1. <rp id="zsypk"></rp>

      2. 高中數(shù)學(xué)正弦定理教案

        時(shí)間:2022-09-28 20:28:49 教案 我要投稿

        高中數(shù)學(xué)正弦定理教案

          作為一名無(wú)私奉獻(xiàn)的老師,時(shí)常會(huì)需要準(zhǔn)備好教案,編寫(xiě)教案有利于我們弄通教材內(nèi)容,進(jìn)而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。那要怎么寫(xiě)好教案呢?以下是小編收集整理的高中數(shù)學(xué)正弦定理教案,歡迎大家分享。

        高中數(shù)學(xué)正弦定理教案

        高中數(shù)學(xué)正弦定理教案1

          一、教材分析

          《正弦定理》是人教版教材必修五第一章《解三角形》的第一節(jié)內(nèi)容,也是三角形理論中的一個(gè)重要內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系。在此之前,學(xué)生已經(jīng)學(xué)習(xí)過(guò)了正弦函數(shù)和余弦函數(shù),知識(shí)儲(chǔ)備已足夠。它是后續(xù)課程中解三角形的理論依據(jù),也是解決實(shí)際生活中許多測(cè)量問(wèn)題的工具。因此熟練掌握正弦定理能為接下來(lái)學(xué)習(xí)解三角形打下堅(jiān)實(shí)基礎(chǔ),并能在實(shí)際應(yīng)用中靈活變通。

          二、教學(xué)目標(biāo)

          根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識(shí)水平,制定如下教學(xué)目標(biāo):

          知識(shí)目標(biāo):理解并掌握正弦定理的證明,運(yùn)用正弦定理解三角形。

          能力目標(biāo):探索正弦定理的證明過(guò)程,用歸納法得出結(jié)論,并能掌握多種證明方法。

          情感目標(biāo):通過(guò)推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對(duì)稱(chēng)美和數(shù)學(xué)的實(shí)際應(yīng)用價(jià)值。

          三、教學(xué)重難點(diǎn)

          教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。

          教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)。

          四、教法分析

          依據(jù)本節(jié)課內(nèi)容的特點(diǎn),學(xué)生的認(rèn)識(shí)規(guī)律,本節(jié)知識(shí)遵循以教師為主導(dǎo),以學(xué)生為主體的指導(dǎo)思想,采用與學(xué)生共同探索的教學(xué)方法,命題教學(xué)的發(fā)生型模式,以問(wèn)題實(shí)際為參照對(duì)象,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化,并且運(yùn)用例題和習(xí)題來(lái)強(qiáng)化內(nèi)容的掌握,突破重難點(diǎn)。即指導(dǎo)學(xué)生掌握“觀(guān)察——猜想——證明——應(yīng)用”這一思維方法。學(xué)生采用自主式、合作式、探討式的學(xué)習(xí)方法,這樣能使學(xué)生積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),培養(yǎng)學(xué)生的合作意識(shí)和探究精神。

          五、教學(xué)過(guò)程

          本節(jié)知識(shí)教學(xué)采用發(fā)生型模式:

          1、問(wèn)題情境

          有一個(gè)旅游景點(diǎn),為了吸引更多的游客,想在風(fēng)景區(qū)兩座相鄰的山之間搭建一條觀(guān)光索道。已知一座山A到山腳C的上面斜距離是1500米,在山腳測(cè)得兩座山頂之間的夾角是450,在另一座山頂B測(cè)得山腳與A山頂之間的夾角是300。求需要建多長(zhǎng)的索道?

          可將問(wèn)題數(shù)學(xué)符號(hào)化,抽象成數(shù)學(xué)圖形。即已知AC=1500m,∠C=450,∠B=300。求AB=?

          此題可運(yùn)用做輔助線(xiàn)BC邊上的高來(lái)間接求解得出。

          提問(wèn):有沒(méi)有根據(jù)已提供的數(shù)據(jù),直接一步就能解出來(lái)的方法?

          思考:我們知道,在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系。那我們能不能得到關(guān)于邊、角關(guān)系準(zhǔn)確量化的表示呢?

