1. <rp id="zsypk"></rp>

      2. 高一數(shù)學(xué)教案設(shè)計(jì)

        時(shí)間:2023-01-30 04:47:34 教案 我要投稿
        • 相關(guān)推薦

        高一數(shù)學(xué)教案設(shè)計(jì)

          教案一般包括教學(xué)內(nèi)容、教學(xué)目標(biāo)及教學(xué)過(guò)程,那么 ,下面是小編給大家整理收集的高一數(shù)學(xué)教案設(shè)計(jì),供大家閱讀參考。

        高一數(shù)學(xué)教案設(shè)計(jì)

          高一數(shù)學(xué)教案設(shè)計(jì)一:集合的概念

          教學(xué)目的:

         。1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法

         。2)使學(xué)生初步了解“屬于”關(guān)系的意義

         。3)使學(xué)生初步了解有限集、無(wú)限集、空集的意義

          教學(xué)重點(diǎn):集合的基本概念及表示方法

          教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡(jiǎn)單的集合

          授課類(lèi)型:新授課

          課時(shí)安排:1課時(shí)

          教  具:多媒體、實(shí)物投影儀

          內(nèi)容分析:

          1、集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念 在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語(yǔ)言表述一些問(wèn)題 例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集 至于邏輯,可以說(shuō),從開(kāi)始學(xué)習(xí)數(shù)學(xué)就離不開(kāi)對(duì)邏輯知識(shí)的掌握和運(yùn)用,基本的邏輯知識(shí)在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識(shí)問(wèn)題、研究問(wèn)題不可缺少的工具 這些可以幫助學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)

          把集合的初步知識(shí)與簡(jiǎn)易邏輯知識(shí)安排在高中數(shù)學(xué)的最開(kāi)始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語(yǔ)言的基礎(chǔ) 例如,下一章講函數(shù)的概念與性質(zhì),就離不開(kāi)集合與邏輯

          本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫(huà)圖表示集合的`例子

          這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念 學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義 本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念

          集合是集合論中的原始的、不定義的概念 在開(kāi)始接觸集合的概念時(shí),主要還是通過(guò)實(shí)例,對(duì)概念有一個(gè)初步認(rèn)識(shí) 教科書(shū)給出的“一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱(chēng)集 ”這句話(huà),只是對(duì)集合概念的描述性說(shuō)明

          教學(xué)過(guò)程:

          一、復(fù)習(xí)引入:

          1、簡(jiǎn)介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

          2、教材中的章頭引言;

          3、集合論的創(chuàng)始人——康托爾(德國(guó)數(shù)學(xué)家)(見(jiàn)附錄);

          4、“物以類(lèi)聚”,“人以群分”;

          5、教材中例子(P4)

          二、講解新課:

          閱讀教材第一部分,問(wèn)題如下:

         。1)有那些概念?是如何定義的?

          (2)有那些符號(hào)?是如何表示的?

          (3)集合中元素的特性是什么?

         。ㄒ唬┘系挠嘘P(guān)概念:

          由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的.我們說(shuō),每一組對(duì)象的全體形成一個(gè)集合,或者說(shuō),某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱(chēng)集.集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素.

          定義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合、

          1、集合的概念

         。1)集合:某些指定的對(duì)象集在一起就形成一個(gè)集合(簡(jiǎn)稱(chēng)集)

         。2)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素

          2、常用數(shù)集及記法

         。1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合 記作N,

         。2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+

          (3)整數(shù)集:全體整數(shù)的集合 記作Z ,

         。4)有理數(shù)集:全體有理數(shù)的集合 記作Q ,

         。5)實(shí)數(shù)集:全體實(shí)數(shù)的集合 記作R

          注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說(shuō),自然數(shù)集包括數(shù)0

         。2)非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+ Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*

