1. <rp id="zsypk"></rp>

      2. 高一數(shù)學(xué)知識點(diǎn)總結(jié)

        時(shí)間:2024-10-19 22:55:21 賽賽 總結(jié) 我要投稿

        高一數(shù)學(xué)知識點(diǎn)總結(jié)匯總

          在現(xiàn)實(shí)學(xué)習(xí)生活中,大家最不陌生的就是知識點(diǎn)吧!知識點(diǎn)也不一定都是文字,數(shù)學(xué)的知識點(diǎn)除了定義,同樣重要的公式也可以理解為知識點(diǎn)。想要一份整理好的知識點(diǎn)嗎?以下是小編幫大家整理的高一數(shù)學(xué)知識點(diǎn)總結(jié)匯總,僅供參考,大家一起來看看吧。

        高一數(shù)學(xué)知識點(diǎn)總結(jié)匯總

          高一數(shù)學(xué)知識點(diǎn)總結(jié) 1

          知識點(diǎn)詳解文檔包含函數(shù)的概念、映射、函數(shù)關(guān)系的判斷原則、函數(shù)區(qū)間、函數(shù)的三要素、函數(shù)的定義域、求具體或抽象數(shù)值的函數(shù)值、求函數(shù)值域、函數(shù)的表示方法等

          1、函數(shù)與映射的區(qū)別:

          2、求函數(shù)定義域

          常見的用解析式表示的函數(shù)f(x)的定義域可以歸納如下:

         、佼(dāng)f(x)為整式時(shí),函數(shù)的定義域?yàn)镽.

         、诋(dāng)f(x)為分式時(shí),函數(shù)的定義域?yàn)槭狗质椒帜覆粸榱愕膶?shí)數(shù)集合。

         、郛(dāng)f(x)為偶次根式時(shí),函數(shù)的定義域是使被開方數(shù)不小于0的實(shí)數(shù)集合。

          ④當(dāng)f(x)為對數(shù)式時(shí),函數(shù)的定義域是使真數(shù)為正、底數(shù)為正且不為1的實(shí)數(shù)集合。

          ⑤如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實(shí)數(shù)集合,即求各部分有意義的實(shí)數(shù)集合的交集。

         、迯(fù)合函數(shù)的定義域是復(fù)合的各基本的函數(shù)定義域的交集。

         、邔τ谟蓪(shí)際問題的背景確定的函數(shù),其定義域除上述外,還要受實(shí)際問題的制約。

          3、求函數(shù)值域

          (1)、觀察法:通過對函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域;

          (2)、配方法;如果一個(gè)函數(shù)是二次函數(shù)或者經(jīng)過換元可以寫成二次函數(shù)的形式,那么將這個(gè)函數(shù)的右邊配方,通過自變量的范圍可以求出該函數(shù)的值域;

          (3)、判別式法:

          (4)、數(shù)形結(jié)合法;通過觀察函數(shù)的圖象,運(yùn)用數(shù)形結(jié)合的方法得到函數(shù)的值域;

          (5)、換元法;以新變量代替函數(shù)式中的某些量,使函數(shù)轉(zhuǎn)化為以新變量為自變量的函數(shù)形式,進(jìn)而求出值域;

          (6)、利用函數(shù)的單調(diào)性;如果函數(shù)在給出的定義域區(qū)間上是嚴(yán)格單調(diào)的,那么就可以利用端點(diǎn)的函數(shù)值來求出值域;

          (7)、利用基本不等式:對于一些特殊的分式函數(shù)、高于二次的函數(shù)可以利用重要不等式求出函數(shù)的值域;

          (8)、最值法:對于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域;

          (9)、反函數(shù)法:如果函數(shù)在其定義域內(nèi)存在反函數(shù),那么求函數(shù)的值域可以轉(zhuǎn)化為求反函數(shù)的定義域。

          高一數(shù)學(xué)知識點(diǎn)總結(jié) 2

          考點(diǎn)一、映射的概念

          1、了解對應(yīng)大千世界的對應(yīng)共分四類,分別是:一對一多對一一對多多對多

          2、映射:設(shè)A和B是兩個(gè)非空集合,如果按照某種對應(yīng)關(guān)系f,對于集合A中的任意一個(gè)元素x,在集合B中都存在的一個(gè)元素y與之對應(yīng),那么,就稱對應(yīng)f:A→B為集合A到集合B的一個(gè)映射(mapping).映射是特殊的對應(yīng),簡稱“對一”的對應(yīng)。包括:一對一多對一

          考點(diǎn)二、函數(shù)的概念

          1、函數(shù):設(shè)A和B是兩個(gè)非空的數(shù)集,如果按照某種確定的對應(yīng)關(guān)系f,對于集合A中的任意一個(gè)數(shù)x,在集合B中都存在確定的數(shù)y與之對應(yīng),那么,就稱對應(yīng)f:A→B為集合A到集合B的一個(gè)函數(shù)。記作y=f(x),xA.其中x叫自變量,x的取值范圍A叫函數(shù)的定義域;與x的值相對應(yīng)的y的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域。函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射。