          2、歸納命題

          我們從特殊的三角形直角三角形中來(lái)探討邊與角的數(shù)量關(guān)系:

          在如圖Rt三角形ABC中,根據(jù)正弦函數(shù)的定義

        高中數(shù)學(xué)正弦定理教案2

          一、說(shuō)教學(xué)內(nèi)容分析

          本節(jié)課是高一數(shù)學(xué)第五章《三角比》第三單元中正弦定理的第一課時(shí),它既是初中“解直角三角形”內(nèi)容的直接延拓,也是坐標(biāo)法等知識(shí)在三角形中的具體運(yùn)用,是生產(chǎn)、生活實(shí)際問(wèn)題的重要工具,正弦定理揭示了任意三角形的邊角之間的一種等量關(guān)系,它與后面的余弦定理都是解三角形的重要工具。

          本節(jié)課其主要任務(wù)是引入證明正弦定理及正弦定理的基本應(yīng)用,在課型上屬于“定理教學(xué)課”。因此,做好“正弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識(shí),使學(xué)生掌握新的有用的知識(shí),體會(huì)聯(lián)系、發(fā)展等辯證觀(guān)點(diǎn),學(xué)生通過(guò)對(duì)定理證明的探究和討論,體驗(yàn)到數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的'歷程,進(jìn)而培養(yǎng)學(xué)生提出問(wèn)題、解決問(wèn)題等研究性學(xué)習(xí)的能力。

          二、說(shuō)學(xué)情分析

          對(duì)高一的學(xué)生來(lái)說(shuō),一方面已經(jīng)學(xué)習(xí)了平面幾何,解直角三角形,任意角的三角比等知識(shí),具有一定觀(guān)察分析、解決問(wèn)題的能力;但另一方面對(duì)新舊知識(shí)間的聯(lián)系、理解、應(yīng)用往往會(huì)出現(xiàn)思維障礙,思維靈活性、深刻性受到制約。根據(jù)以上特點(diǎn),教師恰當(dāng)引導(dǎo),提高學(xué)生學(xué)習(xí)主動(dòng)性,注意前后知識(shí)間的聯(lián)系,引導(dǎo)學(xué)生直接參與分析問(wèn)題、解決問(wèn)題。

          三、說(shuō)設(shè)計(jì)思想:

          培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究是全面發(fā)展學(xué)生能力的重要方面,也是高中新課程改革的主要任務(wù)。如何培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究呢?建構(gòu)主義認(rèn)為:“知識(shí)不是被動(dòng)吸收的,而是由認(rèn)知主體主動(dòng)建構(gòu)的!边@個(gè)觀(guān)點(diǎn)從教學(xué)的角度來(lái)理解就是:知識(shí)不僅是通過(guò)教師傳授得到的,更重要的是學(xué)生在一定的情境中,運(yùn)用已有的學(xué)習(xí)經(jīng)驗(yàn),并通過(guò)與他人(在教師指導(dǎo)和學(xué)習(xí)伙伴的幫助下)協(xié)作,主動(dòng)建構(gòu)而獲得的,建構(gòu)主義教學(xué)模式強(qiáng)調(diào)以學(xué)生為中心,視學(xué)生為認(rèn)知的主體,教師只對(duì)學(xué)生的意義建構(gòu)起幫助和促進(jìn)作用。本節(jié)“正弦定理”的教學(xué),將遵循這個(gè)原則而進(jìn)行設(shè)計(jì)。

          四、說(shuō)教學(xué)目標(biāo):

          1、在創(chuàng)設(shè)的問(wèn)題情境中,讓學(xué)生從已有的幾何知識(shí)和處理幾何圖形的常用方法出發(fā),探索和證明正弦定理,體驗(yàn)坐標(biāo)法將幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題的優(yōu)越性,感受數(shù)學(xué)論證的嚴(yán)謹(jǐn)性、

          2、理解三角形面積公式,能運(yùn)用正弦定理解決三角形的.兩類(lèi)基本問(wèn)題,并初步認(rèn)識(shí)用正弦定理解三角形時(shí),會(huì)有一解、兩解、無(wú)解三種情況。

          3、通過(guò)對(duì)實(shí)際問(wèn)題的探索,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),激發(fā)學(xué)生學(xué)習(xí)的興趣,讓學(xué)生感受到數(shù)學(xué)知識(shí)既來(lái)源于生活,又服務(wù)與生活。

