1. <rp id="zsypk"></rp>

      2. 高一高二數(shù)學知識點整理

        時間:2022-04-27 11:09:29 總結 我要投稿

        高一高二數(shù)學知識點整理

          上學期間,大家對知識點應該都不陌生吧?知識點是知識中的最小單位,最具體的內(nèi)容,有時候也叫“考點”。掌握知識點是我們提高成績的關鍵!下面是小編收集整理的高一高二數(shù)學知識點整理,希望能夠幫助到大家。

        高一高二數(shù)學知識點整理

          高一高二數(shù)學知識點整理1

          空間兩條直線只有三種位置關系:平行、相交、異面

          1、按是否共面可分為兩類:

          (1)共面:平行、相交

          (2)異面:

          異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。

          異面直線判定定理:用平面內(nèi)一點與平面外一點的直線,與平面內(nèi)不經(jīng)過該點的直線是異面直線。

          兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

          兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

          2、若從有無公共點的角度看可分為兩類:

          (1)有且僅有一個公共點——相交直線;

          (2)沒有公共點——平行或異面

          直線和平面的位置關系:

          直線和平面只有三種位置關系:在平面內(nèi)、與平面相交、與平面平行

         、僦本在平面內(nèi)——有無數(shù)個公共點

          ②直線和平面相交——有且只有一個公共點

          直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。

          高一高二數(shù)學知識點整理2

          基本概念

          公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線上的所有的點都在這個平面內(nèi)。

          公理2:如果兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線。

          公理3:過不在同一條直線上的三個點,有且只有一個平面。

          推論1:經(jīng)過一條直線和這條直線外一點,有且只有一個平面。

          推論2:經(jīng)過兩條相交直線,有且只有一個平面。

          推論3:經(jīng)過兩條平行直線,有且只有一個平面。

          公理4:平行于同一條直線的兩條直線互相平行。

          等角定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等。

          高一高二數(shù)學知識點整理3

          1.函數(shù)的奇偶性。

          (1)若f(x)是偶函數(shù),那么f(x)=f(-x)。

          (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù))。

          (3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0)。

          (4)若所給函數(shù)的解析式較為復雜,應先化簡,再判斷其奇偶性。

          (5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性。

          2.復合函數(shù)的有關問題。

          (1)復合函數(shù)定義域求法:若已知的定義域為[a,b],其復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

          (2)復合函數(shù)的單調(diào)性由“同增異減”判定。

          3.函數(shù)圖像(或方程曲線的對稱性)。

          (1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上。

          (2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然。

          (3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。

          (4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0。

          (5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱。

          4.函數(shù)的周期性。

          (1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù)。

          (2)若y=f(x)是偶函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù)。

          (3)若y=f(x)奇函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù)。

          (4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù)。

          5.判斷對應是否為映射時,抓住兩點。

          (1)A中元素必須都有象且。

          (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象。

          6.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

          高一高二數(shù)學知識點整理4

          一、圓及圓的相關量的定義

          1.平面上到定點的距離等于定長的`所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。

          2.圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經(jīng)過圓心的弦叫做直徑。

          3.頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。

          4.過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

          5.直線與圓有3種位置關系:無公共點為相離;有2個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。

          6.兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。

          7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。

          二、有關圓的字母表示方法

          圓--⊙ 半徑—r 弧--⌒ 直徑—d 扇形弧長/圓錐母線—l 周長—C 面積—S三、有關圓的基本性質與定理(27個)

          1.點P與圓O的位置關系(設P是一點,則PO是點到圓心的距離):P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO

          2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。

          3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。

          4.在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應的其余各組量都分別相等。

          5.一條弧所對的圓周角等于它所對的圓心角的一半。

          6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

          7.不在同一直線上的3個點確定一個圓。

          8.一個三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形3個頂點距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點,到三角形3邊距離相等。

          9.直線AB與圓O的位置關系(設OP⊥AB于P,則PO是AB到圓心的距離):AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO

          10.圓的切線垂直于過切點的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。

          11.圓與圓的位置關系(設兩圓的半徑分別為R和r,且R≥r,圓心距為P):外離P>R+r;外切P=R+r;相交R-r

          三、有關圓的計算公式

          1.圓的周長C=2πr=πd

          2.圓的面積S=s=πr?