          3、元素對(duì)于集合的隸屬關(guān)系

         。1)屬于:如果a是集合A的元素,就說(shuō)a屬于A,記作a∈A

         。2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A,記作

          4、集合中元素的特性

         。1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可

         。2)互異性:集合中的元素沒(méi)有重復(fù)

          (3)無(wú)序性:集合中的元素沒(méi)有一定的順序(通常用正常的順序?qū)懗觯?/p>

          5、⑴集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、p、q……

         、啤啊省钡拈_(kāi)口方向,不能把a(bǔ)∈A顛倒過(guò)來(lái)寫(xiě)

          三、練習(xí)題:

          1、教材P5練習(xí)1、2

          2、下列各組對(duì)象能確定一個(gè)集合嗎?

         。1)所有很大的實(shí)數(shù) (不確定)

         。2)好心的人        (不確定)

         。3)1,2,2,3,4,5、(有重復(fù))

          3、設(shè)a,b是非零實(shí)數(shù),那么 可能取的值組成集合的元素是_-2,0,2__

          4、由實(shí)數(shù)x,-x,|x|, 所組成的集合,最多含(  A  )

         。ˋ)2個(gè)元素  (B)3個(gè)元素  (C)4個(gè)元素  (D)5個(gè)元素

          5、設(shè)集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數(shù),求證:

          (1) 當(dāng)x∈N時(shí), x∈G;

          (2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G

          證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0* = a+b ∈G,即x∈G

          證明(2):∵x∈G,y∈G,

          ∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

          ∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

          ∵a∈Z, b∈Z,c∈Z, d∈Z

          ∴(a+c) ∈Z, (b+d) ∈Z

          ∴x+y =(a+c)+(b+d)  ∈G,又∵ 不一定都是整數(shù),∴ = 不一定屬于集合G

          四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

          1、集合的有關(guān)概念:(集合、元素、屬于、不屬于)

          2、集合元素的性質(zhì):確定性,互異性,無(wú)序性

          3、常用數(shù)集的定義及記法

          高一數(shù)學(xué)教案設(shè)計(jì)二:函數(shù)的概念

          【內(nèi)容與解析】

          本節(jié)課要學(xué)的內(nèi)容有函數(shù)的概念指的是函數(shù)的概念及符號(hào) 的理解,理解它關(guān)鍵就是能用集合與對(duì)應(yīng)的語(yǔ)言刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用。學(xué)生已經(jīng)學(xué)過(guò)了集合并且初中對(duì)函數(shù)的概念已經(jīng)作了介紹,本節(jié)課的內(nèi)容函數(shù)的概念就是在此基礎(chǔ)上的發(fā)展的。由于它還與基本初等函數(shù)和函數(shù)模型等內(nèi)容有必要的聯(lián)系,所以在本學(xué)科有著很重要的地位,是學(xué)習(xí)后面知識(shí)的基礎(chǔ),是本學(xué)科的核心內(nèi)容。教學(xué)的重點(diǎn)是函數(shù)的概念,函數(shù)的三要素,所以解決重點(diǎn)的關(guān)鍵是通過(guò)實(shí)例領(lǐng)悟構(gòu)成函數(shù)的三個(gè)要素;會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域。

          【教學(xué)目標(biāo)與解析】

          1、教學(xué)目標(biāo)

         。1)理解函數(shù)的概念;

         。2)了解區(qū)間的概念;

          2、目標(biāo)解析

         。1)理解函數(shù)的概念就是指能用集合與對(duì)應(yīng)的語(yǔ)言刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用;

         。2)了解區(qū)間的概念就是指能夠體會(huì)用區(qū)間表示數(shù)集的意義和作用;

          【問(wèn)題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問(wèn)題是函數(shù)的概念及符號(hào) 的理解,產(chǎn)生這一問(wèn)題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對(duì)學(xué)生來(lái)說(shuō)一個(gè)難點(diǎn)。要解決這一問(wèn)題,就要在通過(guò)從實(shí)際問(wèn)題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。

          【教學(xué)過(guò)程】

          問(wèn)題1:一枚炮彈發(fā)射后,經(jīng)過(guò)26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是: h=130t-5t2.

