高一數(shù)學必修一知識點總結(jié)(通用19篇)
總結(jié)是指社會團體、企業(yè)單位和個人對某一階段的學習、工作或其完成情況加以回顧和分析,得出教訓和一些規(guī)律性認識的一種書面材料,它在我們的學習、工作中起到呈上啟下的作用,不如立即行動起來寫一份總結(jié)吧。但是卻發(fā)現(xiàn)不知道該寫些什么,下面是小編幫大家整理的高一數(shù)學必修一知識點總結(jié),歡迎大家分享。
高一數(shù)學必修一知識點總結(jié)1
一:函數(shù)模型及其應用
本節(jié)主要包括函數(shù)的模型、函數(shù)的應用等知識點。主要是理解函數(shù)解應用題的一般步驟靈活利用函數(shù)解答實際應用題。
1、常見的函數(shù)模型有一次函數(shù)模型、二次函數(shù)模型、指數(shù)函數(shù)模型、對數(shù)函數(shù)模型、分段函數(shù)模型等。
2、用函數(shù)解應用題的基本步驟是:
。1)閱讀并且理解題意。(關(guān)鍵是數(shù)據(jù)、字母的實際意義);
。2)設(shè)量建模;
。3)求解函數(shù)模型;
。4)簡要回答實際問題。
常見考法:
本節(jié)知識在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數(shù)和較復雜的函數(shù)的最值等問題,屬于拔高題,難度較大。
誤區(qū)提醒:
1、求解應用性問題時,不僅要考慮函數(shù)本身的定義域,還要結(jié)合實際問題理解自變量的取值范圍。
2、求解應用性問題時,首先要弄清題意,分清條件和結(jié)論,抓住關(guān)鍵詞和量,理順數(shù)量關(guān)系,然后將文字語言轉(zhuǎn)化成數(shù)學語言,建立相應的數(shù)學模型。
【典型例題】
例1:
。1)某種儲蓄的月利率是0。36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數(shù)x之間的函數(shù)關(guān)系式,并計算5個月后的本息和(不計復利)。
。2)按復利計算利息的一種儲蓄,本金為a元,每期利率為r,設(shè)本利和為y,存期為x,寫出本利和y隨存期x變化的函數(shù)式。如果存入本金1000元,每期利率2。25%,試計算5期后的`本利和是多少?解:(1)利息=本金×月利率×月數(shù)。y=100+100×0。36%·x=100+0。36x,當x=5時,y=101。8,∴5個月后的本息和為101。8元。
例2:
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤與投資單位是萬元)
。1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式。
。2)該企業(yè)已籌集到10萬元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能是企業(yè)獲得利潤,其利潤約為多少萬元。(精確到1萬元)。
高一數(shù)學必修一知識點總結(jié)2
知識點1
一、集合有關(guān)概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1、元素的確定性;
2、元素的互異性;
3、元素的無序性
說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
。2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
。3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
。4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1、用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2、集合的表示方法:列舉法與描述法。
注意。撼S脭(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R
關(guān)于“屬于”的概念
集合的.元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A
列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。
①語言描述法:例:{不是直角三角形的三角形}
、跀(shù)學式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}
4、集合的分類:
1、有限集含有有限個元素的集合
2、無限集含有無限個元素的集合
3、空集不含任何元素的集合例:{x|x2=—5}
知識點2
I、定義與定義表達式
一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c
。╝,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)
則稱y為x的二次函數(shù)。
二次函數(shù)表達式的右邊通常為二次三項式。
II、二次函數(shù)的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
頂點式:y=a(x—h)^2+k[拋物線的頂點P(h,k)]
交點式:y=a(x—x?)(x—x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a
III、二次函數(shù)的圖像
在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。
IV、拋物線的性質(zhì)
1、拋物線是軸對稱圖形。對稱軸為直線x=—b/2a。對稱軸與拋物線的交點為拋物線的頂點P。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2、拋物線有一個頂點P,坐標為
P(—b/2a,(4ac—b^2)/4a)
當—b/2a=0時,P在y軸上;當Δ=b^2—4ac=0時,P在x軸上。
3、二次項系數(shù)a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
知識點3
1、拋物線是軸對稱圖形。對稱軸為直線
x=—b/2a。
對稱軸與拋物線的交點為拋物線的頂點P。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2、拋物線有一個頂點P,坐標為
P(—b/2a,(4ac—b’2)/4a)
當—b/2a=0時,P在y軸上;當Δ=b’2—4ac=0時,P在x軸上。
3、二次項系數(shù)a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
4、一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5、常數(shù)項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6、拋物線與x軸交點個數(shù)
Δ=b’2—4ac>0時,拋物線與x軸有2個交點。
Δ=b’2—4ac=0時,拋物線與x軸有1個交點。
Δ=b’2—4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=—b±√b’2—4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
知識點4
對數(shù)函數(shù)
對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。
右圖給出對于不同大小a所表示的函數(shù)圖形:
可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因為它們互為反函數(shù)。
。1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。
。2)對數(shù)函數(shù)的值域為全部實數(shù)集合。
(3)函數(shù)總是通過(1,0)這點。
(4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。
。5)顯然對數(shù)函數(shù)。
知識點5
方程的根與函數(shù)的零點
1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。
2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:方程有實數(shù)根,函數(shù)的圖象與坐標軸有交點,函數(shù)有零點。
3、函數(shù)零點的求法:
。1)(代數(shù)法)求方程的實數(shù)根;
。2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點。
4、二次函數(shù)的零點:
(1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點。
(2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點。
。3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點。
高一數(shù)學必修一知識點總結(jié)3
一、指數(shù)函數(shù)
(一)指數(shù)與指數(shù)冪的運算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.