          2、函數(shù)的三要素:定義域、值域、對應(yīng)關(guān)系。這是判斷兩個(gè)函數(shù)是否為同一函數(shù)的依據(jù)。

          3、區(qū)間的概念:設(shè)a,bR,且a

         、(a,b)={xa

          ②(a,+∞)={xx>a}

         、踇a,+∞)={xx≥a}

         、(-∞,b)={xx

          考點(diǎn)三、函數(shù)的表示方法

          1、函數(shù)的三種表示方法列表法圖象法解析法

          2、分段函數(shù):定義域的不同部分,有不同的對應(yīng)法則的函數(shù)。注意兩點(diǎn):

          ①分段函數(shù)是一個(gè)函數(shù),不要誤認(rèn)為是幾個(gè)函數(shù)。

         、诜侄魏瘮(shù)的定義域是各段定義域的并集,值域是各段值域的并集。

          考點(diǎn)四、求定義域的幾種情況

         、偃鬴(x)是整式,則函數(shù)的定義域是實(shí)數(shù)集R;

         、谌鬴(x)是分式,則函數(shù)的定義域是使分母不等于0的實(shí)數(shù)集;

          ③若f(x)是二次根式,則函數(shù)的定義域是使根號內(nèi)的式子大于或等于0的實(shí)數(shù)集合;

         、苋鬴(x)是對數(shù)函數(shù),真數(shù)應(yīng)大于零。

         、菀?yàn)榱愕牧愦蝺鐩]有意義,所以底數(shù)和指數(shù)不能同時(shí)為零。

          ⑥若f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)集合;

         、呷鬴(x)是由實(shí)際問題抽象出來的函數(shù),則函數(shù)的定義域應(yīng)符合實(shí)際問題

          高一數(shù)學(xué)知識點(diǎn)總結(jié) 3

          1、函數(shù)的奇偶性

          (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

          (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

          (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);

          (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;

          (5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

          2、復(fù)合函數(shù)的有關(guān)問題

          (1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

          (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

          3、函數(shù)圖像(或方程曲線的對稱性)

          (1)證明函數(shù)圖像的對稱性,即證明圖像上任意點(diǎn)關(guān)于對稱中心(對稱軸)的對稱點(diǎn)仍在圖像上;

          (2)證明圖像C1與C2的對稱性,即證明C1上任意點(diǎn)關(guān)于對稱中心(對稱軸)的對稱點(diǎn)仍在C2上,反之亦然;

          (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

          (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

          (5)若函數(shù)y=f(x)對x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;

          (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;

          4、函數(shù)的周期性

          (1)y=f(x)對x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

          (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2|a|的周期函數(shù);

          (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4|a|的周期函數(shù);

          (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);

          (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

          (6)y=f(x)對x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

          5、方程k=f(x)有解k∈D(D為f(x)的值域);

          a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

          (1)(a>0,a≠1,b>0,n∈R+);

          (2)logaN=(a>0,a≠1,b>0,b≠1);

          (3)logab的符號由口訣“同正異負(fù)”記憶;

          (4)alogaN=N(a>0,a≠1,N>0);

          6、判斷對應(yīng)是否為映射時(shí),抓住兩點(diǎn):

          (1)A中元素必須都有象且;

          (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

          7、能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

          8、對于反函數(shù),應(yīng)掌握以下一些結(jié)論:

          (1)定義域上的單調(diào)函數(shù)必有反函數(shù);

          (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

          (3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);

          (4)周期函數(shù)不存在反函數(shù);

          (5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;

          (6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

          9、處理二次函數(shù)的問題勿忘數(shù)形結(jié)合

          二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系;

          10、依據(jù)單調(diào)性

          利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題;

          高一數(shù)學(xué)知識點(diǎn)總結(jié) 4

          本節(jié)內(nèi)容主要是空間點(diǎn)、直線、平面之間的位置關(guān)系,在認(rèn)識過程中,可以進(jìn)一步提高同學(xué)們的空間想象能力,發(fā)展推理能力.通過對實(shí)際模型的認(rèn)識,學(xué)會將文字語言轉(zhuǎn)化為圖形語言和符號語言,以具體的長方體中的點(diǎn)、線、面之間的關(guān)系作為載體,使同學(xué)們在直觀感知的基礎(chǔ)上,認(rèn)識空間中點(diǎn)、線、面之間的位置關(guān)系,點(diǎn)、線、面的位置關(guān)系是立體幾何的主要研究對象,同時(shí)也是空間圖形最基本的幾何元素.

          重難點(diǎn)知識歸納

          1、平面

          (1)平面概念的理解

          直觀的理解:桌面、黑板面、平靜的水面等等都給人以平面的直觀的印象,但它們都不是平面,而僅僅是平面的一部分.

          抽象的理解:平面是平的,平面是無限延展的,平面沒有厚。

          (2)平面的表示法

          ①圖形表示法:通常用平行四邊形來表示平面,有時(shí)根據(jù)實(shí)際需要,也用其他的平面圖形來表示平面.

