1. <rp id="zsypk"></rp>

      2. 歡迎來到瑞文網(wǎng)!

        高中必修一數(shù)學知識點總結

        學習總結 時間:2018-04-23 我要投稿
        【crossfitfinalpush.com - 學習總結】

          高一數(shù)學必修一的學習,需要大家對知識點進行總結,這樣大家最大效率地提高自己的學習成績。下面高中必修一數(shù)學知識點總結是小編為大家整理的,在這里跟大家分享一下。

          高中必修一數(shù)學知識點總結

          第一章 集合與函數(shù)概念

          一、集合有關概念

          1.集合的含義

          2.集合的中元素的三個特性:

          (1)元素的確定性如:世界上最高的山

          (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

          (3)元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個集合

          3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

          (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

          (2)集合的表示方法:列舉法與描述法。

          注意:常用數(shù)集及其記法:X Kb 1.C om

          非負整數(shù)集(即自然數(shù)集) 記作:N

          正整數(shù)集 :N*或 N+

          整數(shù)集: Z

          有理數(shù)集: Q

          實數(shù)集: R

          1)列舉法:{a,b,c……}

          2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合{xR|x-3>2} ,{x|x-3>2}

          3) 語言描述法:例:{不是直角三角形的三角形}

          4) Venn圖:

          4、集合的分類:

          (1)有限集 含有有限個元素的集合

          (2)無限集 含有無限個元素的集合

          (3)空集 不含任何元素的集合  例:{x|x2=-5}

          二、集合間的基本關系

          1.“包含”關系—子集

          注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

          反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

          2.“相等”關系:A=B (5≥5,且5≤5,則5=5)

          實例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

          即:① 任何一個集合是它本身的子集。AA

         、 真子集:如果AB,且A B那就說集合A是集合B的真子集,記作A B(或B A)

         、 如果 AB, BC ,那么 AC

         、 如果AB 同時 BA 那么A=B

          3. 不含任何元素的集合叫做空集,記為Φ

          規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

          4.子集個數(shù):

          有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

          三、集合的運算

          運算類型 交 集 并 集 補 集

          定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

          由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).

          設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

          記作 ,即

          CSA=

          A A=A

          A Φ=Φ

          A B=B A

          A B A

          A B B

          A A=A

          A Φ=A

          A B=B A

          A B A

          A B B

          (CuA) (CuB)

          = Cu (A B)

          (CuA) (CuB)

          = Cu(A B)

          A (CuA)=U

          A (CuA)= Φ.

          二、函數(shù)的有關概念

          1.函數(shù)的概念

          設A、B是非空的數(shù)集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.

          注意:

          1.定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。

          求函數(shù)的定義域時列不等式組的主要依據(jù)是:

          (1)分式的分母不等于零;

          (2)偶次方根的被開方數(shù)不小于零;

          (3)對數(shù)式的真數(shù)必須大于零;

          (4)指數(shù)、對數(shù)式的底必須大于零且不等于1.

          (5)如果函數(shù)是由一些基本函數(shù)通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

          (6)指數(shù)為零底不可以等于零,

          (7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.

          相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關);

         、诙x域一致 (兩點必須同時具備)

          2.值域 : 先考慮其定義域

          (1)觀察法 (2)配方法 (3)代換法

          3. 函數(shù)圖象知識歸納

          (1)定義:

          在平面直角坐標系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數(shù)對x、y為坐標的點(x,y),均在C上 .

          (2) 畫法

          1.描點法: 2.圖象變換法:常用變換方法有三種:1)平移變換2)伸縮變換3)對稱變換

          4.區(qū)間的概念

          (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間 (2)無窮區(qū)間 (3)區(qū)間的數(shù)軸表示.

          5.映射

          一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A B為從集合A到集合B的一個映射。記作“f(對應關系):A(原象) B(象)”

          對于映射f:A→B來說,則應滿足:

          (1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;

          (2)集合A中不同的元素,在集合B中對應的象可以是同一個;

          (3)不要求集合B中的每一個元素在集合A中都有原象。

          6.分段函數(shù)

          (1)在定義域的不同部分上有不同的解析表達式的函數(shù)。

          (2)各部分的自變量的取值情況.

          (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

          補充:復合函數(shù)

          如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數(shù)。

          二.函數(shù)的性質

          1.函數(shù)的單調性(局部性質)

          (1)增函數(shù)

          設函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當x1

          如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當x1f(x2),那么就說f(x)在這個區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調減區(qū)間.

          注意:函數(shù)的單調性是函數(shù)的局部性質;

          (2) 圖象的特點

          如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調性,在單調區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

          (3).函數(shù)單調區(qū)間與單調性的判定方法

          (A) 定義法:

        熱門文章
        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>