          五、說(shuō)教學(xué)重點(diǎn)與難點(diǎn)

          教學(xué)重點(diǎn):正弦定理的探索與證明;正弦定理的基本應(yīng)用。

          教學(xué)難點(diǎn):正弦定理的探索與證明。

          突破難點(diǎn)的手段:抓知識(shí)選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識(shí)特點(diǎn)入手,教師在學(xué)生主體下給于適當(dāng)?shù)奶崾竞椭笇?dǎo)。

          六、說(shuō)復(fù)習(xí)引入:

          1、在任意三角形行中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系?是否可以把邊、角關(guān)系準(zhǔn)確量化?

          2、在ABC中,角A、B、C的正弦對(duì)邊分別是a,b,c,你能發(fā)現(xiàn)它們之間有什么關(guān)系嗎?

          結(jié)論:

          證明:(向量法)過(guò)A作單位向量j垂直于AC,由AC+CB=AB邊同乘以單位向量。

          正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等。

          《正弦定理》說(shuō)教學(xué)反思

          本節(jié)是“正弦定理”定理的第一節(jié),在備課中有兩個(gè)問(wèn)題需要精心設(shè)計(jì)、一個(gè)是問(wèn)題的引入,一個(gè)是定理的證明、通過(guò)兩個(gè)實(shí)際問(wèn)題引入,讓學(xué)生體會(huì)為什么要學(xué)習(xí)這節(jié)課,從學(xué)生的“最近發(fā)展區(qū)”入手進(jìn)行設(shè)計(jì),尋求解決問(wèn)題的方法、具體的思路就是從解決課本的實(shí)際問(wèn)題入手展開(kāi),將問(wèn)題一般化導(dǎo)出三角形中的邊角關(guān)系——正弦定理、因此,做好“正弦定理”的教學(xué)既能復(fù)習(xí)鞏固舊知識(shí),也能讓學(xué)生掌握新的有用的知識(shí),有效提高學(xué)生解決問(wèn)題的能力。

          1、在教學(xué)過(guò)程中,我注重引導(dǎo)學(xué)生的思維發(fā)生,發(fā)展,讓學(xué)生體會(huì)數(shù)學(xué)問(wèn)題是如何解決的,給學(xué)生解決問(wèn)題的一般思路。從學(xué)生熟悉的直角三角形邊角關(guān)系,把銳角三角形和鈍角三角形的問(wèn)題也轉(zhuǎn)化為直角三角形的性,從而得到解決,并滲透了分類(lèi)討論思想和數(shù)形結(jié)合思想等思想。

          2、在教學(xué)中我恰當(dāng)?shù)乩枚嗝襟w技術(shù),是突破教學(xué)難點(diǎn)的一個(gè)重要手段、利用《幾何畫(huà)板》探究比值的值,由動(dòng)到靜,取得了很好的效果,加深了學(xué)生的印象、

          3、由于設(shè)計(jì)的內(nèi)容比較的多,教學(xué)時(shí)間的超時(shí),這說(shuō)明我自己對(duì)學(xué)生情況的把握不夠準(zhǔn)確到位,致使教學(xué)過(guò)程中時(shí)間的分配不夠適當(dāng),教學(xué)語(yǔ)言不夠精簡(jiǎn),今后我一定避免此類(lèi)問(wèn)題,爭(zhēng)取更大的進(jìn)步。

        高中數(shù)學(xué)正弦定理教案3

          一、教材分析

          本節(jié)知識(shí)是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)常考一些解答題。因此,正弦定理和余弦定理的知識(shí)非常重要。

          根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識(shí)水平,制定如下教學(xué)目標(biāo):

          認(rèn)知目標(biāo):在創(chuàng)設(shè)的問(wèn)題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡(jiǎn)單運(yùn)用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類(lèi)問(wèn)題。

          能力目標(biāo):引導(dǎo)學(xué)生通過(guò)觀(guān)察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和觀(guān)察與邏輯思維能力,能體會(huì)用向量作為數(shù)形結(jié)合的工具,將幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題。