          1.1  這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?

          1.2  高度變量h與時(shí)間變量t之間的對(duì)應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?

          設(shè)計(jì)意圖:通過(guò)以上問(wèn)題,讓學(xué)生正確理解讓學(xué)生體會(huì)用解析式或圖象刻畫(huà)兩個(gè)變量之間的依賴(lài)關(guān)系,從問(wèn)題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對(duì)應(yīng)關(guān)系,都有唯一的一個(gè)高度h與之對(duì)應(yīng)。

          問(wèn)題2:分析教科書(shū)中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有唯一的一個(gè)臭氧層空洞面積S與之相對(duì)應(yīng)。

          問(wèn)題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。

          設(shè)計(jì)意圖:通過(guò)這些問(wèn)題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。

          問(wèn)題4:上述三個(gè)實(shí)例中變量之間的關(guān)系都是函數(shù),那么從集合與對(duì)應(yīng)的'觀點(diǎn)分析,函數(shù)還可以怎樣定義?

          4.1 在一個(gè)函數(shù)中,自變量x和函數(shù)值y的變化范圍都是集合,這兩個(gè)集合分別叫什么名稱(chēng)?

          4.2 在從集合A到集合B的一個(gè)函數(shù)f:A→B中,集合A是函數(shù)的定義域,集合B是函數(shù)的值域嗎?怎樣理解f(x)=1,x∈R?

          4.3一個(gè)函數(shù)由哪幾個(gè)部分組成?如果給定函數(shù)的定義域和對(duì)應(yīng)關(guān)系,那么函數(shù)的值域確定嗎??jī)蓚(gè)函數(shù)相等的條件是什么?

          【例題】:

          例1  求下列函數(shù)的定義域

         。1)          (2)

         。3)          (4)

          分析:求定義域就是使式子有意義的x的取值所構(gòu)成的集合;定義域一定是集合!

          例2已知函數(shù)

          分析:理解函數(shù)f(x)的意義

          例3   下列函數(shù)中哪個(gè)與函數(shù) 相等?

          例4 在下列各組函數(shù)中 與 是否相等?為什么?

          分析:(1)兩個(gè)函數(shù)相等,要求定義域和對(duì)應(yīng)關(guān)系都一致;

         。2)用x還是用其它字母來(lái)表示自變量對(duì)函數(shù)實(shí)質(zhì)而言沒(méi)有影響.

          【課堂目標(biāo)檢1測(cè)】

          教科書(shū)第19頁(yè)1、2.

          【課堂小結(jié)】

          1、理解函數(shù)的定義,函數(shù)的三要素,會(huì)球簡(jiǎn)單的函數(shù)的定義域和函數(shù)值;

          2、理解區(qū)間是表示數(shù)集的一種方法,會(huì)把不等式轉(zhuǎn)化為區(qū)間。

        【高一數(shù)學(xué)教案設(shè)計(jì)】相關(guān)文章:

        語(yǔ)文高一教案設(shè)計(jì)10-11

        高一《邊城》教案設(shè)計(jì)03-25

        高一《勸學(xué)》教案設(shè)計(jì)03-26

        高一《孫權(quán)勸學(xué)》教案設(shè)計(jì)03-25

        《用數(shù)學(xué)》教案設(shè)計(jì)08-26

        周長(zhǎng)的數(shù)學(xué)教案設(shè)計(jì)09-24

        高一語(yǔ)文《雨巷》教案設(shè)計(jì)03-25

        高一《一剪梅》教案設(shè)計(jì)03-22

        《用數(shù)學(xué)》教案設(shè)計(jì)15篇08-26

        最新小學(xué)數(shù)學(xué)教案設(shè)計(jì)08-10

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>