- 相關(guān)推薦
全等三角形的優(yōu)秀教案
總結(jié)尋找全等三角形的對(duì)應(yīng)元素的方法時(shí),是否注意啟發(fā)學(xué)生學(xué)會(huì)觀察、尋找規(guī)律,并通過幾種層次的題目逐步達(dá)到發(fā)現(xiàn)規(guī)律,并鞏固、運(yùn)用規(guī)律解決問題的目的。下面是小編整理的全等三角形的優(yōu)秀教案,歡迎大家閱讀參考。
一、教材分析
本節(jié)課的教學(xué)內(nèi)容是人教版數(shù)學(xué)八年級(jí)上冊(cè)第十一章 《全等三角形》的第一節(jié).這是全章的開篇,也是全等條件的基礎(chǔ).它是繼線段、角、相交線與平行線及三角形有關(guān)知識(shí)之后出現(xiàn)的.通過本節(jié)的學(xué)習(xí),可以豐富和加深學(xué)生對(duì)已學(xué)圖形的認(rèn)識(shí),同時(shí)為學(xué)習(xí)其他圖形知識(shí)打好基礎(chǔ),具有承上啟下的作用.
教材根據(jù)初中學(xué)生的認(rèn)知規(guī)律和特點(diǎn),采用由淺入深、由易到難、抓聯(lián)系、促遷移的方法.通過生活中的實(shí)例創(chuàng)設(shè)情景,形成概念,再通過平移、翻折、旋轉(zhuǎn)說明變換前后的兩個(gè)三角形全等,進(jìn)而得出全等三角形的相關(guān)概念及其性質(zhì).
二、教學(xué)目標(biāo)分析
知識(shí)與技能
1.了解全等三角形的概念,通過動(dòng)手操作,體會(huì)平移、翻折、旋轉(zhuǎn)是考察兩三角形全等的主要方法.
2.能準(zhǔn)確確定全等三角形的對(duì)應(yīng)元素.
3.掌握全等三角形的性質(zhì).
過程與方法
1.通過找出全等三角形的對(duì)應(yīng)元素,培養(yǎng)學(xué)生的識(shí)圖能力.
2.能利用全等三角形的概念、性質(zhì)解決簡(jiǎn)單的數(shù)學(xué)問題.
情感、態(tài)度與價(jià)值觀
通過構(gòu)建和諧的課堂教學(xué)氛圍,激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,使學(xué)生勇于提出問題,樂于探索問題,同時(shí)注重培養(yǎng)學(xué)生善于合作交流的良好情感和積極向上的學(xué)習(xí)態(tài)度.
三、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):全等三角形的概念、性質(zhì)及對(duì)應(yīng)元素的確定.
難點(diǎn):全等三角形對(duì)應(yīng)元素的確定.
四、學(xué)情分析
學(xué)生在七年級(jí)時(shí)已經(jīng)學(xué)過線段、角、相交線與平行線及三角形的有關(guān)知識(shí),并學(xué)習(xí)了一些簡(jiǎn)單的說理,已初步具有對(duì)簡(jiǎn)單圖形的分析和辨識(shí)能力,但八年級(jí)的學(xué)生仍處于以形象思維為主要思維形式的時(shí)期.為了發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生的抽象思維能力,本節(jié)課將充分利用動(dòng)畫演示,來揭示圖形的平移、翻折和旋轉(zhuǎn)等變換過程,以便讓學(xué)生在觀察、分析中獲得大量的感性認(rèn)識(shí),進(jìn)而達(dá)到對(duì)全等三角形的理性認(rèn)識(shí).
五、教法與學(xué)法
本節(jié)課堅(jiān)持“教與學(xué)、知識(shí)與能力的辯證統(tǒng)一”和“人人都能獲得必需的數(shù)學(xué)”的原則,博采啟發(fā)教學(xué)法、引探教學(xué)法、講授教學(xué)法等諸多方法之長(zhǎng),借助多媒體手段引導(dǎo)學(xué)生觀察、猜想和探究,促進(jìn)學(xué)生自主學(xué)習(xí),努力做到教與學(xué)的最優(yōu)組合.
六、教學(xué)教程
、.課題引入
1.電腦顯示
問題:各組圖形的形狀與大小有什么特點(diǎn)?
一般學(xué)生都能發(fā)現(xiàn)這兩個(gè)圖形是完全重合的。
歸納:能夠完全重合的兩個(gè)圖形叫做全等形。
2.學(xué)生動(dòng)手操作
、旁诩埌迳先我猱嬕粋(gè)三角形ABC,并剪下,然后說出三角形的三個(gè)角、三條邊和每個(gè)角的對(duì)邊、每個(gè)邊的對(duì)角。
、茊栴}:如何在另一張紙板再剪一個(gè)三角形DEF,使它與△ABC全等?
(學(xué)生分組討論、提出方法、動(dòng)手操作)
3.板書課題:全等三角形
定義:能夠完全重合的兩個(gè)三角形叫做全等三角形
“全等”用“≌”表示,讀著“全等于”
如圖中的兩個(gè)三角形全等,記作:△ABC≌△DEF
Ⅱ.全等三角形中的對(duì)應(yīng)元素
1. 問題:你手中的兩個(gè)三角形是全等的,但是如果任意擺放能重合嗎?該怎樣做它們才能重合呢?
