八年級數(shù)學(xué)上冊知識點總結(jié)
總結(jié)是事后對某一時期、某一項目或某些工作進(jìn)行回顧和分析,從而做出帶有規(guī)律性的結(jié)論,它有助于我們尋找工作和事物發(fā)展的規(guī)律,從而掌握并運用這些規(guī)律,因此我們需要回頭歸納,寫一份總結(jié)了。我們該怎么去寫總結(jié)呢?以下是小編為大家整理的八年級數(shù)學(xué)上冊知識點總結(jié),希望能夠幫助到大家。
八年級數(shù)學(xué)上冊知識點總結(jié)1
第一章勾股定理
定義:如果直角三角形兩條直角邊分別為a,b,斜邊為c,即直角三角形兩直角邊的平方和等于斜邊的平方。
判定:如果三角形的三邊長a,b,c滿足a+b=c,那么這個三角形是直角三角形。定義:滿足a+b=c的三個正整數(shù),稱為勾股數(shù)。第二章實數(shù)
定義:任何有限小數(shù)或無限循環(huán)小數(shù)都是有理數(shù)。無限不循環(huán)小數(shù)叫做無理數(shù)(有理數(shù)總可以用有限小數(shù)或無限循環(huán)小數(shù)表示)
一般地,如果一個正數(shù)x的平方等于a,那么這個正數(shù)x就叫做a的算術(shù)平方根。特別地,我們規(guī)定0的算術(shù)平方根是0。
一般地,如果一個數(shù)x的平方等于a,那么這個數(shù)x就叫做a的平方根(也叫二次方根)一個正數(shù)有兩個平方根;0只有一個平方根,它是0本身;負(fù)數(shù)沒有平方根。求一個數(shù)a的平方根的運算,叫做開平方,其中a叫做被開方數(shù)。
一般地,如果一個數(shù)x的立方等于a,那么這個數(shù)x就叫做a的立方根(也叫做三次方根)。正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。求一個數(shù)a的立方根的運算,叫做開立方,其中a叫做被開方數(shù)。有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù),即實數(shù)可以分為有理數(shù)和無理數(shù)。
每一個實數(shù)都可以用數(shù)軸上的一個點來表示;反過來,數(shù)軸上的每一個點都表示一個實數(shù)。即實數(shù)和數(shù)軸上的點是一一對應(yīng)的。
在數(shù)軸上,右邊的點表示的數(shù)比左邊的點表示的數(shù)大。第五章位置的確定
位置表示方法:方位角加距離;坐標(biāo);經(jīng)緯度
定義:在平面內(nèi),兩條互相垂直且有公共原點的書軸組成平面直角坐標(biāo)系。
通常,兩條數(shù)軸分別至于水平位置與鉛直位置,取向右與向上方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,x軸和y統(tǒng)稱坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。
圖形隨坐標(biāo)變化:向上/下/左/右平移X個單位長度、橫向/縱向拉長X倍、橫向/縱向壓縮X倍、放大/縮小了X倍、關(guān)于x/y軸成軸對稱、關(guān)于原點O成中心對稱第六章一次函數(shù)
定義:一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中是x自變量,y是因變量。
若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù),k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時,稱y是x的正比例函數(shù)。
把一個函數(shù)的自變量x與對應(yīng)的因變量y的值分別作為點的橫坐標(biāo)和縱坐標(biāo),在直角坐標(biāo)系中描出它的對應(yīng)點,所有這些點組成的圖形叫做該函數(shù)的圖象。正比例函數(shù)y=kx的圖象是經(jīng)過原點(0,0)的一條直線。在一次函數(shù)y=kx+b中,
當(dāng)k>0時,的值隨值的增大而增大;當(dāng)k適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。解二元一次方程組的基本思路是“消元”把“二元”變?yōu)椤耙辉。以一個未知數(shù)代另一個未知數(shù)的解法稱為代入消元法,簡稱代入法。通過兩式加減消去其中一個未知數(shù)的解法稱做加減消元法,簡稱加減法。第八章數(shù)據(jù)的代表
定義:一般地,對于n個數(shù)X1,X2,Xn,我們把1/n(X1+X2++Xn)叫做這個數(shù)的算術(shù)平均數(shù),簡稱平均數(shù),記為X。
為A的三項測試成績的加權(quán)平均數(shù)。
一般地,個數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù),一組數(shù)據(jù)出現(xiàn)次數(shù)最多的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。
