shù)為 .

          (師):那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對(duì)數(shù)函數(shù).

          (二)新課

          1.(板書) 定義:函數(shù) 的反函數(shù) 叫做對(duì)數(shù)函數(shù).

          (師):由于定義就是從反函數(shù)角度給出的,所以下面我們的研究就從這個(gè)角度出發(fā).如從定義中你能了解對(duì)數(shù)函數(shù)的什么性質(zhì)嗎?最初步的認(rèn)識(shí)是什么?

          (教師提示學(xué)生從反函數(shù)的三定與三反去認(rèn)識(shí),學(xué)生自主探究,合作交流)

          (學(xué)生)對(duì)數(shù)函數(shù)的定義域?yàn)?,對(duì)數(shù)函數(shù)的值域?yàn)?,且底數(shù) 就是指數(shù)函數(shù)中的 ,故有著相同的限制條件 .

          (在此基礎(chǔ)上,我們將一起來(lái)研究對(duì)數(shù)函數(shù)的圖像與性質(zhì).)

          2.研究對(duì)數(shù)函數(shù)的圖像與性質(zhì)

          (提問(wèn))用什么方法來(lái)畫函數(shù)圖像?

          (學(xué)生1)利用互為反函數(shù)的兩個(gè)函數(shù)圖像之間的關(guān)系,利用圖像變換法畫圖.

          (學(xué)生2)用列表描點(diǎn)法也是可以的。

          請(qǐng)學(xué)生從中上述方法中選出一種,大家最終確定用圖像變換法畫圖.

          (師)由于指數(shù)函數(shù)的圖像按 和 分成兩種不同的類型,故對(duì)數(shù)函數(shù)的圖像也應(yīng)以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.

          具體操作時(shí),要求學(xué)生做到:

          (1) 指數(shù)函數(shù) 和 的圖像要盡量準(zhǔn)確(關(guān)鍵點(diǎn)的位置,圖像的變化趨勢(shì)等).

          (2) 畫出直線 .

          (3) 的圖像在翻折時(shí)先將特殊點(diǎn) 對(duì)稱點(diǎn) 找到,變化趨勢(shì)由靠近 軸對(duì)稱為逐漸靠近 軸,而 的圖像在翻折時(shí)可提示學(xué)生分兩段翻折,在 左側(cè)的先翻,然后再翻在 右側(cè)的部分.

          學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫出

          和 的圖像.(此時(shí)同底的指數(shù)函數(shù)和對(duì)數(shù)函數(shù)畫在同一坐標(biāo)系內(nèi))如圖:

          教師畫完圖后再利用電腦將 和 的圖像畫在同一坐標(biāo)系內(nèi),如圖:

          然后提出讓學(xué)生根據(jù)圖像說(shuō)出對(duì)數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個(gè)角度說(shuō)明)

          3. 性質(zhì)

          (1) 定義域:

          (2) 值域:

          由以上兩條可說(shuō)明圖像位于 軸的右側(cè).

          (3)圖像恒過(guò)(1,0)

          (4) 奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點(diǎn)對(duì)稱,也不關(guān)于 軸對(duì)稱.

          (5) 單調(diào)性:與 有關(guān).當(dāng) 時(shí),在 上是增函數(shù).即圖像是上升的

          當(dāng) 時(shí),在 上是減函數(shù),即圖像是下降的.

          之后可以追問(wèn)學(xué)生有沒(méi)有最大值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r(shí),可以再問(wèn)能否看待何時(shí)函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況:

          當(dāng) 時(shí),有 ;當(dāng) 時(shí),有 .

          學(xué)生回答后教師可指導(dǎo)學(xué)生巧記這個(gè)結(jié)論的方法:當(dāng)?shù)讛?shù)與真數(shù)在1的同側(cè)時(shí)函數(shù)值為正,當(dāng)?shù)讛?shù)與真數(shù)在1的兩側(cè)時(shí),函數(shù)值為負(fù),并把它當(dāng)作第(6)條性質(zhì)板書記下來(lái).

          最后教師在總結(jié)時(shí),強(qiáng)調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖.且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對(duì)比記憶.(特別強(qiáng)調(diào)它們單調(diào)性的一致性)

          對(duì)圖像和性質(zhì)有了一定的了解后,一起來(lái)看看它們的應(yīng)用.

          (三).簡(jiǎn)單應(yīng)用

          1. 研究相關(guān)函數(shù)的性質(zhì)

          例1. 求下列函數(shù)的定義域:

          (1) (2) (3)

          先由學(xué)生依次列出相應(yīng)的不等式,其中特別要注意對(duì)數(shù)中真數(shù)和底數(shù)的條件限制.