          情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過(guò)學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,給學(xué)生成功的體驗(yàn),激發(fā)學(xué)生學(xué)習(xí)的興趣。

          教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。

          教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)。

          二、教法

          根據(jù)教材的內(nèi)容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識(shí)規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線(xiàn)的指導(dǎo)思想,采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究?jī)?nèi)容,以生活實(shí)際為參照對(duì)象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵(lì)學(xué)生大膽猜想,積極探索,以及及時(shí)地鼓勵(lì),使他們知難而進(jìn)。另外,抓知識(shí)選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識(shí)特點(diǎn)入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點(diǎn)的方法:抓住學(xué)生的能力線(xiàn)聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外通過(guò)例題和練習(xí)來(lái)突破難點(diǎn)

          三、學(xué)法:

          指導(dǎo)學(xué)生掌握“觀(guān)察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習(xí),觀(guān)察,類(lèi)比,思考,探究,概括,動(dòng)手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。

          四、教學(xué)過(guò)程

          第一:創(chuàng)設(shè)情景,大概用2分鐘

          第二:實(shí)踐探究,形成概念,大約用25分鐘

          第三:應(yīng)用概念,拓展反思,大約用13分鐘

         。ㄒ唬﹦(chuàng)設(shè)情境,布疑激趣

          “興趣是的老師”,如果一節(jié)課有個(gè)好的開(kāi)頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(zhǎng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(zhǎng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。

         。ǘ┨綄ぬ乩岢霾孪

          1、激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。

          2、那結(jié)論對(duì)任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對(duì)一般三角形進(jìn)行驗(yàn)證。

          3、讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:

          在三角形中,角與所對(duì)的邊滿(mǎn)足關(guān)系

          這為下一步證明樹(shù)立信心,不斷的使學(xué)生對(duì)結(jié)論的認(rèn)識(shí)從感性逐步上升到理性。

         。ㄈ┻壿嬐评恚C明猜想

          1、強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

          2、鼓勵(lì)學(xué)生通過(guò)作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

          3、提示學(xué)生思考哪些知識(shí)能把長(zhǎng)度和三角函數(shù)聯(lián)系起來(lái),繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

          4、思考是否還有其他的方法來(lái)證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來(lái)證明

         。ㄋ模w納總結(jié),簡(jiǎn)單應(yīng)用

          1、讓學(xué)生用文字?jǐn)⑹稣叶ɡ恚龑?dǎo)學(xué)生發(fā)現(xiàn)定理具有對(duì)稱(chēng)和諧美,提升對(duì)數(shù)學(xué)美的享受。

          2、正弦定理的內(nèi)容,討論可以解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。

          3、運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長(zhǎng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識(shí)后用于實(shí)際的價(jià)值觀(guān)。

         。ㄎ澹┲v解例題,鞏固定理

          1、例1。在△ABC中,已知A=32°,B=81、8°,a=42、9cm、解三角形、

          例1簡(jiǎn)單,結(jié)果為解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對(duì)邊,都可利用正弦定理來(lái)解三角形。

          2、例2、在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形、

          例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對(duì)角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。

         。┱n堂練習(xí),提高鞏固

          1、在△ABC中,已知下列條件,解三角形、

         。1)A=45°,C=30°,c=10cm

          (2)A=60°,B=45°,c=20cm

          2、在△ABC中,已知下列條件,解三角形、

         。1)a=20cm,b=11cm,B=30°

         。2)c=54cm,b=39cm,C=115°

          學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問(wèn)題,并解答。

         。ㄆ撸┬〗Y(jié)反思,提高認(rèn)識(shí)

          通過(guò)以上的研究過(guò)程,同學(xué)們主要學(xué)到了那些知識(shí)和方法?你對(duì)此有何體會(huì)?