八年級數(shù)學(xué)上冊知識點總結(jié)2
第一章軸對稱圖形
軸對稱圖形線段角等腰三角形軸對稱的性質(zhì)等腰梯形軸對稱的應(yīng)用軸對稱設(shè)計軸對稱圖案第二章勾股定理與平方根
一.勾股定理
1、勾股定理
直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即abc
2、勾股定理的逆定理
如果三角形的三邊長a,b,c有關(guān)系abc,那么這個三角形是直角三角形。
3、勾股數(shù):滿足abc的三個正整數(shù),稱為勾股數(shù)。
二、實數(shù)的概念及分類
1、實數(shù)的分類
正有理數(shù)
有理數(shù)零有限小數(shù)和無限循環(huán)小數(shù)實數(shù)負(fù)有理數(shù)
正無理數(shù)
無理數(shù)無限不循環(huán)小數(shù)負(fù)無理數(shù)
2、無理數(shù):無限不循環(huán)小數(shù)叫做無理數(shù)。
在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:
。1)開方開不盡的數(shù),如7,32等;
。2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如
。3)有特定結(jié)構(gòu)的數(shù),如0.1010010001等;
。4)某些三角函數(shù)值,如sin60等
o
π3+8等;
三、平方根、算數(shù)平方根和立方根
1、算術(shù)平方根:一般地,如果一個正數(shù)x的平方等于a,即x=a,那么這個正數(shù)x就叫做a的算術(shù)平方根。特別地,0的算術(shù)平方根是0。
表示方法:記作“a”,讀作根號a。
性質(zhì):正數(shù)和零的算術(shù)平方根都只有一個,零的算術(shù)平方根是零。
2、平方根:一般地,如果一個數(shù)x的平方等于a,即x2=a,那么這個數(shù)x就叫做a的平方根(或二次方根)。
表示方法:正數(shù)a的平方根記做“a”,讀作“正、負(fù)根號a”。
2
性質(zhì):一個正數(shù)有兩個平方根,它們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒有平方根。
開平方:求一個數(shù)a的平方根的運算,叫做開平方。注意a的雙重非負(fù)性:
a0
3、立方根
一般地,如果一個數(shù)x的立方等于a,即x3=a那么這個數(shù)x就叫做a的立方根(或三次方根)。
表示方法:記作3a
性質(zhì):一個正數(shù)有一個正的立方根;一個負(fù)數(shù)有一個負(fù)的立方根;零的立方根是零。注意:3a3a,這說明三次根號內(nèi)的負(fù)號可以移到根號外面。
a0
四、實數(shù)大小的比較
1、實數(shù)比較大小:正數(shù)大于零,負(fù)數(shù)小于零,正數(shù)大于一切負(fù)數(shù);數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;兩個負(fù)數(shù),絕對值大的反而小。
2、實數(shù)大小比較的幾種常用方法
。1)數(shù)軸比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。(2)求差比較:設(shè)a、b是實數(shù),
ab0ab,ab0ab,ab0ab(3)求商比較法:設(shè)a、b是兩正實數(shù),1ab;baab1ab;ab1ab;
。4)絕對值比較法:設(shè)a、b是兩負(fù)實數(shù),則abab。(5)平方法:設(shè)a、b是兩負(fù)實數(shù),則a2b2ab。
五、實數(shù)的運算
(1)六種運算:加、減、乘、除、乘方、開方
(2)實數(shù)的運算順序
先算乘方和開方,再算乘除,最后算加減,如果有括號,就先算括號里面的。(3)運算律
加法交換律abba
加法結(jié)合律(ab)ca(bc)乘法交換律abba乘法結(jié)合律(ab)ca(bc)乘法對加法的分配律a(bc)abac
八年級數(shù)學(xué)上冊知識點總結(jié)3
中線
1、等腰三角形底邊上的中線垂直底邊,平分頂角;
2、等腰三角形兩腰上的中線相等,并且它們的交點與底邊兩端點距離相等。
1、兩邊上中線相等的三角形是等腰三角形;
2、如果一個三角形的一邊中線垂直這條邊(平分這個邊的對角),那么這個三角形是等腰三角形
角平分線
1、等腰三角形頂角平分線垂直平分底邊;
2、等腰三角形兩底角平分線相等,并且它們的交點到底邊兩端點的距離相等。
1、如果三角形的頂角平分線垂直于這個角的對邊(平分對邊),那么這個三角形是等腰三角形;
2、三角形中兩個角的平分線相等,那么這個三角形是等腰三角形。
高線
1、等腰三角形底邊上的高平分頂角、平分底邊;
2、等腰三角形兩腰上的高相等,并且它們的交點和底邊兩端點距離相等。
1、如果一個三角形一邊上的高平分這條邊(平分這條邊的對角),那么這個三角形是等腰三角形;
2、有兩條高相等的三角形是等腰三角形。
八年級數(shù)學(xué)上冊知識點總結(jié)4
第十一章三角形