         、谧帜副硎荆撼S玫认ED字母表示平面.

          (3)涉及本部分內(nèi)容的符號表示有:

          ①點(diǎn)A在直線l內(nèi),記作;

         、邳c(diǎn)A不在直線l內(nèi),記作;

          ③點(diǎn)A在平面內(nèi),記作;

         、茳c(diǎn)A不在平面內(nèi),記作;

         、葜本l在平面內(nèi),記作;

         、拗本l不在平面內(nèi),記作;

          注意:符號的使用與集合中這四個(gè)符號的使用的區(qū)別與聯(lián)系.

          (4)平面的基本性質(zhì)

          公理1:如果一條直線的兩個(gè)點(diǎn)在一個(gè)平面內(nèi),那么這條直線上的所有點(diǎn)都在這個(gè)平面內(nèi).

          符號表示為:.

          注意:如果直線上所有的點(diǎn)都在一個(gè)平面內(nèi),我們也說這條直線在這個(gè)平面內(nèi),或者稱平面經(jīng)過這條直線.

          公理2:過不在一條直線上的三點(diǎn),有且只有一個(gè)平面.

          符號表示為:直線AB存在唯一的平面,使得.

          注意:“有且只有”的含義是:“有”表示存在,“只有”表示唯一,不能用“只有”來代替.此公理又可表示為:不共線的三點(diǎn)確定一個(gè)平面.

          公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線.

          符號表示為:.

          注意:兩個(gè)平面有一條公共直線,我們說這兩個(gè)平面相交,這條公共直線就叫作兩個(gè)平面的交線.若平面、平面相交于直線l,記作.

          公理的推論:

          推論1:經(jīng)過一條直線和直線外的一點(diǎn)有且只有一個(gè)平面.

          推論2:經(jīng)過兩條相交直線有且只有一個(gè)平面.

          推論3:經(jīng)過兩條平行直線有且只有一個(gè)平面.

          2.空間直線

          (1)空間兩條直線的位置關(guān)系

         、傧嘟恢本:有且僅有一個(gè)公共點(diǎn),可表示為;

         、谄叫兄本:在同一個(gè)平面內(nèi),沒有公共點(diǎn),可表示為a//b;

          ③異面直線:不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn).

          (2)平行直線

          公理4:平行于同一條直線的兩條直線互相平行.

          符號表示為:設(shè)a、b、c是三條直線,.

          定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等.

          (3)兩條異面直線所成的角

          注意:

         、賰蓷l異面直線a,b所成的角的范圍是(0°,90°].

         、趦蓷l異面直線所成的角與點(diǎn)O的選擇位置無關(guān),這可由前面所講過的“等角定理”直接得出.

          ③由兩條異面直線所成的角的定義可得出異面直線所成角的一般方法:

          (i)在空間任取一點(diǎn),這個(gè)點(diǎn)通常是線段的中點(diǎn)或端點(diǎn).

          (ii)分別作兩條異面直線的平行線,這個(gè)過程通常采用平移的方法來實(shí)現(xiàn).

          (iii)指出哪一個(gè)角為兩條異面直線所成的角,這時(shí)我們要注意兩條異面直線所成的角的范圍.

          3.空間直線與平面

          直線與平面位置關(guān)系有且只有三種:

          (1)直線在平面內(nèi):有無數(shù)個(gè)公共點(diǎn);

          (2)直線與平面相交:有且只有一個(gè)公共點(diǎn);

          (3)直線與平面平行:沒有公共點(diǎn).

          4.平面與平面

          兩個(gè)平面之間的位置關(guān)系有且只有以下兩種:

          (1)兩個(gè)平面平行:沒有公共點(diǎn);

          (2)兩個(gè)平面相交:有一條公共直線.

          高一數(shù)學(xué)知識點(diǎn)總結(jié) 5

          冪函數(shù)的性質(zhì):

          對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

          首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:

          排除了為0與負(fù)數(shù)兩種可能,即對于x>0,則a可以是任意實(shí)數(shù);

          排除了為0這種可能,即對于x<0x="">0的所有實(shí)數(shù),q不能是偶數(shù);

          排除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

          總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

          如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。

          在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。

          在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。

          而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

          由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

          可以看到:

          (1)所有的圖形都通過(1,1)這點(diǎn)。

          (2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。

          (3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。

          (4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。

          (5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點(diǎn)。

          (6)顯然冪函數(shù)無界。

          解題方法:換元法

          解數(shù)學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問題得到簡化,這種方法叫換元法.換元的實(shí)質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標(biāo)準(zhǔn)型問題標(biāo)準(zhǔn)化、復(fù)雜問題簡單化,變得容易處理。

          換元法又稱輔助元素法、變量代換法.通過引進(jìn)新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結(jié)論聯(lián)系起來.或者變?yōu)槭煜さ男问,把?fù)雜的計(jì)算和推證簡化。

