數(shù)學(xué)九年級上冊圓的知識點(diǎn)
在年少學(xué)習(xí)的日子里,不管我們學(xué)什么,都需要掌握一些知識點(diǎn),知識點(diǎn)是知識中的最小單位,最具體的內(nèi)容,有時(shí)候也叫“考點(diǎn)”。哪些知識點(diǎn)能夠真正幫助到我們呢?以下是小編幫大家整理的數(shù)學(xué)九年級上冊圓的知識點(diǎn),希望能夠幫助到大家。
1.點(diǎn)與圓的位置關(guān)系及其數(shù)量特征:如果圓的半徑為r,點(diǎn)到圓心的距離為d,則
、冱c(diǎn)在圓上<===>d=r;②點(diǎn)在圓內(nèi)<===>dd>r.
二.圓的對稱性:
1.與圓相關(guān)的概念:
④同心圓:圓心相同,半徑不等的兩個(gè)圓叫做同心圓。
、莸葓A:能夠完全重合的兩個(gè)圓叫做等圓,半徑相等的兩個(gè)圓是等圓。
、薜然。涸谕瑘A或等圓中,能夠互相重合的弧叫做等弧。
、邎A心角:頂點(diǎn)在圓心的角叫做圓心角.
、嘞倚木:從圓心到弦的距離叫做弦心距.
2.圓是軸對稱圖形,直徑所在的直線是它的對稱軸,圓有無數(shù)條對稱軸。
3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。
推論:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。
說明:根據(jù)垂徑定理與推論可知對于一個(gè)圓和一條直線來說,如果具備:
①過圓心;②垂直于弦;③平分弦;④平分弦所對的優(yōu)弧;⑤平分弦所對的劣弧。
上述五個(gè)條件中的任何兩個(gè)條件都可推出其他三個(gè)結(jié)論。
4.定理:在同圓或等圓中,相等的圓心角所對弧相等、所對的弦相等、所對的弦心距相等。
推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等.
三.圓周角和圓心角的關(guān)系:
1.圓周角的定義:頂點(diǎn)在圓上,并且兩邊都與圓相交的角,叫做圓周角.
2.圓周角定理;一條弧所對的圓周角等于它所對的圓心角的一半.
推論1:同弧或等弧所對圓周角相等;反之,在同圓或等圓中,相等圓周角所對弧也相等;
推論2:半圓或直徑所對的圓周角是直角;90°的圓周角所對的弦是直徑;
四.確定圓的條件:
1.理解確定一個(gè)圓必須的具備兩個(gè)條件:
經(jīng)過一點(diǎn)可以作無數(shù)個(gè)圓,經(jīng)過兩點(diǎn)也可以作無數(shù)個(gè)圓,其圓心在這個(gè)兩點(diǎn)線段的垂直平分線上.
2.定理:不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓.
3.三角形的外接圓、三角形的`外心、圓的內(nèi)接三角形的概念:
(1)三角形的外接圓和圓的內(nèi)接三角形:經(jīng)過一個(gè)三角形三個(gè)頂點(diǎn)的圓叫做這個(gè)三角形的外接圓,這個(gè)三角形叫做圓的內(nèi)接三角形.
(2)三角形的外心:三角形外接圓的圓心叫做這個(gè)三角形的外心.
(3)三角形的外心的性質(zhì):三角形外心到三頂點(diǎn)的距離相等.
初中數(shù)學(xué)實(shí)數(shù)的概念及分類
1、實(shí)數(shù)的分類 正有理數(shù) 有理數(shù)零有限小數(shù)和無限循環(huán)小數(shù)
負(fù)有理數(shù)
正無理數(shù)
無理數(shù)無限不循環(huán)小數(shù)
負(fù)無理數(shù)
整數(shù)包括正整數(shù)、零、負(fù)整數(shù)。
正整數(shù)又叫自然數(shù)。
正整數(shù)、零、負(fù)整數(shù)、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱為有理數(shù)。
2、無理數(shù)
在理解無理數(shù)時(shí),要抓住“無限不循環(huán)”這一時(shí)之,歸納起來有四類:
(1)開方開不盡的數(shù),如7,2等;
π(2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等; 3
(3)有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;
數(shù)學(xué)有理數(shù)基礎(chǔ)知識點(diǎn)
1.有理數(shù)的加法運(yùn)算
同號兩數(shù)來相加,絕對值加不變號。
異號相加大減小,大數(shù)決定和符號。
互為相反數(shù)求和,結(jié)果是零須記好。
“大”減“小”是指絕對值的大小。
2.有理數(shù)的減法運(yùn)算
減正等于加負(fù),減負(fù)等于加正。
有理數(shù)的乘法運(yùn)算符號法則。
同號得正異號負(fù),一項(xiàng)為零積是零。
3.有理數(shù)混合運(yùn)算的四種運(yùn)算技巧
轉(zhuǎn)化法:一是將除法轉(zhuǎn)化為乘法,二是將乘方轉(zhuǎn)化為乘法,三是在乘除混合運(yùn)算中,通常將小數(shù)轉(zhuǎn)化為分?jǐn)?shù)進(jìn)行約分計(jì)算。
湊整法:在加減混合運(yùn)算中,通常將和為零的兩個(gè)數(shù),分母相同的兩個(gè)數(shù),和為整數(shù)的兩個(gè)數(shù),乘積為整數(shù)的兩個(gè)數(shù)分別結(jié)合為一組求解。
分拆法:先將帶分?jǐn)?shù)分拆成一個(gè)整數(shù)與一個(gè)真分?jǐn)?shù)的和的形式,然后進(jìn)行計(jì)算。
巧用運(yùn)算律:在計(jì)算中巧妙運(yùn)用加法運(yùn)算律或乘法運(yùn)算律往往使計(jì)算更簡便。
【數(shù)學(xué)九年級上冊圓的知識點(diǎn)】相關(guān)文章:
2.《圓的認(rèn)識》數(shù)學(xué)教學(xué)反思
3.小學(xué)數(shù)學(xué)《圓的認(rèn)識》教學(xué)設(shè)計(jì)