當是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).
當是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負的.次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,記作。
注意:當是奇數(shù)時,當是偶數(shù)時,
2.分數(shù)指數(shù)冪
正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:
0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義
指出:規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.
3.實數(shù)指數(shù)冪的運算性質(zhì)
(二)指數(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1.
2、指數(shù)函數(shù)的圖象和性質(zhì)
【函數(shù)的應用】
1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。
2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:
方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.
3、函數(shù)零點的求法:
求函數(shù)的零點:
1(代數(shù)法)求方程的實數(shù)根;
2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.
4、二次函數(shù)的零點:
二次函數(shù).
1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.
2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.
3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.
高一數(shù)學必修一知識點總結(jié)4
1.函數(shù)知識:基本初等函數(shù)性質(zhì)的考查,以導數(shù)知識為背景的函數(shù)問題;以向量知識為背景的函數(shù)問題;從具體函數(shù)的考查轉(zhuǎn)向抽象函數(shù)考查;從重結(jié)果考查轉(zhuǎn)向重過程考查;從熟悉情景的考查轉(zhuǎn)向新穎情景的考查。
2.向量知識:向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運算律;考查平面向量的坐標運算;考查平面向量與幾何、三角、代數(shù)等學科的綜合性問題。
3.不等式知識:突出工具性,淡化獨立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規(guī)劃問題為必考內(nèi)容,不等式的性質(zhì)與指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結(jié)合起來,考查不等式的性質(zhì)、最值、函數(shù)的單調(diào)性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識為背景,在知識網(wǎng)絡(luò)的交匯處命題,綜合性強,能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起?疾閷W生的等價轉(zhuǎn)化能力和分類討論能力;以當前經(jīng)濟、社會生產(chǎn)、生活為背景與不等式綜合的應用題仍將是高考的熱點,主要考查學生閱讀理解能力以及分析問題、解決問題的能力。
4.立體幾何知識:20xx年已經(jīng)變得簡單,20xx年難度依然不大,基本的三視圖的考查難點不大,以及球與幾何體的組合體,涉及切,接的問題,線面垂直、平行位置關(guān)系的考查,已經(jīng)線面角,面面角和幾何體的體積計算等問題,都是重點考查內(nèi)容。
5.解析幾何知識:小題主要涉及圓錐曲線方程,和直線與圓的'位置關(guān)系,以及圓錐曲線幾何性質(zhì)的考查,極坐標下的解析幾何知識,解答題主要考查直線和圓的知識,直線與圓錐曲線的知識,涉及圓錐曲線方程,直線與圓錐曲線方程聯(lián)立,定點,定值,范圍的考查,考試的難度降低。
6.導數(shù)知識:導數(shù)的考查還是以理科19題,文科20題的形式給出,從常見函數(shù)入手,導數(shù)工具作用(切線和單調(diào)性)的考查,綜合性強,能力要求高;往往與公式、導數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉(zhuǎn)化與化歸能力,但今年的難點整體偏低。
7.開放型創(chuàng)新題:答案不,或是邏輯推理題,以及解答題中的開放型試題的考查,都是重點,理科13,文科14題。
高一數(shù)學必修一知識點總結(jié)5
1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:
解析式
頂點坐標
對稱軸
y=ax^2
(0,0)
x=0
y=a(x-h)^2
(h,0)
x=h
y=a(x-h)^2+k
(h,k)
x=h
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h<0時,則向左平行移動|h|個單位得到.
當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;
當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.
4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的.兩根.這兩點間的距離AB=|x?-x?|
當△=0.圖象與x軸只有一個交點;
當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0.
5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.
頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應值時,可設(shè)解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點坐標或?qū)ΨQ軸時,可設(shè)解析式為頂點式:y=a(x-h)^2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).
7.二次函數(shù)知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn).