一、知識框架:
知識概念:
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
3、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4、中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5、角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質(zhì)叫三角形的穩(wěn)定性。
7、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
8、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
9、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11、正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫正多邊形。
12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面,
13、公式與性質(zhì):
、湃切蔚膬(nèi)角和:三角形的內(nèi)角和為180°
、迫切瓮饨堑男再|(zhì):
性質(zhì)1:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。
性質(zhì)2:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。
、嵌噙呅蝺(nèi)角和公式:邊形的內(nèi)角和等于·180°
、榷噙呅蔚耐饨呛停憾噙呅蔚耐饨呛蜑360°。
、啥噙呅螌蔷的條數(shù):
①從邊形的一個頂點出發(fā)可以引條對角線,把多邊形分成個三角形。
、谶呅喂灿袟l對角線。
第十二章全等三角形
一、知識框架:
二、知識概念:
1、基本定義:
、湃刃危耗軌蛲耆睾系膬蓚圖形叫做全等形。
、迫热切危耗軌蛲耆睾系膬蓚三角形叫做全等三角形。
、菍(yīng)頂點:全等三角形中互相重合的頂點叫做對應(yīng)頂點。
⑷對應(yīng)邊:全等三角形中互相重合的邊叫做對應(yīng)邊。
、蓪(yīng)角:全等三角形中互相重合的角叫做對應(yīng)角。
2、基本性質(zhì):
、湃切蔚姆(wěn)定性:三角形三邊的長度確定了,這個三角形的形狀、大小就全確定,這個性質(zhì)叫做三角形的穩(wěn)定性。
、迫热切蔚男再|(zhì):全等三角形的對應(yīng)邊相等,對應(yīng)角相等。
3、全等三角形的判定定理:
、胚呥呥叄ǎ喝厡(yīng)相等的兩個三角形全等。
、七吔沁叄ǎ簝蛇吅退鼈兊膴A角對應(yīng)相等的兩個三角形全等。
、墙沁吔牵ǎ簝山呛退鼈兊膴A邊對應(yīng)相等的兩個三角形全等。
⑷角角邊():兩角和其中一個角的對邊對應(yīng)相等的兩個三角形全等。
、尚边、直角邊():斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等。
4、角平分線:
、女嫹ǎ
、菩再|(zhì)定理:角平分線上的點到角的兩邊的距離相等。
、切再|(zhì)定理的逆定理:角的內(nèi)部到角的兩邊距離相等的點在角的平分線上。
5、證明的基本方法:
、琶鞔_命題中的已知和求證。(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關(guān)系)
⑵根據(jù)題意,畫出圖形,并用數(shù)字符號表示已知和求證。
⑶經(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程。
第十三章軸對稱
一、知識框架:
二、知識概念:
1、基本概念:
、泡S對稱圖形:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形。
⑵兩個圖形成軸對稱:把一個圖形沿某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱。
、蔷段的垂直平分線:經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線。
、鹊妊切危河袃蓷l邊相等的三角形叫做等腰三角形。相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角。
、傻冗吶切危喝龡l邊都相等的三角形叫做等邊三角形。
2、基本性質(zhì):
、艑ΨQ的性質(zhì):
①不管是軸對稱圖形還是兩個圖形關(guān)于某條直線對稱,對稱軸都是任何一對對應(yīng)點所連線段的垂直平分線。
、趯ΨQ的圖形都全等。
、凭段垂直平分線的性質(zhì):
、倬段垂直平分線上的點與這條線段兩個端點的距離相等。
、谂c一條線段兩個端點距離相等的點在這條線段的垂直平分線上。
、顷P(guān)于坐標(biāo)軸對稱的點的坐標(biāo)性質(zhì)
八年級數(shù)學(xué)上冊知識點總結(jié)5
一、平移
1、定義
在平面內(nèi),將一個圖形整體沿某方向移動一定的距離,這樣的圖形運動稱為平移。2、性質(zhì)