          它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應(yīng)用。

          高一數(shù)學(xué)知識點(diǎn)總結(jié) 6

          內(nèi)容子交并補(bǔ)集,還有冪指對函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。

          復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細(xì)證明它,還須將那定義抓。

          指數(shù)與對數(shù)函數(shù),初中學(xué)習(xí)方法,兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。

          函數(shù)定義域好求。分母不能等于0,偶次方根須非負(fù),零和負(fù)數(shù)無對數(shù);

          正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實(shí)數(shù)集,多種情況求交集。

          兩個(gè)互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對稱,Y=X是對稱軸;

          求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域。

          冪函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),

          奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負(fù)。

          形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

          自變量x的取值范圍是不等于0的一切實(shí)數(shù)。

          反比例函數(shù)圖像性質(zhì):

          反比例函數(shù)的圖像為雙曲線。

          由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對稱。

          另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,高中地理,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為k。

          如圖,上面給出了k分別為正和負(fù)(2和-2)時(shí)的函數(shù)圖像。

          當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

          當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

          反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

          知識點(diǎn):

          1、過反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為k。

          2、對于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)

          高一數(shù)學(xué)知識點(diǎn)總結(jié) 7

          (1)直線的傾斜角

          定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0180

          (2)直線的斜率

          ①定義:傾斜角不是90的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時(shí)。當(dāng)時(shí),;當(dāng)時(shí),不存在。

         、谶^兩點(diǎn)的直線的斜率公式:

          注意下面四點(diǎn):

          (1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90

          (2)k與P1、P2的順序無關(guān);

          (3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

          (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

          (3)直線方程

         、冱c(diǎn)斜式:直線斜率k,且過點(diǎn)

          注意:當(dāng)直線的斜率為0時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

          ②斜截式:,直線斜率為k,直線在y軸上的截距為b

         、蹆牲c(diǎn)式:()直線兩點(diǎn),

         、芙鼐厥剑浩渲兄本與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。

         、菀话闶剑(A,B不全為0)

          ⑤一般式:(A,B不全為0)

          注意:

          1、各式的適用范圍

          2、特殊的方程如:平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

          (4)直線系方程:即具有某一共同性質(zhì)的直線

          (一)平行直線系

          平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

          (二)過定點(diǎn)的直線系

          (ⅰ)斜率為k的直線系:直線過定點(diǎn);

          (ⅱ)過兩條直線,的交點(diǎn)的直線系方程為(為參數(shù)),其中直線不在直線系中。

          (5)兩直線平行與垂直;

          注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。

          (6)兩條直線的交點(diǎn)

          相交:交點(diǎn)坐標(biāo)即方程組的一組解。方程組無解;方程組有無數(shù)解與重合

          (7)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),則

          (8)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離

          (9)兩平行直線距離公式:在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。

          高一數(shù)學(xué)知識點(diǎn)總結(jié) 8

          1、多面體的結(jié)構(gòu)特征

          (1)棱柱有兩個(gè)面相互平行,其余各面都是平行四邊形,每相鄰兩個(gè)四邊形的公共邊平行。

          正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形。

          (2)棱錐的底面是任意多邊形,側(cè)面是有一個(gè)公共頂點(diǎn)的三角形。

          正棱錐:底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過來,正棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的中心。

          (3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。

          2、旋轉(zhuǎn)體的結(jié)構(gòu)特征

          (1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到.

          (2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到.

          (3)圓臺可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到。

          (4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到。

          3、空間幾何體的三視圖

          空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖。

          三視圖的長度特征:“長對正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長,側(cè)視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實(shí)、虛線的畫法。

          4、空間幾何體的直觀圖

          空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:

          (1)畫幾何體的底面

          在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點(diǎn)O,畫直觀圖時(shí),把它們畫成對應(yīng)的x′軸、y′軸,兩軸相交于點(diǎn)O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸.已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话搿?/p>

          (2)畫幾何體的高

          在已知圖形中過O點(diǎn)作z軸垂直于xOy平面,在直觀圖中對應(yīng)的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變。

          高一數(shù)學(xué)知識點(diǎn)總結(jié) 9

          知識點(diǎn)總結(jié)

          本節(jié)知識包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性和函數(shù)的圖象等知識點(diǎn)。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個(gè)知識點(diǎn),函數(shù)的圖象就迎刃而解了。

          一、函數(shù)的單調(diào)性

          1、函數(shù)單調(diào)性的定義

          2、函數(shù)單調(diào)性的判斷和證明:

          (1)定義法

          (2)復(fù)合函數(shù)分析法

          (3)導(dǎo)數(shù)證明法

          (4)圖象法

          二、函數(shù)的奇偶性和周期性

          1、函數(shù)的奇偶性和周期性的定義

          2、函數(shù)的奇偶性的判定和證明方法

          3、函數(shù)的周期性的判定方法

          三、函數(shù)的圖象

          1、函數(shù)圖象的作法:

          (1)描點(diǎn)法

          (2)圖象變換法

          2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。

          常見考法

          本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。

          誤區(qū)提醒

          1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。

          2、單調(diào)區(qū)間必須用區(qū)間來表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點(diǎn)問題。