2.學(xué)生討論、交流、歸納得出:
、.兩個(gè)全等三角形任意擺放時(shí),并不一定能完全重合,只有當(dāng)把相同的角重合到一起(或相同的邊重合到一起)時(shí)它們才能完全重合。這時(shí)我們把重合在一起的頂點(diǎn)、角、邊分別稱為對(duì)應(yīng)頂點(diǎn)、對(duì)應(yīng)角、對(duì)應(yīng)邊。
、.表示兩個(gè)全等三角形時(shí),通常把表示對(duì)應(yīng)頂點(diǎn)字母寫在對(duì)應(yīng)的位置上,這樣便于確定兩個(gè)三角形的對(duì)應(yīng)關(guān)系。
、. 全等三角形的性質(zhì)
1.觀察與思考:
尋找甲圖中兩三角形的對(duì)應(yīng)元素,它們的對(duì)應(yīng)邊
有什么關(guān)系?對(duì)應(yīng)角呢?
(引導(dǎo)學(xué)生從全等三角形可以完全重合出發(fā)找等量關(guān)系)
全等三角形的性質(zhì):
全等三角形的對(duì)應(yīng)邊相等.
全等三角形的對(duì)應(yīng)角相等.
2.用幾何語(yǔ)言表示全等三角形的性質(zhì)
如圖:∵ABC≌ DEF
∴AB=DE,AC=DF,BC=EF
(全等三角形對(duì)應(yīng)邊相等)
∠A=∠D,∠B=∠E,∠C=∠F
(全等三角形對(duì)應(yīng)角相等)
、.探求全等三角形對(duì)應(yīng)元素的找法
1.動(dòng)畫(幾何畫板)演示
(1).圖中的各對(duì)三角形是全等三角形,怎樣改變其中一個(gè)三角形的位置,使它能與另一個(gè)三角形完全重合?
歸納:兩個(gè)全等的三角形經(jīng)過一定的轉(zhuǎn)換可以重合.一般是平移、翻折、旋轉(zhuǎn)的方法.
(2).說出每個(gè)圖中各對(duì)全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角
歸納:從運(yùn)動(dòng)的角度可以很輕松地解決找對(duì)應(yīng)元素的問題.可見圖形轉(zhuǎn)換的奇妙.
3. 歸納:找對(duì)應(yīng)元素的常用方法有兩種:
(1)從運(yùn)動(dòng)角度看
a.翻折法:一個(gè)三角形沿某條直線翻折與另一個(gè)三角形重合,從而發(fā)現(xiàn)對(duì)應(yīng)元素.
b.旋轉(zhuǎn)法:三角形繞某一點(diǎn)旋轉(zhuǎn)一定角度能與另一三角形重合,從而發(fā)現(xiàn)對(duì)應(yīng)元素.
c.平移法:沿某一方向推移使兩三角形重合來找對(duì)應(yīng)元素.
(2)根據(jù)位置元素來推理
a.有公共邊的,公共邊是對(duì)應(yīng)邊;
b.有公共角的,公共角是對(duì)應(yīng)角;
c.有對(duì)頂角的,對(duì)頂角是對(duì)應(yīng)角;
d.兩個(gè)全等三角形最大的邊是對(duì)應(yīng)邊,最小的邊也是對(duì)應(yīng)邊;
e.兩個(gè)全等三角形最大的角是對(duì)應(yīng)角,最小的角也是對(duì)應(yīng)角;
、.課堂練習(xí)
練習(xí)1.△ABD≌△ACE,若∠B=25°, BD=6㎝,AD=4㎝,
你能得出△ACE中哪些角的大小,哪些邊的長(zhǎng)度嗎?為什么 ?
練習(xí)2.△ABC≌△FED
、艑懗鰣D中相等的線段,相等的角;
、茍D中線段除相等外,還有什么關(guān)系嗎?請(qǐng)與同伴交
流并寫出來.
、.小結(jié)
1.這節(jié)課你學(xué)會(huì)了什么?有哪些收獲?有什么感受?
2.通過本節(jié)課學(xué)習(xí),我們了解了全等的概念,發(fā)現(xiàn)了全等三角形的性質(zhì),并且利用一些方法可以找到兩個(gè)全等三角形的對(duì)應(yīng)元素.這也是這節(jié)課大家要重點(diǎn)掌握的.
Ⅶ.作業(yè)
課本第92頁(yè)1、2、3題
【全等三角形的優(yōu)秀教案】相關(guān)文章:
全等三角形教案09-07
《全等三角形的判定》教案09-05
三角形全等的判定教案02-23
數(shù)學(xué)全等三角形教案03-20
數(shù)學(xué)全等三角形教案12-30
全等三角形教案15篇11-09
《全等三角形》教學(xué)反思11-06
初中數(shù)學(xué) 數(shù)學(xué)教案-三角形全等的判定1 教案12-28
全等三角形說課稿(精選6篇)02-26