          3.扇形弧長l=nπr/180

          4.扇形面積S=nπr? /360=rl/2

          5.圓錐側面積S=πrl

          四、圓的方程

          1.圓的標準方程

          在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標準方程是(x-a)^2+(y-b)^2=r^2

          2.圓的一般方程

          把圓的標準方程展開,移項,合并同類項后,可得圓的一般方程是x^2+y^2+Dx+Ey+F=0

          和標準方程對比,其實D=-2a,E=-2b,F=a^2+b^2

          相關知識:圓的離心率e=0.在圓上任意一點的曲率半徑都是r.

          五、圓與直線的位置關系判斷

          平面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是

          討論如下2種情況:

         。1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

          代入x^2+y^2+Dx+Ey+F=0,即成為一個關于x的一元二次方程f(x)=0.

          利用判別式b^2-4ac的符號可確定圓與直線的位置關系如下:

          如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交

          如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切

          如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離

          (2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)

          將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2

          令y=b,求出此時的兩個x值x1,x2,并且我們規(guī)定x1

          當x=-C/Ax2時,直線與圓相離

          當x1

          當x=-C/A=x1或x=-C/A=x2時,直線與圓相切

          圓的定理:

          1.不在同一直線上的三點確定一個圓。

          2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

          推論1.①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

          ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

         、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

          推論2.圓的兩條平行弦所夾的弧相等

          3.圓是以圓心為對稱中心的中心對稱圖形

          4.圓是定點的距離等于定長的點的集合

          5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

          6.圓的外部可以看作是圓心的距離大于半徑的點的集合

          7.同圓或等圓的半徑相等

          8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

          9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

          10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

          11.定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它 的內(nèi)對角

          12.①直線L和⊙O相交 d

         、谥本L和⊙O相切 d=r

         、壑本L和⊙O相離 d>r

          13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

          14.切線的性質定理 圓的切線垂直于經(jīng)過切點的半徑

          15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

          16.推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

          17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角

          18.圓的外切四邊形的兩組對邊的和相等 外角等于內(nèi)對角

          19.如果兩個圓相切,那么切點一定在連心線上

          20.①兩圓外離 d>R+r ②兩圓外切 d=R+r

         、蹆蓤A相交 R-rr)

         、軆蓤A內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)

          21.定理 相交兩圓的連心線垂直平分兩圓的公共弦

          22.定理 把圓分成n(n≥3):

          (1)依次連結各分點所得的多邊形是這個圓的內(nèi)接正n邊形

         。2)經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

          23.定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

          24.正n邊形的每個內(nèi)角都等于(n-2)×180°/n

          25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

          26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

          27.正三角形面積√3a/4 a表示邊長

          28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

          29.弧長計算公式:L=n兀R/180

          30.扇形面積公式:S扇形=n兀R^2/360=LR/2

          31.內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)

          32.定理 一條弧所對的圓周角等于它所對的圓心角的一半

          33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

          34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑

          35.弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

          高一高二數(shù)學知識點整理5

          一 集合與簡易邏輯

          集合具有四個性質 廣泛性 集合的元素什么都可以

          確定性 集合中的元素必須是確定的,比如說是好學生就不具有這種性質,因為它的概念是模糊不清的

          互異性 集合中的元素必須是互不相等的,一個元素不能重復出現(xiàn)

          無序性 集合中的元素與順序無關

          二 函數(shù)