          3、在多個(gè)單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號隔開。

          4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點(diǎn)對稱,則函數(shù)一定是非奇非偶函數(shù)。

          5、作函數(shù)的圖象,一般是首先化簡解析式,然后確定用描點(diǎn)法或圖象變換法作函數(shù)的圖象。

          高一數(shù)學(xué)知識點(diǎn)總結(jié) 10

          1、二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對稱軸如下表:

          解析式

          頂點(diǎn)坐標(biāo)

          對稱軸

          y=ax^2

          (0,0)

          x=0

          y=a(x-h)^2

          (h,0)

          x=h

          y=a(x-h)^2+k

          (h,k)

          x=h

          y=ax^2+bx+c

          (-b/2a,[4ac-b^2]/4a)

          x=-b/2a

          當(dāng)h>0時(shí),y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,

          當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.

          當(dāng)h>0,k>0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;

          當(dāng)h>0,k<0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

          當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

          當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

          因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

          2、拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

          3、拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減小;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小.

          4、拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

          (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

          (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

          (a≠0)的兩根.這兩點(diǎn)間的距離AB=|x?-x?|

          當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);

          當(dāng)△<0.圖象與x軸沒有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0.

          5、拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.

          頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.

          6、用待定系數(shù)法求二次函數(shù)的解析式

          (1)當(dāng)題給條件為已知圖象經(jīng)過三個(gè)已知點(diǎn)或已知x、y的三對對應(yīng)值時(shí),可設(shè)解析式為一般形式:

          y=ax^2+bx+c(a≠0).

          (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).

          (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

          7、二次函數(shù)知識很容易與其它知識綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).

          高一數(shù)學(xué)知識點(diǎn)總結(jié) 11

          一、集合有關(guān)概念

          1、集合的含義

          2、集合的中元素的三個(gè)特性:

          (1)元素的確定性如:世界上的山

          (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

          (3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

          3、集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

          (1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

          (2)集合的表示方法:列舉法與描述法。

          注意:常用數(shù)集及其記法:

          非負(fù)整數(shù)集(即自然數(shù)集)記作:N

          正整數(shù)集:N_或N+

          整數(shù)集:Z

          有理數(shù)集:Q

          實(shí)數(shù)集:R

          1)列舉法:{a,b,c……}

          2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合{xR|x-3>2},{x|x-3>2}

          3)語言描述法:例:{不是直角三角形的三角形}

          4)Venn圖:

          4、集合的分類:

          (1)有限集含有有限個(gè)元素的集合

          (2)無限集含有無限個(gè)元素的集合

          (3)空集不含任何元素的集合例:{x|x2=-5}

          二、集合間的基本關(guān)系

          1、“包含”關(guān)系—子集

          注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

          反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

          2、“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)

          實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

          即:

          ①任何一個(gè)集合是它本身的子集。AíA

          ②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

         、廴绻鸄íB,BíC,那么AíC

          ④如果AíB同時(shí)BíA那么A=B

          3、不含任何元素的集合叫做空集,記為Φ

          規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

          4、子集個(gè)數(shù):

          有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集

          三、集合的運(yùn)算

          運(yùn)算類型交集并集補(bǔ)集

          定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

          由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).

          高一數(shù)學(xué)知識點(diǎn)總結(jié) 12

          一、函數(shù)的概念與表示

          1、映射

          (1)映射:設(shè)A、B是兩個(gè)集合,如果按照某種映射法則f,對于集合A中的任一個(gè)元素,在集合B中都有唯一的元素和它對應(yīng),則這樣的對應(yīng)(包括集合A、B以及A到B的對應(yīng)法則f)叫做集合A到集合B的映射,記作f:A→B。

          注意點(diǎn):

          (1)對映射定義的理解。

          (2)判斷一個(gè)對應(yīng)是映射的方法。一對多不是映射,多對一是映射

          2、函數(shù)

          構(gòu)成函數(shù)概念的三要素

          ①定義域

         、趯(yīng)法則

          ③值域

          兩個(gè)函數(shù)是同一個(gè)函數(shù)的條件:三要素有兩個(gè)相同

          二、函數(shù)的解析式與定義域

          1、求函數(shù)定義域的主要依據(jù):

          (1)分式的分母不為零;

          (2)偶次方根的被開方數(shù)不小于零,零取零次方?jīng)]有意義;

          (3)對數(shù)函數(shù)的真數(shù)必須大于零;

          (4)指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

          三、函數(shù)的值域

          求函數(shù)值域的方法

         、僦苯臃ǎ簭淖宰兞縳的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡單的復(fù)合函數(shù);

         、趽Q元法:利用換元法將函數(shù)轉(zhuǎn)化為二次函數(shù)求值域,適合根式內(nèi)外皆為一次式;

         、叟袆e式法:運(yùn)用方程思想,依據(jù)二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

         、芊蛛x常數(shù):適合分子分母皆為一次式(x有范圍限制時(shí)要畫圖);