          2. 利用單調(diào)性比較大小

          例2. 比較下列各組數(shù)的大小

          (1) 與 ; (2) 與 ;

          (3) 與 ; (4) 與 .

          讓學(xué)生先說(shuō)出各組數(shù)的特征即它們的底數(shù)相同,故可以構(gòu)造對(duì)數(shù)函數(shù)利用單調(diào)性來(lái)比大小.最后讓學(xué)生以其中一組為例寫出詳細(xì)的比較過(guò)程.

         三.拓展練習(xí)

          練習(xí):若 ,求 的取值范圍.

        四.小結(jié)及作業(yè)

          案例反思:

          本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì).難點(diǎn)是利用指數(shù)函數(shù)的`圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì).由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,通過(guò)互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,因而在教學(xué)上采取教師逐步引導(dǎo),學(xué)生自主合作的方式,從學(xué)生熟悉的指數(shù)問(wèn)題出發(fā),通過(guò)對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類討論而且對(duì)每一類問(wèn)題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

          在教學(xué)中一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地以反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向.這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問(wèn)題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣.

          高一數(shù)學(xué)教案13

          教學(xué)目標(biāo):

          (1)了解集合的表示方法;

          (2)能正確選擇自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題,感受集合語(yǔ)言的意義和作用;

          教學(xué)重點(diǎn):掌握集合的表示方法;

          教學(xué)難點(diǎn):選擇恰當(dāng)?shù)谋硎痉椒?

          教學(xué)過(guò)程:

          一、復(fù)習(xí)回顧:

          1.集合和元素的定義;元素的三個(gè)特性;元素與集合的關(guān)系;常用的數(shù)集及表示。

          2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分別是什么?有何關(guān)系

          二、新課教學(xué)

          (一).集合的表示方法

          我們可以用自然語(yǔ)言和圖形語(yǔ)言來(lái)描述一個(gè)集合,但這將給我們帶來(lái)很多不便,除此之外還常用列舉法和描述法來(lái)表示集合。

          (1) 列舉法:把集合中的元素一一列舉出來(lái),并用花括號(hào)“ ”括起來(lái)表示集合的方法叫列舉法。

          如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;

          說(shuō)明:1.集合中的元素具有無(wú)序性,所以用列舉法表示集合時(shí)不必考

          慮元素的順序。

          2.各個(gè)元素之間要用逗號(hào)隔開(kāi);

          3.元素不能重復(fù);

          4.集合中的元素可以數(shù),點(diǎn),代數(shù)式等;

          5.對(duì)于含有較多元素的'集合,用列舉法表示時(shí),必須把元素間的規(guī)律顯示清楚后方能用省略號(hào),象自然數(shù)集N用列舉法表示為

          例1.(課本例1)用列舉法表示下列集合:

          (1)小于10的所有自然數(shù)組成的集合;

          (2)方程x2=x的所有實(shí)數(shù)根組成的集合;

          (3)由1到20以內(nèi)的所有質(zhì)數(shù)組成的集合;

          (4)方程組 的解組成的集合。

          思考2:(課本P4的思考題)得出描述法的定義:

          (2)描述法:把集合中的元素的公共屬性描述出來(lái),寫在花括號(hào){ }內(nèi)。

          具體方法:在花括號(hào)內(nèi)先寫上表示這個(gè)集合元素的一般符號(hào)及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個(gè)集合中元素所具有的共同特征。

          一般格式:

          如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;

          說(shuō)明:

          1.課本P5最后一段話;

          2.描述法表示集合應(yīng)注意集合的代表元素,如{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}是不同的兩個(gè)集合,只要不引起誤解,集合的代表元素也可省略,例如:{x|整數(shù)},即代表整數(shù)集Z。

          辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實(shí)數(shù)集},{R}也是錯(cuò)誤的。

          例2.(課本例2)試分別用列舉法和描述法表示下列集合:

          (1)方程x2—2=0的所有實(shí)數(shù)根組成的集合;

          (2)由大于10小于20的所有整數(shù)組成的集合;

          (3)方程組 的解。

          思考3:(課本P6思考)

          說(shuō)明:列舉法與描述法各有優(yōu)點(diǎn),應(yīng)該根據(jù)具體問(wèn)題確定采用哪種表示法,要注意,一般集合中元素較多或有無(wú)限個(gè)元素時(shí),不宜采用列舉法。

          (二).課堂練習(xí):

          1.課本P6練習(xí)2;

          2.用適當(dāng)?shù)姆椒ū硎炯希捍笥?的所有奇數(shù)

          3.集合A={x| ∈Z,x∈N},則它的元素是 。

          4.已知集合A={x|-3

          歸納小結(jié):

          本節(jié)課從實(shí)例入手,介紹了集合的常用表示方法,包括列舉法、描述法。

          作業(yè)布置:

          1. 習(xí)題1.1,第3.4題;

          2. 課后預(yù)習(xí)集合間的基本關(guān)系.

