高考數(shù)學復習知識點整理
在現(xiàn)實學習生活中,看到知識點,都是先收藏再說吧!知識點是指某個模塊知識的重點、核心內容、關鍵部分。哪些才是我們真正需要的知識點呢?以下是小編整理的高考數(shù)學復習知識點整理,希望能夠幫助到大家。
高考數(shù)學重要知識點整理
一、求動點的軌跡方程的基本步驟
、苯⑦m當?shù)淖鴺讼,設出動點M的坐標;
、矊懗鳇cM的集合;
、沉谐龇匠=0;
、椿喎匠虨樽詈喰问;
⒌檢驗。
二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數(shù)法和交軌法等。
、敝弊g法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
、捕x法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
、诚嚓P點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。
⒋參數(shù)法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數(shù)t的關系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
、到卉壏ǎ簩蓜忧方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
6.直譯法:求動點軌跡方程的一般步驟
①建系——建立適當?shù)淖鴺讼?
、谠O點——設軌跡上的任一點P(x,y);
、哿惺健谐鰟狱cp所滿足的關系式;
④代換——依條件的特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡;
、葑C明——證明所求方程即為符合條件的動點軌跡方程。
人教版高三年級高考數(shù)學必考知識點
、僬忮F各側棱相等,各側面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).
、谡忮F的高、斜高和斜高在底面內的射影組成一個直角三角形,正棱錐的高、側棱、側棱在底面內的射影也組成一個直角三角形.
、翘厥饫忮F的頂點在底面的射影位置:
、倮忮F的側棱長均相等,則頂點在底面上的射影為底面多邊形的外心.
、诶忮F的側棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心.
③棱錐的各側面與底面所成角均相等,則頂點在底面上的'射影為底面多邊形內心.
④棱錐的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內心.
、萑忮F有兩組對棱垂直,則頂點在底面的射影為三角形垂心.
、奕忮F的三條側棱兩兩垂直,則頂點在底面上的射影為三角形的垂心.
、呙總四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等于球半徑;
⑧每個四面體都有內切球,球心
是四面體各個二面角的平分面的交點,到各面的距離等于半徑.
[注]:
i.各個側面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個側面的等腰三角形不知是否全等)
ii.若一個三角錐,兩條對角線互相垂直,則第三對角線必然垂直.
簡證:AB⊥CD,AC⊥BD
BC⊥AD.令得,已知則.
iii.空間四邊形OABC且四邊長相等,則順次連結各邊的中點的四邊形一定是矩形.
iv.若是四邊長與對角線分別相等,則順次連結各邊的中點的四邊是一定是正方形.
簡證:取AC中點,則平面90°易知EFGH為平行四邊形
EFGH為長方形.若對角線等,則為正方形.
高三數(shù)學高考復習知識點
數(shù)列是高中數(shù)學的重要內容,又是學習高等數(shù)學的基礎。高考對本章的考查比較全面,等差數(shù)列,等比數(shù)列的考查每年都不會遺漏。有關數(shù)列的試題經(jīng)常是綜合題,經(jīng)常把數(shù)列知識和指數(shù)函數(shù)、對數(shù)函數(shù)和不等式的知識綜合起來,試題也常把等差數(shù)列、等比數(shù)列,求極限和數(shù)學歸納法綜合在一起。
探索性問題是高考的熱點,常在數(shù)列解答題中出現(xiàn)。本章中還蘊含著豐富的數(shù)學思想,在主觀題中著重考查函數(shù)與方程、轉化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數(shù)法等基本數(shù)學方法。
近幾年來,高考關于數(shù)列方面的命題主要有以下三個方面;
(1)數(shù)列本身的有關知識,其中有等差數(shù)列與等比數(shù)列的概念、性質、通項公式及求和公式。
(2)數(shù)列與其它知識的結合,其中有數(shù)列與函數(shù)、方程、不等式、三角、幾何的結合。
(3)數(shù)列的應用問題,其中主要是以增長率問題為主。試題的難度有三個層次,小題大都以基礎題為主,解答題大都以基礎題和中檔題為主,只有個別地方用數(shù)列與幾何的綜合與函數(shù)、不等式的綜合作為最后一題難度較大。
1.在掌握等差數(shù)列、等比數(shù)列的定義、性質、通項公式、前n項和公式的基礎上,系統(tǒng)掌握解等差數(shù)列與等比數(shù)列綜合題的規(guī)律,深化數(shù)學思想方法在解題實踐中的指導作用,靈活地運用數(shù)列知識和方法解決數(shù)學和實際生活中的有關問題;
2.在解決綜合題和探索性問題實踐中加深對基礎知識、基本技能和基本數(shù)學思想方法的認識,溝通各類知識的聯(lián)系,形成更完整的知識網(wǎng)絡,提高分析問題和解決問題的能力,
進一步培養(yǎng)學生閱讀理解和創(chuàng)新能力,綜合運用數(shù)學思想方法分析問題與解決問題的能力。
【高考數(shù)學復習知識點整理】相關文章:
高三數(shù)學復習方法整理12-26
小學數(shù)學必備知識點總結整理02-14
高考數(shù)學復習資料08-02
高三數(shù)學的復習指導資料整理總結02-14
高考政治知識點復習資料11-10
高考數(shù)學知識點總結09-03
《觀潮》知識點整理11-25