          ⑤單調(diào)性法:利用函數(shù)的單調(diào)性求值域;

         、迗D象法:二次函數(shù)必畫草圖求其值域;

         、呃脤μ柡瘮(shù)

          ⑧幾何意義法:由數(shù)形結(jié)合,轉(zhuǎn)化距離等求值域。主要是含絕對值函數(shù)

          四、函數(shù)的奇偶性

          1、定義:設(shè)y=f(x),x∈A,如果對于任意∈A,都有,則稱y=f(x)為偶函數(shù)。

          如果對于任意∈A,都有,則稱y=f(x)為奇函數(shù)。

          2、性質(zhì):

         、賧=f(x)是偶函數(shù)y=f(x)的圖象關(guān)于軸對稱,y=f(x)是奇函數(shù)y=f(x)的圖象關(guān)于原點(diǎn)對稱,

         、谌艉瘮(shù)f(x)的定義域關(guān)于原點(diǎn)對稱,則f(0)=0

          ③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數(shù)的定義域D1,D2,D1∩D2要關(guān)于原點(diǎn)對稱]

          3、奇偶性的判斷

         、倏炊x域是否關(guān)于原點(diǎn)對稱②看f(x)與f(-x)的關(guān)系

          五、函數(shù)的單調(diào)性

          1、函數(shù)單調(diào)性的定義:

          2、設(shè)是定義在M上的函數(shù),若f(x)與g(x)的單調(diào)性相反,則在M上是減函數(shù);若f(x)與g(x)的單調(diào)性相同,則在M上是增函數(shù)。

          高一數(shù)學(xué)知識點(diǎn)總結(jié) 13

          圓的方程定義:

          圓的標(biāo)準(zhǔn)方程(x—a)2+(y—b)2=r2中,有三個(gè)參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨(dú)立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。

          直線和圓的位置關(guān)系:

          1、直線和圓位置關(guān)系的判定方法一是方程的觀點(diǎn),即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來討論位置關(guān)系。

         、佴>0,直線和圓相交、

         、讦=0,直線和圓相切、

          ③Δ<0,直線和圓相離。

          方法二是幾何的觀點(diǎn),即把圓心到直線的距離d和半徑R的大小加以比較。

          dR,直線和圓相離、

          2、直線和圓相切,這類問題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點(diǎn)兩種情況,而已知直線上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種情況。

          3、直線和圓相交,這類問題主要是求弦長以及弦的中點(diǎn)問題。

          切線的性質(zhì)

          ⑴圓心到切線的距離等于圓的半徑;

          ⑵過切點(diǎn)的半徑垂直于切線;

         、墙(jīng)過圓心,與切線垂直的直線必經(jīng)過切點(diǎn);

         、冉(jīng)過切點(diǎn),與切線垂直的直線必經(jīng)過圓心;

          當(dāng)一條直線滿足

         。1)過圓心;

         。2)過切點(diǎn);

         。3)垂直于切線三個(gè)性質(zhì)中的兩個(gè)時(shí),第三個(gè)性質(zhì)也滿足。

          切線的判定定理

          經(jīng)過半徑的外端點(diǎn)并且垂直于這條半徑的直線是圓的切線。

          切線長定理

          從圓外一點(diǎn)作圓的兩條切線,兩切線長相等,圓心與這一點(diǎn)的連線平分兩條切線的夾角。

          高一數(shù)學(xué)知識點(diǎn)總結(jié) 14

          集合具有某種特定性質(zhì)的事物的總體。這里的事物可以是人,物品,也可以是數(shù)學(xué)元素。

          例如:

          1、分散的人或事物聚集到一起;使聚集:緊急~。

          2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。

          3、口號等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專門研究集合的理論叫做集合論?低校–antor,G、F、P、,1845年1918年,德國數(shù)學(xué)家先驅(qū),是集合論的,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。

          集合,在數(shù)學(xué)上是一個(gè)基礎(chǔ)概念。

          什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下定義。

          集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對象匯合在一起,使之成為一個(gè)整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。

          集合與集合之間的關(guān)系

          某些指定的對象集在一起就成為一個(gè)集合集合符號,含有有限個(gè)元素叫有限集,含有無限個(gè)元素叫無限集,空集是不含任何元素的集,記做?占侨魏渭系淖蛹侨魏畏强占恼孀蛹。任何集合是它本身的子集。子集,真子集都具有傳遞性。

         。ㄕf明一下:如果集合A的所有元素同時(shí)都是集合B的元素,則A稱作是B的子集,寫作AB。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作AB。中學(xué)教材課本里將符號下加了一個(gè)符號,不要混淆,考試時(shí)還是要以課本為準(zhǔn)。所有男人的集合是所有人的集合的真子集。)

          高一數(shù)學(xué)知識點(diǎn)總結(jié) 15

          集合間的基本關(guān)系

          1、子集,A包含于B,記為:,有兩種可能

          (1)A是B的一部分,

          (2)A與B是同一集合,A=B,A、B兩集合中元素都相同。

          反之:集合A不包含于集合B,記作。

          如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三個(gè)集合的關(guān)系可以表示為,B=C。A是C的子集,同時(shí)A也是C的真子集。