          高一數(shù)學(xué)教案14

          [三維目標(biāo)]

          一、知識(shí)與技能:

          1、鞏固集合、子、交、并、補(bǔ)的概念、性質(zhì)和記號(hào)及它們之間的關(guān)系

          2、了解集合的運(yùn)算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的一般思想

          3、了解集合元素個(gè)數(shù)問(wèn)題的討論說(shuō)明

          二、過(guò)程與方法

          通過(guò)提問(wèn)匯總練習(xí)提煉的形式來(lái)發(fā)掘?qū)W生學(xué)習(xí)方法

          三、情感態(tài)度與價(jià)值觀

          培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的'思維

          [教學(xué)重點(diǎn)、難點(diǎn)]:會(huì)正確應(yīng)用其概念和性質(zhì)做題 [教 具]:多媒體、實(shí)物投影儀

          [教學(xué)方法]:講練結(jié)合法

          [授課類型]:復(fù)習(xí)課

          [課時(shí)安排]:1課時(shí)

          [教學(xué)過(guò)程]:集合部分匯總

          本單元主要介紹了以下三個(gè)問(wèn)題:

          1,集合的含義與特征

          2,集合的表示與轉(zhuǎn)化

          3,集合的基本運(yùn)算

          一,集合的含義與表示(含分類)

          1,具有共同特征的對(duì)象的全體,稱一個(gè)集合

          2,集合按元素的個(gè)數(shù)分為:有限集和無(wú)窮集兩類

          高一數(shù)學(xué)教案15

          【內(nèi)容與解析】

          本節(jié)課要學(xué)的內(nèi)容有函數(shù)的概念指的是函數(shù)的概念及符號(hào)的理解,理解它關(guān)鍵就是能用集合與對(duì)應(yīng)的語(yǔ)言刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用。學(xué)生已經(jīng)學(xué)過(guò)了集合并且初中對(duì)函數(shù)的概念已經(jīng)作了介紹,本節(jié)課的內(nèi)容函數(shù)的概念就是在此基礎(chǔ)上的發(fā)展的。由于它還與基本初等函數(shù)和函數(shù)模型等內(nèi)容有必要的聯(lián)系,所以在本學(xué)科有著很重要的地位,是學(xué)習(xí)后面知識(shí)的基礎(chǔ),是本學(xué)科的核心內(nèi)容。教學(xué)的重點(diǎn)是函數(shù)的概念,函數(shù)的三要素,所以解決重點(diǎn)的關(guān)鍵是通過(guò)實(shí)例領(lǐng)悟構(gòu)成函數(shù)的三個(gè)要素;會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域。

          【教學(xué)目標(biāo)與解析】

          1、教學(xué)目標(biāo)

         。1)理解函數(shù)的概念;

         。2)了解區(qū)間的概念;

          2、目標(biāo)解析

         。1)理解函數(shù)的概念就是指能用集合與對(duì)應(yīng)的語(yǔ)言刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;

         。2)了解區(qū)間的概念就是指能夠體會(huì)用區(qū)間表示數(shù)集的意義和作用;

          【問(wèn)題診斷分析】

          在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問(wèn)題是函數(shù)的概念及符號(hào)的理解,產(chǎn)生這一問(wèn)題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對(duì)學(xué)生來(lái)說(shuō)一個(gè)難點(diǎn)。要解決這一問(wèn)題,就要在通過(guò)從實(shí)際問(wèn)題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的`抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。

          【教學(xué)過(guò)程】

          問(wèn)題1:一枚炮彈發(fā)射后,經(jīng)過(guò)26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是:h=130t-5t2.

          1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?

          1.2高度變量h與時(shí)間變量t之間的對(duì)應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?

          設(shè)計(jì)意圖:通過(guò)以上問(wèn)題,讓學(xué)生正確理解讓學(xué)生體會(huì)用解析式或圖象刻畫兩個(gè)變量之間的依賴關(guān)系,從問(wèn)題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對(duì)應(yīng)關(guān)系,都有唯一的一個(gè)高度h與之對(duì)應(yīng)。

          問(wèn)題2:分析教科書中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有唯一的一個(gè)臭氧層空洞面積S與之相對(duì)應(yīng)。

          問(wèn)題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。

          設(shè)計(jì)意圖:通過(guò)這些問(wèn)題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。

          問(wèn)題4:上述三個(gè)實(shí)例中變量之間的關(guān)系都是函數(shù),那么從集合與對(duì)應(yīng)的觀點(diǎn)分析,函數(shù)還可以怎樣定義?

