1. <rp id="zsypk"></rp>

      2. 高數(shù)之數(shù)列極限的方法總結

        時間:2022-01-12 10:20:30 總結 我要投稿

        高數(shù)之數(shù)列極限的方法總結

          總結,對某一階段的工作、學習或思想中的經(jīng)驗或情況進行分析研究,做出帶有規(guī)律性的結論。下面小編為大家整理了高數(shù)之數(shù)列極限的方法總結,希望對考研的朋友們有所幫助。

        高數(shù)之數(shù)列極限的方法總結

          極限是考研數(shù)學每年必考的內(nèi)容,在客觀題和主觀題中都有可能會涉及到平均每年直接考查所占的分值在10分左右,而事實上,由于這一部分內(nèi)容的基礎性,每年間接考查或與其他章節(jié)結合出題的比重也很大。極限的計算是核心考點,考題所占比重最大。熟練掌握求解極限的方法是得高分的關鍵。

          極限無外乎出這三個題型:

          求數(shù)列極限、求函數(shù)極限、已知極限求待定參數(shù)。 熟練掌握求解極限的方法是的高分地關鍵, 極限的運算法則必須遵從,兩個極限都存在才可以進行極限的運算,如果有一個不存在就無法進行運算。以下我們就極限的內(nèi)容簡單總結下。

          極限的計算常用方法:

          四則運算、洛必達法則、等價無窮小代換、兩個重要極限、利用泰勒公式求極限、夾逼定理、利用定積分求極限、單調(diào)有界收斂定理、利用連續(xù)性求極限等方法。

          四則運算、洛必達法則、等價無窮小代換、兩個重要極限是常用方法,在基礎階段的學習中是重點,考生應該已經(jīng)非常熟悉,進入強化復習階段這些內(nèi)容還應繼續(xù)練習達到熟練的程度;在強化復習階段考生會遇到一些較為復雜的極限計算,此時運用泰勒公式代替洛必達法則來求極限會簡化計算,熟記一些常見的麥克勞林公式往往可以達到事半功倍之效; 夾逼定理、利用定積分定義常常用來計算某些和式的極限,如果最大的分母和最小的分母相除的極限等于1,則使用夾逼定理進行計算,如果最大的分母和最小的分母相除的極限不等于1,則湊成定積分的定義的形式進行計算;單調(diào)有界收斂定理可用來證明數(shù)列極限存在,并求遞歸數(shù)列的極限。

          與極限計算相關知識點包括:

          1、連續(xù)、間斷點以及間斷點的'分類:判斷間斷點類型的基礎是求函數(shù)在間斷點處的左右極限;

          2、可導和可微,分段函數(shù)在分段點處的導數(shù)或可導性,一律通過導數(shù)定義直接計算或檢驗 存在的定義是極限 存在;

          3、漸近線,(垂直、水平或斜漸近線);

          4、多元函數(shù)積分學,二重極限的討論計算難度較大,?疾樽C明極限不存在。

          下面我們重點講一下數(shù)列極限的典型方法。

          重要題型及點撥

          1、求數(shù)列極限

          求數(shù)列極限可以歸納為以下三種形式。

          ★抽象數(shù)列求極限

          這類題一般以選擇題的形式出現(xiàn), 因此可以通過舉反例來排除。 此外,也可以按照定義、基本性質及運算法則直接驗證。

          ★求具體數(shù)列的極限,可以參考以下幾種方法:

          a、利用單調(diào)有界必收斂準則求數(shù)列極限。

          首先,用數(shù)學歸納法或不等式的放縮法判斷數(shù)列的單調(diào)性和有界性,進而確定極限存在性;其次,通過遞推關系中取極限,解方程, 從而得到數(shù)列的極限值。

          b、利用函數(shù)極限求數(shù)列極限

          如果數(shù)列極限能看成某函數(shù)極限的特例,形如,則利用函數(shù)極限和數(shù)列極限的關系轉化為求函數(shù)極限,此時再用洛必達法則求解。

          ★求n項和或n項積數(shù)列的極限,主要有以下幾種方法:

          a、利用特殊級數(shù)求和法

          如果所求的項和式極限中通項可以通過錯位相消或可以轉化為極限已知的一些形式,那么通過整理可以直接得出極限結果。

          b、利用冪級數(shù)求和法

          若可以找到這個級數(shù)所對應的冪級數(shù),則可以利用冪級數(shù)函數(shù)的方法把它所對應的和函數(shù)求出,再根據(jù)這個極限的形式代入相應的變量求出函數(shù)值。

          c、利用定積分定義求極限

          若數(shù)列每一項都可以提出一個因子,剩余的項可用一個通項表示, 則可以考慮用定積分定義求解數(shù)列極限。

          d、利用夾逼定理求極限

          若數(shù)列每一項都可以提出一個因子,剩余的項不能用一個通項表示,但是其余項是按遞增或遞減排列的,則可以考慮用夾逼定理求解。

          e、求n項數(shù)列的積的極限,一般先取對數(shù)化為項和的形式,然后利用求解項和數(shù)列極限的方法進行計算。

        【高數(shù)之數(shù)列極限的方法總結】相關文章:

        高余冠之岌岌兮句式10-12

        飛之彌高,懷之彌壯作文1000字12-31

        高孩子作文寫作能力的方法08-19

        年輕無極限12-09

        《等比數(shù)列》說課稿12-23

        數(shù)列求和教學反思范文12-25

        常函數(shù)有極限嗎10-12

        創(chuàng)新無極限作文11-24

        音樂,無極限作文12-03

        關于小升初語數(shù)外考試的做題技巧和方法07-11

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>