          2、真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

          3、不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。

          4、有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-2個(gè)非空真子集。如A={1,2,3,4,5},則集合A有25=32個(gè)子集,25-1=31個(gè)真子集,25-2=30個(gè)非空真子集。

          例:集合共有個(gè)子集。(13年高考第4題,簡單)

          練習(xí):A={1,2,3},B={1,2,3,4},請問A集合有多少個(gè)子集,并寫出子集,B集合有多少個(gè)非空真子集,并將其寫出來。

          解析:

          集合A有3個(gè)元素,所以有23=8個(gè)子集。分別為:

         、俨缓魏卧氐淖蛹;

         、诤1個(gè)元素的子集{1}{2}{3};

         、酆袃蓚(gè)元素的子集{1,2}{1,3}{2,3};

         、芎腥齻(gè)元素的子集{1,2,3}。

          集合B有4個(gè)元素,所以有24-2=14個(gè)非空真子集。具體的子集自己寫出來。

          此處這么羅嗦主要是為了讓同學(xué)們注意寫的順序,數(shù)學(xué)就是要講究嚴(yán)謹(jǐn)性和邏輯性的。一定要養(yǎng)成自己的邏輯習(xí)慣。如果就是為了提高計(jì)算能力倒不如直接去菜場賣菜算了,絕對能飛速提高的,那學(xué)數(shù)學(xué)也沒什么必要了。

          高一數(shù)學(xué)知識點(diǎn)總結(jié) 16

          函數(shù)圖象知識歸納

          (1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的函數(shù)C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.

          (2)畫法

          A、描點(diǎn)法:

          B、圖象變換法

          常用變換方法有三種

          1)平移變換

          2)伸縮變換

          3)對稱變換

          4.高中數(shù)學(xué)函數(shù)區(qū)間的概念

          (1)函數(shù)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

          (2)無窮區(qū)間

          5.映射

          一般地,設(shè)A、B是兩個(gè)非空的函數(shù),如果按某一個(gè)確定的對應(yīng)法則f,使對于函數(shù)A中的任意一個(gè)元素x,在函數(shù)B中都有確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從函數(shù)A到函數(shù)B的一個(gè)映射。記作“f(對應(yīng)關(guān)系):A(原象)B(象)”

          對于映射f:A→B來說,則應(yīng)滿足:

          (1)函數(shù)A中的每一個(gè)元素,在函數(shù)B中都有象,并且象是的;

          (2)函數(shù)A中不同的元素,在函數(shù)B中對應(yīng)的象可以是同一個(gè);

          (3)不要求函數(shù)B中的每一個(gè)元素在函數(shù)A中都有原象。

          6.高中數(shù)學(xué)函數(shù)之分段函數(shù)

          (1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

          (2)各部分的自變量的取值情況.

          (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

          補(bǔ)充:復(fù)合函數(shù)

          如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復(fù)合函數(shù)。

          高一數(shù)學(xué)知識點(diǎn)總結(jié) 17

          二次函數(shù)

          I.定義與定義表達(dá)式

          一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

          (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

          則稱y為x的二次函數(shù)。

          二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

          II.二次函數(shù)的三種表達(dá)式

          一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

          頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]

          交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

          注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

          h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

          III.二次函數(shù)的圖像

          在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

          IV.拋物線的性質(zhì)

          1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

          特別地,當(dāng)b=0時(shí),拋物線的對稱軸是y軸(即直線x=0)

          2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

          P(-b/2a,(4ac-b^2)/4a)

          當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。

          3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

          當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。

          |a|越大,則拋物線的開口越小。

          高一數(shù)學(xué)知識點(diǎn)總結(jié) 18

          函數(shù)的概念

          函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)數(shù)x,在集合B中都有確定的數(shù)f(x)和它對應(yīng),那么就稱f:A---B為從集合A到集合B的一個(gè)函數(shù).記作:y=f(x),x∈A.

          (1)其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;

          (2)與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

          函數(shù)的三要素:定義域、值域、對應(yīng)法則

          函數(shù)的表示方法:

          (1)解析法:明確函數(shù)的定義域

          (2)圖想像:確定函數(shù)圖像是否連線,函數(shù)的圖像可以是連續(xù)的曲線、直線、折線、離散的點(diǎn)等等。

          (3)列表法:選取的自變量要有代表性,可以反應(yīng)定義域的特征。

          4、函數(shù)圖象知識歸納

          (1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.