          4.1在一個(gè)函數(shù)中,自變量x和函數(shù)值y的變化范圍都是集合,這兩個(gè)集合分別叫什么名稱?

          4.2在從集合A到集合B的一個(gè)函數(shù)f:A→B中,集合A是函數(shù)的定義域,集合B是函數(shù)的值域嗎?怎樣理解f(x)=1,x∈R?

          4.3一個(gè)函數(shù)由哪幾個(gè)部分組成?如果給定函數(shù)的定義域和對(duì)應(yīng)關(guān)系,那么函數(shù)的值域確定嗎??jī)蓚(gè)函數(shù)相等的條件是什么?

          【例題】:

          例1求下列函數(shù)的定義域

          分析:求定義域就是使式子有意義的x的取值所構(gòu)成的集合;定義域一定是集合!

          例2已知函數(shù)

          分析:理解函數(shù)f(x)的意義

          例3下列函數(shù)中哪個(gè)與函數(shù)相等?

          例4在下列各組函數(shù)中與是否相等?為什么?

          分析:

         。1)兩個(gè)函數(shù)相等,要求定義域和對(duì)應(yīng)關(guān)系都一致;

         。2)用x還是用其它字母來(lái)表示自變量對(duì)函數(shù)實(shí)質(zhì)而言沒(méi)有影響.

          【課堂目標(biāo)檢1測(cè)】

          教科書第19頁(yè)1、2.

          【課堂小結(jié)】

          1、理解函數(shù)的定義,函數(shù)的三要素,會(huì)球簡(jiǎn)單的函數(shù)的定義域和函數(shù)值;

          2、理解區(qū)間是表示數(shù)集的一種方法,會(huì)把不等式轉(zhuǎn)化為區(qū)間。

          高一數(shù)學(xué)教案16

          教學(xué)目標(biāo):

          1.進(jìn)一步理解對(duì)數(shù)函數(shù)的性質(zhì),能運(yùn)用對(duì)數(shù)函數(shù)的相關(guān)性質(zhì)解決對(duì)數(shù)型函數(shù)的常見(jiàn)問(wèn)題.

          2.培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,以及分析推理的能力.

          教學(xué)重點(diǎn):

          對(duì)數(shù)函數(shù)性質(zhì)的應(yīng)用.

          教學(xué)難點(diǎn):

          對(duì)數(shù)函數(shù)的性質(zhì)向?qū)?shù)型函數(shù)的演變延伸.

          教學(xué)過(guò)程:

          一、問(wèn)題情境

          1.復(fù)習(xí)對(duì)數(shù)函數(shù)的性質(zhì).

          2.回答下列問(wèn)題.

          (1)函數(shù)y=log2x的值域是 ;

          (2)函數(shù)y=log2x(x≥1)的值域是 ;

          (3)函數(shù)y=log2x(0

          3.情境問(wèn)題.

          函數(shù)y=log2(x2+2x+2)的定義域和值域分別如何求呢?

          二、學(xué)生活動(dòng)

          探究完成情境問(wèn)題.

          三、數(shù)學(xué)運(yùn)用

          例1 求函數(shù)y=log2(x2+2x+2)的定義域和值域.

          練習(xí):

          (1)已知函數(shù)y=log2x的值域是[-2,3],則x的'范圍是________________.

          (2)函數(shù) ,x(0,8]的值域是 .

          (3)函數(shù)y=log (x2-6x+17)的值域 .

          (4)函數(shù) 的值域是_______________.

          例2 判斷下列函數(shù)的奇偶性:

          (1)f (x)=lg (2)f (x)=ln( -x)

          例3 已知loga 0.75>1,試求實(shí)數(shù)a 取值范圍.

          例4 已知函數(shù)y=loga(1-ax)(a>0,a≠1).

          (1)求函數(shù)的定義域與值域;

          (2)求函數(shù)的單調(diào)區(qū)間.

          練習(xí):

          1.下列函數(shù)(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域?yàn)镽的有 (請(qǐng)寫出所有正確結(jié)論的序號(hào)).

          2.函數(shù)y=lg( -1)的圖象關(guān)于 對(duì)稱.

          3.已知函數(shù) (a>0,a≠1)的圖象關(guān)于原點(diǎn)對(duì)稱,那么實(shí)數(shù)m= .

          4.求函數(shù) ,其中x [ ,9]的值域.