          1、用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

          2、它表述了三角形的邊與對(duì)角的正弦值的關(guān)系。

          3、定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類(lèi)討論的思想。

         。◤膶(shí)際問(wèn)題出發(fā),通過(guò)猜想、實(shí)驗(yàn)、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著結(jié)論,而且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動(dòng)學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動(dòng)的教學(xué)。)

          (八)任務(wù)后延,自主探究

          如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過(guò)渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。

          五、板書(shū)設(shè)計(jì)

        高中數(shù)學(xué)正弦定理教案4

          一、教材分析

          1、教材地位和作用

          在初中,學(xué)生已經(jīng)學(xué)習(xí)了三角形的邊和角的基本關(guān)系;同時(shí)在必修4,學(xué)生也學(xué)習(xí)了三角函數(shù)、平面向量等內(nèi)容。這些為學(xué)生學(xué)習(xí)正弦定理提供了堅(jiān)實(shí)的基礎(chǔ)。正弦定理是初中解直角三角形的延伸,是揭示三角形邊、角之間數(shù)量關(guān)系的重要公式,本節(jié)內(nèi)容同時(shí)又是學(xué)生學(xué)習(xí)解三角形,幾何計(jì)算等后續(xù)知識(shí)的基礎(chǔ),而且在物理學(xué)等其它學(xué)科、工業(yè)生產(chǎn)以及日常生活等常常涉及解三角形的問(wèn)題。依據(jù)教材的上述地位和作用,我確定如下教學(xué)目標(biāo)和重難點(diǎn)

          2、教學(xué)目標(biāo)

         。1)知識(shí)目標(biāo):

         、僖龑(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,探索證明正弦定理的方法;

         、诤(jiǎn)單運(yùn)用正弦定理解三角形、初步解決某些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問(wèn)題。

         。2)能力目標(biāo):

          ①通過(guò)對(duì)直角三角形邊角數(shù)量關(guān)系的研究,發(fā)現(xiàn)正弦定理,體驗(yàn)用特殊到一般的思想方法發(fā)現(xiàn)數(shù)學(xué)規(guī)律的過(guò)程。

         、谠诶谜叶ɡ韥(lái)解三角形的過(guò)程中,逐步培養(yǎng)應(yīng)用數(shù)學(xué)知識(shí)來(lái)解決社會(huì)實(shí)際問(wèn)題的能力。

          (3)情感目標(biāo):通過(guò)設(shè)立問(wèn)題情境,激發(fā)學(xué)生的學(xué)習(xí)動(dòng)機(jī)和好奇心理,使其主動(dòng)參與雙邊交流活動(dòng)。通過(guò)對(duì)問(wèn)題的提出、思考、解決培養(yǎng)學(xué)生自信、自立的優(yōu)良心理品質(zhì)。通過(guò)教師對(duì)例題的講解培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣及科學(xué)的學(xué)習(xí)態(tài)度。 3、教學(xué)的重﹑難點(diǎn)

          教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用;教學(xué)難點(diǎn):正弦定理的探索及證明;

          教學(xué)中為了達(dá)到上述目標(biāo),突破上述重難點(diǎn),我將采用如下的教學(xué)方法與手段

          二、教學(xué)方法與手段

          1、教學(xué)方法

          教學(xué)過(guò)程中以教師為主導(dǎo),學(xué)生為主體,創(chuàng)設(shè)和諧、愉悅教學(xué)環(huán)境。根據(jù)本節(jié)課內(nèi)容和學(xué)生認(rèn)知水平,我主要采用啟導(dǎo)法、感性體驗(yàn)法、多媒體輔助教學(xué)。

          2、學(xué)法指導(dǎo)

          學(xué)情調(diào)動(dòng):學(xué)生在初中已獲得了直角三角形邊角關(guān)系的初步知識(shí),正因如此學(xué)生在心理上會(huì)提出如何解決斜三角形邊角關(guān)系的疑問(wèn)。

          學(xué)法指導(dǎo):指導(dǎo)學(xué)生掌握“觀(guān)察——猜想——證明——應(yīng)用”這一思維方法,讓學(xué)生在問(wèn)題情景中學(xué)習(xí),再通過(guò)對(duì)實(shí)例進(jìn)行具體分析,進(jìn)而觀(guān)察歸納、演練鞏固,由具體到抽象,逐步實(shí)現(xiàn)對(duì)新知識(shí)的理解深化。

          3、教學(xué)手段

          利用多媒體展示圖片,極大的吸引學(xué)生的注意力,活躍課堂氣氛,調(diào)動(dòng)學(xué)生參與解決問(wèn)題的積極性。為了提高課堂效率,便于學(xué)生動(dòng)手練習(xí),我把本節(jié)課的例題、課堂練習(xí)制作成一張習(xí)題紙,課前發(fā)給學(xué)生。