平移前后兩個圖形是全等圖形,對應(yīng)點連線平行且相等,對應(yīng)線段平行且相等,對應(yīng)角相等。
二、旋轉(zhuǎn)
1、定義
在平面內(nèi),將一個圖形繞某一定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn),這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。
2、性質(zhì)
旋轉(zhuǎn)前后兩個圖形是全等圖形,對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角等于旋轉(zhuǎn)角。
三、四邊形的相關(guān)概念
1、四邊形
在同一平面內(nèi),由不在同一直線上的四條線段首尾順次相接組成的圖形叫做四邊形。
2、四邊形具有不穩(wěn)定性
3、四邊形的內(nèi)角和定理及外角和定理
四邊形的內(nèi)角和定理:四邊形的內(nèi)角和等于360°。四邊形的外角和定理:四邊形的外角和等于360°。
推論:多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n2)180°;多邊形的外角和定理:任意多邊形的外角和等于360°。6、設(shè)多邊形的邊數(shù)為n,則多邊形的對角線共有
n(n3)2條。從n邊形的一個頂點出
發(fā)能引(n-3)條對角線,將n邊形分成(n-2)個三角形。
四.平行四邊形
1、平行四邊形的定義
兩組對邊分別平行的四邊形叫做平行四邊形。2、平行四邊形的性質(zhì)
。1)平行四邊形的對邊平行且相等。
。2)平行四邊形相鄰的角互補,對角相等
(3)平行四邊形的對角線互相平分。
。4)平行四邊形是中心對稱圖形,對稱中心是對角線的交點。
常用點:(1)若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段的中點是對角線的交點,并且這條直線二等分此平行四邊形的面積。
。2)推論:夾在兩條平行線間的平行線段相等。
3、平行四邊形的判定
(1)定義:兩組對邊分別平行的四邊形是平行四邊形(2)定理1:兩組對角分別相等的四邊形是平行四邊形(3)定理2:兩組對邊分別相等的四邊形是平行四邊形(4)定理3:對角線互相平分的四邊形是平行四邊形
。5)定理4:一組對邊平行且相等的四邊形是平行四邊形
4、兩條平行線的距離
兩條平行線中,一條直線上的任意一點到另一條直線的距離,叫做這兩條平行線的距離。
平行線間的距離處處相等。5、平行四邊形的面積
S平行四邊形=底邊長×高=ah
五、矩形
1、矩形的定義
有一個角是直角的平行四邊形叫做矩形。
2、矩形的性質(zhì)
。1)矩形的對邊平行且相等
(2)矩形的四個角都是直角
。3)矩形的對角線相等且互相平分
。4)矩形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(對稱中心到矩形四個頂點的距離相等);對稱軸有兩條,是對邊中點連線所在的直線。
3、矩形的判定
。1)定義:有一個角是直角的平行四邊形是矩形
。2)定理1:有三個角是直角的四邊形是矩形
(3)定理2:對角線相等的平行四邊形是矩形
4、矩形的面積S矩形=長×寬=ab
六、菱形
1、菱形的定義
有一組鄰邊相等的平行四邊形叫做菱形
2、菱形的性質(zhì)
(1)菱形的四條邊相等,對邊平行
。2)菱形的相鄰的角互補,對角相等
。3)菱形的對角線互相垂直平分,并且每一條對角線平分一組對角
。4)菱形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(對稱中心到菱形四條邊的距離相等);對稱軸有兩條,是對角線所在的直線。
3、菱形的判定
(1)定義:有一組鄰邊相等的平行四邊形是菱形
。2)定理1:四邊都相等的四邊形是菱形
。3)定理2:對角線互相垂直的平行四邊形是菱形
4、菱形的面積
S菱形=底邊長×高=兩條對角線乘積的一半
七.正方形
1、正方形的定義
有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。
2、正方形的性質(zhì)
(1)正方形四條邊都相等,對邊平行
。2)正方形的四個角都是直角
(3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角
(4)正方形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點;對稱軸有四條,是對角線所在的直線和對邊中點連線所在的直線。
3、正方形的判定
判定一個四邊形是正方形的主要依據(jù)是定義,途徑有兩種:先證它是矩形,再證它是菱形。先證它是菱形,再證它是矩形。
4、正方形的面積
設(shè)正方形邊長為a,對角線長為bS正方形=a2b22
八、梯形
。ㄒ唬1、梯形的相關(guān)概念
一組對邊平行而另一組對邊不平行的四邊形叫做梯形。
梯形中平行的兩邊叫做梯形的底,通常把較短的底叫做上底,較長的底叫做下底。梯形中不平行的兩邊叫做梯形的腰。梯形的兩底的距離叫做梯形的高。
2、梯形的判定
。1)定義:一組對邊平行而另一組對邊不平行的四邊形是梯形。
。2)一組對邊平行且不相等的四邊形是梯形。