          四、要點(diǎn)歸納與方法小結(jié)

          (1)借助于對(duì)數(shù)函數(shù)的性質(zhì)研究對(duì)數(shù)型函數(shù)的定義域與值域;

          (2)換元法;

          (3)能畫出較復(fù)雜函數(shù)的圖象,根據(jù)圖象研究函數(shù)的性質(zhì)(數(shù)形結(jié)合).

          五、作業(yè)

          課本P70~71-4,5,10,11.

          高一數(shù)學(xué)教案17

          1.1 集合含義及其表示

          教學(xué)目標(biāo):理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號(hào)及術(shù)語(yǔ)。

          教學(xué)過(guò)程:

          一、閱讀下列語(yǔ)句:

          1) 全體自然數(shù)0,1,2,3,4,5,

          2) 代數(shù)式 .

          3) 拋物線 上所有的點(diǎn)

          4) 今年本校高一(1)(或(2))班的全體學(xué)生

          5) 本校實(shí)驗(yàn)室的所有天平

          6) 本班級(jí)全體高個(gè)子同學(xué)

          7) 著名的科學(xué)家

          上述每組語(yǔ)句所描述的對(duì)象是否是確定的?

          二、1)集合:

          2)集合的元素:

          3)集合按元素的.個(gè)數(shù)分,可分為1)__________2)_________

          三、集合中元素的三個(gè)性質(zhì):

          1)___________2)___________3)_____________

          四、元素與集合的關(guān)系:1)____________2)____________

          五、特殊數(shù)集專用記號(hào):

          1)非負(fù)整數(shù)集(或自然數(shù)集)______2)正整數(shù)集_____3)整數(shù)集_______

          4)有理數(shù)集______5)實(shí)數(shù)集_____ 6)空集____

          六、集合的表示方法:

          1)

          2)

          3)

          七、例題講解:

          例1、 中三個(gè)元素可構(gòu)成某一個(gè)三角形的三邊長(zhǎng),那么此三角形一定不是 ( )

          A,直角三角形 B,銳角三角形 C,鈍角三角形 D,等腰三角形

          例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑,然后說(shuō)出它們是有限集還是無(wú)限集?

          1)地球上的四大洋構(gòu)成的集合;

          2)函數(shù) 的全體 值的集合;

          3)函數(shù) 的全體自變量 的集合;

          4)方程組 解的集合;

          5)方程 解的集合;

          6)不等式 的解的集合;

          7)所有大于0且小于10的奇數(shù)組成的集合;

          8)所有正偶數(shù)組成的集合;

          例3、用符號(hào) 或 填空:

          1) ______Q ,0_____N, _____Z,0_____

          2) ______ , _____

          3)3_____ ,

          4)設(shè) , , 則

          例4、用列舉法表示下列集合;

          1.

          2.

          3.

          4.

          例5、用描述法表示下列集合

          1.所有被3整除的數(shù)

          2.圖中陰影部分點(diǎn)(含邊界)的坐標(biāo)的集合

          課堂練習(xí):

          例6、設(shè)含有三個(gè)實(shí)數(shù)的集合既可以表示為 ,也可以表示為 ,則 的值等于___________

          例7、已知: ,若 中元素至多只有一個(gè),求 的取值范圍。

          思考題:數(shù)集A滿足:若 ,則 ,證明1):若2 ,則集合中還有另外兩個(gè)元素;2)若 則集合A不可能是單元素集合。

          小結(jié):

          作業(yè) 班級(jí) 姓名 學(xué)號(hào)

          1. 下列集合中,表示同一個(gè)集合的是 ( )

          A . M= ,N= B. M= ,N=

          C. M= ,N= D. M= ,N=

          2. M= ,X= ,Y= , , .則 ( )

          A . B. C. D.

          3. 方程組 的解集是____________________.

          4. 在(1)難解的題目,(2)方程 在實(shí)數(shù)集內(nèi)的解,(3)直角坐標(biāo)平面內(nèi)第四象限的一些點(diǎn),(4)很多多項(xiàng)式。能夠組成集合的序號(hào)是________________.

          5. 設(shè)集合 A= , B= ,

          C= , D= ,E= 。

          其中有限集的個(gè)數(shù)是____________.