          這是個重點,但是說起來也不好說,要作專題訓練,比如說二次函數(shù),指數(shù)對數(shù)函數(shù)等等做這一類型題的時候,要掌握幾個函數(shù)思想如 構造函數(shù) 函數(shù)與方程結合 對稱思想,換元等等

          三 數(shù)列

          這也是個比較重要的題型,做體的時候要有整體思想,整體代換,等比等差要分開來,也要注意聯(lián)系,這樣才能做好,注意觀察數(shù)列的形式判斷是什么數(shù)列,還要掌握求數(shù)列通向公式的幾種方法,和求和公式,求和方法,比如裂項相消,錯位相減,公式法,分組求和法等等

          四 三角函數(shù)

          三角函數(shù)不是考試題型,只是個應用的知識點,所以只要記熟特殊角的三角函數(shù)值和一些重要的定理就行

          五 平面向量

          這是個比較抽象的把幾何與代數(shù)結合起來的重難點,結體的時候要有技巧,主要就是把基本知識掌握到位,注意拓展,另外要多做題,見的題型多,結體的時候就有思路,能夠把問題簡單化,有利于提高做題效率

          高一的數(shù)學只是入門,只要把高一數(shù)學知識點掌握了,做題就沒什么大問題了,數(shù)學就可以上130。

          高一高二數(shù)學知識點整理6

          一、平面的基本性質與推論

          1、平面的基本性質:

          公理1如果一條直線的兩點在一個平面內(nèi),那么這條直線在這個平面內(nèi);

          公理2過不在一條直線上的三點,有且只有一個平面;

          公理3如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。

          2、空間點、直線、平面之間的位置關系:

          直線與直線—平行、相交、異面;

          直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);

          平面與平面—平行、相交。

          3、異面直線:

          平面外一點A與平面一點B的連線和平面內(nèi)不經(jīng)過點B的直線是異面直線(判定);

          所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補角);

          兩條直線不是異面直線,則兩條直線平行或相交(反證);

          異面直線不同在任何一個平面內(nèi)。

          求異面直線所成的角:平移法,把異面問題轉化為相交直線的夾角

          二、空間中的平行關系

          1、直線與平面平行(核心)

          定義:直線和平面沒有公共點

          判定:不在一個平面內(nèi)的一條直線和平面內(nèi)的一條直線平行,則該直線平行于此平面(由線線平行得出)

          性質:一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,則這條直線就和兩平面的交線平行

          2、平面與平面平行

          定義:兩個平面沒有公共點

          判定:一個平面內(nèi)有兩條相交直線平行于另一個平面,則這兩個平面平行

          性質:兩個平面平行,則其中一個平面內(nèi)的直線平行于另一個平面;如果兩個平行平面同時與第三個平面相交,那么它們的交線平行。

          3、常利用三角形中位線、平行四邊形對邊、已知直線作一平面找其交線

          三、空間中的垂直關系

          1、直線與平面垂直

          定義:直線與平面內(nèi)任意一條直線都垂直

          判定:如果一條直線與一個平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直

          性質:垂直于同一直線的兩平面平行

          推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條也垂直于這個平面

          直線和平面所成的角:【0,90】度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度

          2、平面與平面垂直

          定義:兩個平面所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點為端點,在兩個半平面內(nèi)分別作垂直于棱的兩條射線所成的角)

          判定:一個平面過另一個平面的垂線,則這兩個平面垂直

          性質:兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直

        【高一高二數(shù)學知識點整理】相關文章:

        數(shù)學學習方法高二整理12-26

        高一學習方法數(shù)學整理12-26

        數(shù)學高二知識點總結04-22

        學習方法數(shù)學高一整理12-26

        《觀潮》知識點整理11-25

        高二數(shù)學必修三知識點總結04-25

        高二的數(shù)學的知識點總結04-22

        高二語文必修5《滕王閣序》知識點整理12-27

        高效的高一數(shù)學學習方法整理12-26

        高一數(shù)學學習方法與技巧整理02-18

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>