          (2)畫法

          A、描點(diǎn)法:

          B、圖象變換法:平移變換;伸縮變換;對稱變換,即平移。

          (3)函數(shù)圖像平移變換的特點(diǎn):

          1)加左減右——————只對x

          2)上減下加——————只對y

          3)函數(shù)y=f(x)關(guān)于X軸對稱得函數(shù)y=-f(x)

          4)函數(shù)y=f(x)關(guān)于Y軸對稱得函數(shù)y=f(-x)

          5)函數(shù)y=f(x)關(guān)于原點(diǎn)對稱得函數(shù)y=-f(-x)

          6)函數(shù)y=f(x)將x軸下面圖像翻到x軸上面去,x軸上面圖像不動(dòng)得

          函數(shù)y=|f(x)|

          7)函數(shù)y=f(x)先作x≥0的圖像,然后作關(guān)于y軸對稱的圖像得函數(shù)f(|x|)

          高一數(shù)學(xué)知識點(diǎn)總結(jié) 19

          一、集合有關(guān)概念

          1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。

          2、集合的中元素的三個(gè)特性:

          1、元素的確定性;

          2、元素的互異性;

          3、元素的無序性

          說明:

         。1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素。

          (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

         。3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

         。4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

          3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

          1、用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

          2、集合的表示方法:列舉法與描述法。

          二、集合間的基本關(guān)系

          1、“包含”關(guān)系—子集

          注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

          反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

          2、“相等”關(guān)系(5≥5,且5≤5,則5=5)

          實(shí)例:設(shè)A={x|x2—1=0}B={—1,1}“元素相同”

          結(jié)論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

         、偃魏我粋(gè)集合是它本身的子集。AíA

          ②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

         、廴绻鸄íB,BíC,那么AíC

         、苋绻鸄íB同時(shí)BíA那么A=B

          3、不含任何元素的集合叫做空集,記為Φ

          規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

          三、集合的運(yùn)算

          1、交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集。

          記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}。

          2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}。

          3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A。

          高一數(shù)學(xué)知識點(diǎn)總結(jié) 20

          一、定義與定義式:

          自變量x和因變量有如下關(guān)系:

          =x+b

          則此時(shí)稱是x的一次函數(shù)。

          特別地,當(dāng)b=0時(shí),是x的正比例函數(shù)。

          即:=x(為常數(shù),≠0)

          二、一次函數(shù)的性質(zhì):

          1.的變化值與對應(yīng)的x的變化值成正比例,比值為

          即:=x+b(為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))

          2.當(dāng)x=0時(shí),b為函數(shù)在軸上的截距。

          三、一次函數(shù)的圖像及性質(zhì): 1.作法與圖形:通過如下3個(gè)步驟

          (1)列表;

         。2)描點(diǎn);

         。3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和軸的交點(diǎn))

          2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,),都滿足等式:=x+b。(2)一次函數(shù)與軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/,0)正比例函數(shù)的圖像總是過原點(diǎn)。

          3.,b與函數(shù)圖像所在象限:

          當(dāng)>0時(shí),直線必通過一、三象限,隨x的增大而增大;

          當(dāng)<0時(shí),直線必通過二、四象限,隨x的增大而減小。

          當(dāng)b>0時(shí),直線必通過一、二象限;

          當(dāng)b=0時(shí),直線通過原點(diǎn)

          當(dāng)b<0時(shí),直線必通過三、四象限。

          特別地,當(dāng)b=O時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

          這時(shí),當(dāng)>0時(shí),直線只通過一、三象限;當(dāng)<0時(shí),直線只通過二、四象限。

          四、確定一次函數(shù)的表達(dá)式:

          已知點(diǎn)A(x1,1);B(x2,2),請確定過點(diǎn)A、B的一次函數(shù)的表達(dá)式。

         。1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為=x+b。

         。2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,),都滿足等式=x+b。所以可以列出2個(gè)方程:1=x1+b……①和2=x2+b……②

          (3)解這個(gè)二元一次方程,得到,b的值。

         。4)最后得到一次函數(shù)的表達(dá)式。

          五、一次函數(shù)在生活中的應(yīng)用:

          1.當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt。

          2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。

          六、常用公式:(不全,希望有人補(bǔ)充)

          1.求函數(shù)圖像的值:(1-2)/(x1-x2)

          2.求與x軸平行線段的中點(diǎn):|x1-x2|/2

          3.求與軸平行線段的中點(diǎn):|1-2|/2

          4.求任意線段的長:√(x1-x2)^2+(1-2)^2(注:根號下(x1-x2)與(1-2)的平方和)

        【高一數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章:

        數(shù)學(xué)高一函數(shù)知識點(diǎn)總結(jié)11-03

        高一數(shù)學(xué)必修知識點(diǎn)總結(jié)08-01

        高一數(shù)學(xué)集合知識點(diǎn)總結(jié)12-01

        高一數(shù)學(xué)函數(shù)知識點(diǎn)總結(jié)12-01

        高一數(shù)學(xué)知識點(diǎn)總結(jié)06-10

        高一數(shù)學(xué)必修知識點(diǎn)總結(jié)08-30

        高一數(shù)學(xué)函數(shù)的知識點(diǎn)總結(jié)05-28

        高一數(shù)學(xué)必修知識點(diǎn)總結(jié)12-15

        高一數(shù)學(xué)的知識點(diǎn)歸納總結(jié)07-11

        高一數(shù)學(xué)知識點(diǎn)總結(jié)11-09

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>