          6. 設(shè) ,則集合 中所有元素的和為

          7. 設(shè)x,y,z都是非零實(shí)數(shù),則用列舉法將 所有可能的值組成的集合表示為

          8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,

          若A= ,試用列舉法表示集合B=

          9. 把下列集合用另一種方法表示出來(lái):

          (1) (2)

          (3) (4)

          10. 設(shè)a,b為整數(shù),把形如a+b 的一切數(shù)構(gòu)成的集合記為M,設(shè) ,試判斷x+y,x-y,xy是否屬于M,說(shuō)明理由。

          11. 已知集合A=

          (1) 若A中只有一個(gè)元素,求a的值,并求出這個(gè)元素;

          (2) 若A中至多只有一個(gè)元素,求a的取值集合。

          12.若-3 ,求實(shí)數(shù)a的值。

          【總結(jié)】20xx年已經(jīng)到來(lái),新的一年數(shù)學(xué)網(wǎng)會(huì)為您整理更多更好的文章,希望本文高一數(shù)學(xué)教案:集合含義及其表示能給您帶來(lái)幫助!

          高一數(shù)學(xué)教案18

          學(xué)習(xí)目標(biāo) 1.函數(shù)奇偶性的概念

          2.由函數(shù)圖象研究函數(shù)的奇偶性

          3.函數(shù)奇偶性的判斷

          重點(diǎn):能運(yùn)用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性

          難點(diǎn):理解函數(shù)的奇偶性

          知識(shí)梳理:

          1.軸對(duì)稱圖形:

          2中心對(duì)稱圖形:

          【概念探究】

          1、 畫出函數(shù) ,與 的圖像;并觀察兩個(gè)函數(shù)圖像的對(duì)稱性。

          2、 求出 , 時(shí)的函數(shù)值,寫出 , 。

          結(jié)論: 。

          3、 奇函數(shù):___________________________________________________

          4、 偶函數(shù):______________________________________________________

          【概念深化】

          (1)、強(qiáng)調(diào)定義中任意二字,奇偶性是函數(shù)在定義域上的整體性質(zhì)。

          (2)、奇函數(shù)偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱。

          5、奇函數(shù)與偶函數(shù)圖像的對(duì)稱性:

          如果一個(gè)函數(shù)是奇函數(shù),則這個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對(duì)稱中心的__________。反之,如果一個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對(duì)稱中心的中心對(duì)稱圖形,則這個(gè)函數(shù)是___________。

          如果一個(gè)函數(shù)是偶函數(shù),則這個(gè)函數(shù)的圖像是以 軸為對(duì)稱軸的__________。反之,如果一個(gè)函數(shù)的圖像是關(guān)于 軸對(duì)稱,則這個(gè)函數(shù)是___________。

          6. 根據(jù)函數(shù)的奇偶性,函數(shù)可以分為_(kāi)___________________________________.

          題型一:判定函數(shù)的奇偶性。

          例1、判斷下列函數(shù)的奇偶性:

          (1) (2) (3)

          (4) (5)

          練習(xí):教材第49頁(yè),練習(xí)A第1題

          總結(jié):根據(jù)例題,你能給出用定義判斷函數(shù)奇偶性的步驟?

          題型二:利用奇偶性求函數(shù)解析式

          例2:若f(x)是定義在R上的奇函數(shù),當(dāng)x0時(shí),f(x)=x(1-x),求當(dāng) 時(shí)f(x)的解析式。

          練習(xí):若f(x)是定義在R上的奇函數(shù),當(dāng)x0時(shí),f(x)=x|x-2|,求當(dāng)x0時(shí)f(x)的解析式。

          已知定義在實(shí)數(shù)集 上的奇函數(shù) 滿足:當(dāng)x0時(shí), ,求 的表達(dá)式

          題型三:利用奇偶性作函數(shù)圖像

          例3 研究函數(shù) 的性質(zhì)并作出它的圖像

          練習(xí):教材第49練習(xí)A第3,4,5題,練習(xí)B第1,2題

          當(dāng)堂檢測(cè)

          1 已知 是定義在R上的奇函數(shù),則( D )

          A. B. C. D.

          2 如果偶函數(shù) 在區(qū)間 上是減函數(shù),且最大值為7,那么 在區(qū)間 上是( B )

          A. 增函數(shù)且最小值為-7 B. 增函數(shù)且最大值為7

          C. 減函數(shù)且最小值為-7 D. 減函數(shù)且最大值為7

          3 函數(shù) 是定義在區(qū)間 上的偶函數(shù),且 ,則下列各式一定成立的是(C )

          A. B. C. D.

          4 已知函數(shù) 為奇函數(shù),若 ,則 -1

          5 若 是偶函數(shù),則 的單調(diào)增區(qū)間是

          6 下列函數(shù)中不是偶函數(shù)的.是(D )

          A B C D

          7 設(shè)f(x)是R上的偶函數(shù),切在 上單調(diào)遞減,則f(-2),f(- ),f(3)的大小關(guān)系是( A )

          A B f(- )f(-2) f(3) C f(- )