          下面我講解如何運(yùn)用上述教學(xué)方法和手段開(kāi)展教學(xué)過(guò)程

          三、教學(xué)過(guò)程設(shè)計(jì)

          教學(xué)流程:

          引出課題

          引出新知

          歸納方法

          鞏固新知

          布置作業(yè)

          四、總結(jié)分析:

          現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的性質(zhì)概念教學(xué)是建立在學(xué)生已有知識(shí)結(jié)構(gòu)基礎(chǔ)上的,因此我在教學(xué)設(shè)計(jì)過(guò)程中注意了:㈠在學(xué)生已有知識(shí)結(jié)構(gòu)和新性質(zhì)概念間尋找“最近發(fā)展區(qū)”、 ㈡引導(dǎo)學(xué)生通過(guò)同化,順應(yīng)掌握新概念。

         、缭O(shè)法走出“性質(zhì)概念一帶而過(guò),演習(xí)作業(yè)鋪天蓋地”的誤區(qū),促使自己與學(xué)生一起走進(jìn)“重視探究、重視交流、重視過(guò)程”的新天地。

          我認(rèn)為本節(jié)課的設(shè)計(jì)應(yīng)遵循教學(xué)的基本原則;注重對(duì)學(xué)生思維的發(fā)展;貫徹教師對(duì)本節(jié)內(nèi)容的理解;體現(xiàn)“學(xué)思結(jié)合﹑學(xué)用結(jié)合”原則。希望對(duì)學(xué)生的思維品質(zhì)的培養(yǎng)﹑數(shù)學(xué)思想的建立﹑心理品質(zhì)的優(yōu)化起到良好的作用、

          設(shè)計(jì)意圖:我的板書(shū)設(shè)計(jì)的指導(dǎo)原則:簡(jiǎn)明直觀(guān),重點(diǎn)突出。本節(jié)課的板書(shū)教學(xué)重點(diǎn)放在黑板的正中間,為了能加深學(xué)生對(duì)正弦定理以及其應(yīng)用的認(rèn)識(shí),把例題放在中間,以期全班同學(xué)都能看得到。

          謝謝!

        高中數(shù)學(xué)正弦定理教案5

          一、教材分析

          “解三角形”既是高中數(shù)學(xué)的基本內(nèi)容,又有較強(qiáng)的應(yīng)用性,在這次課程改革中,被保留下來(lái),并獨(dú)立成為一章。這部分內(nèi)容從知識(shí)體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問(wèn)題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識(shí)的基礎(chǔ)上,通過(guò)對(duì)三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過(guò)這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實(shí)際問(wèn)題”抽象成“數(shù)學(xué)問(wèn)題”的建模過(guò)程中,體驗(yàn)“觀(guān)察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時(shí)在解決問(wèn)題的過(guò)程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識(shí)。

          二、學(xué)情分析

          我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對(duì)“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識(shí)和技能還不高。但是,大多數(shù)學(xué)生對(duì)數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實(shí)際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯(cuò)的表現(xiàn)。

          三、教學(xué)目標(biāo)

          1、知識(shí)和技能:在創(chuàng)設(shè)的問(wèn)題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡(jiǎn)單運(yùn)用正弦定理解決一些簡(jiǎn)單的解三角形問(wèn)題。

          過(guò)程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀(guān)察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對(duì)現(xiàn)實(shí)世界的一些數(shù)學(xué)模型進(jìn)行思考。

          情感、態(tài)度、價(jià)值觀(guān):培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過(guò)平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來(lái)體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時(shí),通過(guò)實(shí)際問(wèn)題的探討、解決,讓學(xué)生體驗(yàn)學(xué)習(xí)成就感,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣和主動(dòng)性,鍛煉探究精神。樹(shù)立“數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)”的理念。

          2、教學(xué)重點(diǎn)、難點(diǎn)

          教學(xué)重點(diǎn):正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡(jiǎn)單應(yīng)用。