高一數(shù)學必修一知識點總結(jié)6
數(shù)學是利用符號語言研究數(shù)量、結(jié)構(gòu)、變化以及空間模型等概念的一門學科。小編準備了高一數(shù)學必修1期末考知識點,希望你喜歡。
一、集合有關(guān)概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素.
2、集合的中元素的三個特性:
1.元素的確定性; 2.元素的互異性; 3.元素的無序性
說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素.
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素.
(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.
(4)集合元素的三個特性使集合本身具有了確定性和整體性.
3、集合的表示:{ } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法.
注意。撼S脭(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集 N*或N+ 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R
關(guān)于屬于的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 a?A
列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上.
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的`方法.用確定的條件表示某些對象是否屬于這個集合的方法.
①語言描述法:例:{不是直角三角形的三角形}
、跀(shù)學式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}
4、集合的分類:
1.有限集 含有有限個元素的集合
2.無限集 含有無限個元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關(guān)系
1.包含關(guān)系子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.
反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A
2.相等關(guān)系(55,且55,則5=5)
實例:設(shè) A={x|x2-1=0} B={-1,1} 元素相同
結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
、 任何一個集合是它本身的子集.AA
、谡孀蛹:如果AB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 AB, BC ,那么 AC
、 如果AB 同時 BA 那么A=B
3. 不含任何元素的集合叫做空集,記為
規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集.
三、集合的運算
1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.
記作AB(讀作A交B),即AB={x|xA,且xB}.
2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}.
3、交集與并集的性質(zhì):AA = A, A=, AB = BA,AA = A,
A= A ,AB = BA.
4、全集與補集
(1)補集:設(shè)S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集.通常用U來表示.
(3)性質(zhì):⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U
高一數(shù)學必修一知識點總結(jié)7
集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A
2.“相等”關(guān)系(5≥5,且5≤5,則5=5)
實例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同”
結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
A?① 任何一個集合是它本身的子集。A
B那就說集合A是集合B的真子集,記作A B(或B A)?B,且A?②真子集:如果A
C?C ,那么 A?B, B?③如果 A
A 那么A=B?B 同時 B?④ 如果A
3. 不含任何元素的集合叫做空集,記為Φ
規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
集合的運算
1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.
2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的`集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.
4、全集與補集
(1)補集:設(shè)S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)
A}?S且 x? x?記作: CSA 即 CSA ={x
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U
高一數(shù)學必修一知識點總結(jié)8
棱錐
棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐
棱錐的的性質(zhì):
(1)側(cè)棱交于一點。側(cè)面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方
正棱錐
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的'斜高。
(3)多個特殊的直角三角形
esp:
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
高一數(shù)學必修一知識點總結(jié)9
集合的運算
運算類型交 集并 集補 集
定義域 R定義域 R
值域>0值域>0
在R上單調(diào)遞增在R上單調(diào)遞減
非奇非偶函數(shù)非奇非偶函數(shù)
函數(shù)圖象都過定點(0,1)函數(shù)圖象都過定點(0,1)
注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:
(1)在[a,b]上, 值域是 或 ;
。2)若 ,則 ; 取遍所有正數(shù)當且僅當 ;
。3)對于指數(shù)函數(shù) ,總有 ;
二、對數(shù)函數(shù)
。ㄒ唬⿲(shù)
1.對數(shù)的概念:
一般地,如果 ,那么數(shù) 叫做以 為底 的對數(shù),記作: ( — 底數(shù), — 真數(shù), — 對數(shù)式)
說明:○1 注意底數(shù)的限制 ,且 ;
○2 ;
○3 注意對數(shù)的書寫格式.
兩個重要對數(shù):
○1 常用對數(shù):以10為底的對數(shù) ;
○2 自然對數(shù):以無理數(shù) 為底的對數(shù)的對數(shù) .
指數(shù)式與對數(shù)式的互化
冪值 真數(shù)
。 N = b
底數(shù)
指數(shù) 對數(shù)
。ǘ⿲(shù)的運算性質(zhì)
如果 ,且 , , ,那么:
○1 + ;
○2 - ;
○3 .
注意:換底公式: ( ,且 ; ,且 ; ).
利用換底公式推導下面的結(jié)論:(1) ;(2) .
。3)、重要的公式 ①、負數(shù)與零沒有對數(shù); ②、 , ③、對數(shù)恒等式
。ǘ⿲(shù)函數(shù)
1、對數(shù)函數(shù)的概念:函數(shù) ,且 叫做對數(shù)函數(shù),其中 是自變量,函數(shù)的`定義域是(0,+∞).
注意:○1 對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如: , 都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù).
○2 對數(shù)函數(shù)對底數(shù)的限制: ,且 .
2、對數(shù)函數(shù)的性質(zhì):