          8 奇函數(shù) 的圖像必經(jīng)過(guò)點(diǎn)( C )

          A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))

          9 已知函數(shù) 為偶函數(shù),其圖像與x軸有四個(gè)交點(diǎn),則方程f(x)=0的所有實(shí)根之和是( A )

          A 0 B 1 C 2 D 4

          10 設(shè)f(x)是定義在R上的奇函數(shù),且x0時(shí),f(x)= ,則f(-2)=_-5__

          11若f(x)在 上是奇函數(shù),且f(3)_f(-1)

          12.解答題

          用定義判斷函數(shù) 的奇偶性。

          13定義證明函數(shù)的奇偶性

          已知函數(shù) 在區(qū)間D上是奇函數(shù),函數(shù) 在區(qū)間D上是偶函數(shù),求證: 是奇函數(shù)

          14利用函數(shù)的奇偶性求函數(shù)的解析式:

          已知分段函數(shù) 是奇函數(shù),當(dāng) 時(shí)的解析式為 ,求這個(gè)函數(shù)在區(qū)間 上的解析表達(dá)式。

          高一數(shù)學(xué)教案19

          教學(xué)目標(biāo):

          1、掌握對(duì)數(shù)的運(yùn)算性質(zhì),并能理解推導(dǎo)這些法則的依據(jù)和過(guò)程;

          2、能較熟練地運(yùn)用法則解決問(wèn)題;

          教學(xué)重點(diǎn):

          對(duì)數(shù)的運(yùn)算性質(zhì)

          教學(xué)過(guò)程:

          一、問(wèn)題情境:

          1、指數(shù)冪的運(yùn)算性質(zhì);

          2、問(wèn)題:對(duì)數(shù)運(yùn)算也有相應(yīng)的運(yùn)算性質(zhì)嗎?

          二、學(xué)生活動(dòng):

          1、觀察教材P59的.表2—3—1,驗(yàn)證對(duì)數(shù)運(yùn)算性質(zhì)、

          2、理解對(duì)數(shù)的運(yùn)算性質(zhì)、

          3、證明對(duì)數(shù)性質(zhì)、

          三、建構(gòu)數(shù)學(xué):

          1)引導(dǎo)學(xué)生驗(yàn)證對(duì)數(shù)的運(yùn)算性質(zhì)、

          2)推導(dǎo)和證明對(duì)數(shù)運(yùn)算性質(zhì)、

          3)運(yùn)用對(duì)數(shù)運(yùn)算性質(zhì)解題、

          探究:

          ①簡(jiǎn)易語(yǔ)言表達(dá):“積的對(duì)數(shù)=對(duì)數(shù)的和”……

         、谟袝r(shí)逆向運(yùn)用公式運(yùn)算:如

          ③真數(shù)的取值范圍必須是:不成立;不成立、

         、茏⒁猓,

          四、數(shù)學(xué)運(yùn)用:

          1、例題:

          例1、(教材P60例4)求下列各式的值:

         。1);(2)125;(3)(補(bǔ)充)lg、

          例2、(教材P60例4)已知,,求下列各式的值(結(jié)果保留4位小數(shù))

         。1);(2)、

          例3、用,,表示下列各式:

          例4、計(jì)算:

         。1);(2);(3)

          2、練習(xí):

          P60(練習(xí))1,2,4,5、

          五、回顧小結(jié):

          本節(jié)課學(xué)習(xí)了以下內(nèi)容:對(duì)數(shù)的運(yùn)算法則,公式的逆向使用、

          六、課外作業(yè):

          P63習(xí)題5

          補(bǔ)充:

          1、求下列各式的值:

         。1)6—3;(2)lg5+lg2;(3)3+、

          2、用lgx,lgy,lgz表示下列各式:

         。1)lg(xyz);(2)lg;(3);(4)、

          3、已知lg2=0、3010,lg3=0、4771,求下列各對(duì)數(shù)的值(精確到小數(shù)點(diǎn)后第四位)

         。1)lg6;(2)lg;(3)lg;(4)lg32、

          高一數(shù)學(xué)教案20

          一:【課前預(yù)習(xí)】

          (一):【知識(shí)梳理】

          1.直角三角形的邊角關(guān)系(如圖)

          (1)邊的關(guān)系(勾股定理):AC2+BC2=AB2;

          (2)角的關(guān)系:B=

          (3)邊角關(guān)系:

         、伲

          ②:銳角三角函數(shù):

          A的正弦= ;

          A的余弦= ,

          A的正切=

          注:三角函數(shù)值是一個(gè)比值.

          2.特殊角的三角函數(shù)值.