          教學(xué)難點(diǎn):正弦定理證明及應(yīng)用。

          四、教學(xué)方法與手段

          為了更好的達(dá)成上面的教學(xué)目標(biāo),促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準(zhǔn)備采用“問(wèn)題教學(xué)法”,即由教師以問(wèn)題為主線(xiàn)組織教學(xué),利用多媒體和實(shí)物投影儀等教學(xué)手段來(lái)激發(fā)興趣、突出重點(diǎn),突破難點(diǎn),提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的學(xué)習(xí)方式參與到問(wèn)題解決的過(guò)程中去,從中體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。

          五、教學(xué)過(guò)程

          為了很好地完成我所確定的教學(xué)目標(biāo),順利地解決重點(diǎn),突破難點(diǎn),同時(shí)本著貼近生活、貼近學(xué)生、貼近時(shí)代的原則,我設(shè)計(jì)了這樣的教學(xué)過(guò)程:

         。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題

          問(wèn)題1:寧?kù)o的夜晚,明月高懸,當(dāng)你仰望夜空,欣賞這美好夜色的時(shí)候,會(huì)不會(huì)想要知道:那遙不可及的月亮離我們究竟有多遠(yuǎn)呢?

          1671年兩個(gè)法國(guó)天文學(xué)家首次測(cè)出了地月之間的距離大約為385400km,你知道他們當(dāng)時(shí)是怎樣測(cè)出這個(gè)距離的嗎?

          問(wèn)題2:在現(xiàn)在的高科技時(shí)代,要想知道某座山的高度,沒(méi)必要親自去量,只需水平飛行的飛機(jī)從山頂一過(guò)便可測(cè)出,你知道這是為什么嗎?還有,交通警察是怎樣測(cè)出正在公路上行駛的汽車(chē)的速度呢?要想解決這些問(wèn)題,其實(shí)并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書(shū)課題《解三角形》)

          [設(shè)計(jì)說(shuō)明]引用教材本章引言,制造知識(shí)與問(wèn)題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識(shí)的興趣。

         。ǘ┨厥馊胧郑l(fā)現(xiàn)規(guī)律

          問(wèn)題3:在初中,我們已經(jīng)學(xué)習(xí)了《銳角三角函數(shù)和解直角三角形》這一章,老師想試試你的實(shí)力,請(qǐng)你根據(jù)初中知識(shí),解決這樣一個(gè)問(wèn)題。在Rt⊿ABC中sinA=,sinB= ,sinC= ,由此,你能把這個(gè)直角三角形中的所有的邊和角用一個(gè)表達(dá)式表示出來(lái)嗎?

          引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理。

         。ㄈ╊(lèi)比歸納,嚴(yán)格證明

          問(wèn)題4:本題屬于初中問(wèn)題,而且比較簡(jiǎn)單,不夠刺激,現(xiàn)在如果我為難為難你,讓你也當(dāng)一回老師,如果有個(gè)學(xué)生把條件中的Rt⊿ABC不小心寫(xiě)成了銳角⊿ABC,其它沒(méi)有變,你說(shuō)這個(gè)結(jié)論還成立嗎?

          [設(shè)計(jì)說(shuō)明]此時(shí)放手讓學(xué)生自己完成,如果感覺(jué)自己解決有困難,學(xué)生也可以前后桌或同桌結(jié)組研究,鼓勵(lì)學(xué)生用不同的方法證明這個(gè)結(jié)論,在巡視的過(guò)程中讓不同方法的學(xué)生上黑板展示,如果沒(méi)有用向量的學(xué)生,教師引導(dǎo)提示學(xué)生能否用向量完成證明。

        【高中數(shù)學(xué)正弦定理教案】相關(guān)文章:

        《正弦定理》教案10-13

        正弦定理教案11-22

        高中數(shù)學(xué)正弦定理教案范文04-01

        高中數(shù)學(xué)《正弦定理》說(shuō)課稿04-11

        高中數(shù)學(xué)《正弦定理》說(shuō)課稿09-10

        《正弦定理》的說(shuō)課稿07-02

        《正弦定理》說(shuō)課稿09-27

        正弦定理說(shuō)課稿03-18

        《正弦定理》說(shuō)課稿06-08

        正弦定理說(shuō)課稿01-30

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>