          3.三角函數(shù)的關(guān)系

          (1) 互為余角的三角函數(shù)關(guān)系.

          sin(90○-A)=cosA, cos(90○-A)=sin A tan(90○-A)= cotA

          (2) 同角的三角函數(shù)關(guān)系.

          平方關(guān)系:sin2 A+cos2A=l

          4.三角函數(shù)的大小比較

         、僬、正切是增函數(shù).三角函數(shù)值隨角的增大而增大,隨角的減小而減小.

          ②余弦是減函數(shù).三角函數(shù)值隨角的增大而減小,隨角的減小而增大。

          (二):【課前練習(xí)】

          1.等腰直角三角形一個(gè)銳角的余弦為( )

          A. D.l

          2.點(diǎn)M(tan60,-cos60)關(guān)于x軸的對(duì)稱點(diǎn)M的坐標(biāo)是( )

          3.在 △ABC中,已知C=90,sinB=0.6,則cosA的值是( )

          4.已知A為銳角,且cosA0.5,那么( )

          A.060 B.6090 C.030 D.3090

          二:【經(jīng)典考題剖析】

          1.如圖,在Rt△ABC中,C=90,A=45,點(diǎn)D在AC上,BDC=60,AD=l,求BD、DC的長(zhǎng).

          2.先化簡(jiǎn),再求其值, 其中x=tan45-cos30

          3. 計(jì)算:①sin248○+ sin242○-tan44○tan45○tan 46○ ②cos 255○+ cos235○

          4.比較大小(在空格處填寫或或=)

          若=45○,則sin________cos

          若45○,則sin cos

          若45,則 sin cos.

          5.⑴如圖①、②銳角的正弦值和余弦值都隨著銳角的確定而確定,變化而變化,試探索隨著銳角度數(shù)的增大,它的正弦值和余弦值變化的規(guī)律;

         、聘鶕(jù)你探索到的規(guī)律,試比較18○、34○、50○、61○、88○這些銳角的正弦值的大小和余弦值的大小.

          三:【課后訓(xùn)練】

          1. 2sin60-cos30tan45的結(jié)果為( )

          A. D.0

          2.在△ABC中,A為銳角,已知 cos(90-A)= ,sin(90-B)= ,則△ABC一定是( )

          A.銳角三角形;B.直角三角形;C.鈍角三角形;D.等腰三角形

          3.如圖,在平面直角坐標(biāo)系中,已知A(3,0)點(diǎn)B(0,-4),則cosOAB等于__________

          4.cos2+sin242○ =1,則銳角=______.

          5.在下列不等式中,錯(cuò)誤的`是( )

          A.sin45○sin30○;B.cos60○tan30○;D.cot30○

          6.如圖,在△ABC中,AC=3,BC=4,AB=5,則tanB的值是()

          7.如圖所示,在菱形ABCD中,AEBC于 E點(diǎn),EC=1,B=30,求菱形ABCD的周長(zhǎng).

          8.如圖所示,在△ABC中,ACB=90,BC=6,AC=8 ,CDAB,求:①sinACD 的值;②tanBCD的值

          9.如圖 ,某風(fēng)景區(qū)的湖心島有一涼亭A,其正東方向有一棵大樹(shù)B,小明想測(cè)量A/B之間的距離,他從湖邊的C處測(cè)得A在北偏西45方向上,測(cè)得B在北偏東32方向上,且量得B、C之間的距離為100米,根據(jù)上述測(cè)量結(jié)果,請(qǐng)你幫小明計(jì)算A山之間的距離是多少?(結(jié)果精確至1米.參考數(shù)據(jù):sin32○0.5299,cos32○0.8480)

          10.某住宅小區(qū)修了一個(gè)塔形建筑物AB,如圖所示,在與建筑物底部同一水平線的C處,測(cè)得點(diǎn)A的仰角為45,然后向塔方向前進(jìn)8米到達(dá)D處,在D處測(cè)得點(diǎn)A的仰角為60,求建筑物的高度.(精確0.1米)

        【高一數(shù)學(xué)教案】相關(guān)文章:

        高一數(shù)學(xué)教案12-21

        高一數(shù)學(xué)教案06-20

        關(guān)于高一數(shù)學(xué)教案09-30

        上海高一數(shù)學(xué)教案04-20

        人教版高一數(shù)學(xué)教案12-23

        【熱】高一數(shù)學(xué)教案01-24

        【精】高一數(shù)學(xué)教案01-27

        高一數(shù)學(xué)教案【精】02-02

        高一數(shù)學(xué)教案【薦】02-02

        高一數(shù)學(xué)教案【熱】01-20

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>