。ǘ┲苯翘菪蔚亩x:一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分類如下:一般梯形
梯形直角梯形特殊梯形
等腰梯形
。ㄈ┑妊菪
1、等腰梯形的定義
兩腰相等的梯形叫做等腰梯形。
2、等腰梯形的性質(zhì)
。1)等腰梯形的兩腰相等,兩底平行。
。2)等腰梯形同一底上的兩個角相等,同一腰上的兩個角互補。
(3)等腰梯形的對角線相等。
。4)等腰梯形是軸對稱圖形,它只有一條對稱軸,即兩底的垂直平分線。3、等腰梯形的判定
(1)定義:兩腰相等的梯形是等腰梯形
。2)定理:在同一底上的兩個角相等的梯形是等腰梯形
(3)對角線相等的梯形是等腰梯形。(選擇題和填空題可直接用)
。ㄋ模┨菪蔚拿娣e
。1)如圖,S梯形ABCD12(CDAB)DE
。2)梯形中有關(guān)圖形的面積:
、賁ABDSBAC;
②SAODSBOC;
、跾ADCSBCD八、中心對稱圖形
1、定義
在平面內(nèi),一個圖形繞某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。
2、性質(zhì)
(1)關(guān)于中心對稱的兩個圖形是全等形。
(2)關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。
。3)關(guān)于中心對稱的兩個圖形,對應(yīng)線段平行(或在同一直線上)且相等。
3、判定
如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱。
第四章數(shù)量、位置的變化
一、在平面內(nèi),確定物體的位置一般需要兩個數(shù)據(jù)。
二、平面直角坐標(biāo)系及有關(guān)概念
1、平面直角坐標(biāo)系
在平面內(nèi),兩條互相垂直且有公共原點的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點O稱為直角坐標(biāo)系的原點;建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
2、為了便于描述坐標(biāo)平面內(nèi)點的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(坐標(biāo)軸上的點),不屬于任何一個象限。
3、點的坐標(biāo)的概念
對于平面內(nèi)任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應(yīng)的數(shù)a,b分別叫做點P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(a,b)叫做點P的坐標(biāo)。
點的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點的坐標(biāo)是有序?qū)崝?shù)對,當(dāng)ab時,(a,b)和(b,a)是兩個不同點的坐標(biāo)。
平面內(nèi)點的與有序?qū)崝?shù)對是一一對應(yīng)的。
4、不同位置的點的坐標(biāo)的特征(
1)、各象限內(nèi)點的坐標(biāo)的特征點P(x,y)在第一象限x0,y0
點P(x,y)在第二象限x0,y0點P(x,y)在第三象限x0,y0點P(x,y)在第四象限x0,y0
(2)、坐標(biāo)軸上的點的特征
點P(x,y)在x軸上y0,x為任意實數(shù)點P(x,y)在y軸上x0,y為任意實數(shù)
點P(x,y)既在x軸上,又在y軸上x,y同時為零,即點P坐標(biāo)為(0,0)即原點
。3)、兩條坐標(biāo)軸夾角平分線上點的坐標(biāo)的特征
點P(x,y)在第一、三象限夾角平分線(直線y=x)上x與y相等點P(x,y)在第二、四象限夾角平分線上x與y互為相反數(shù)
。4)、和坐標(biāo)軸平行的直線上點的坐標(biāo)的特征位于平行于x軸的直線上的各點的縱坐標(biāo)相同。位于平行于y軸的直線上的各點的橫坐標(biāo)相同。
。5)、關(guān)于x軸、y軸或原點對稱的點的坐標(biāo)的特征
點P與點p’關(guān)于x軸對稱橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即點P(x,y)關(guān)于x軸的對稱點為P’(x,-y)
點P與點p’關(guān)于y軸對稱縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),即點P(x,y)關(guān)于y軸的對稱點為P’(-x,y)
點P與點p’關(guān)于原點對稱橫、縱坐標(biāo)均互為相反數(shù),即點P(x,y)關(guān)于原點的對稱點為P’(-x,-y)
(6)、點到坐標(biāo)軸及原點的距離
點P(x,y)到坐標(biāo)軸及原點的距離:
。1)點P(x,y)到x軸的距離等于y
(2)點P(x,y)到y(tǒng)軸的距離等于x
。3)點P(x,y)到原點的距離等于x2y2
三、坐標(biāo)變化與圖形變化的規(guī)律:
坐標(biāo)(x,y)的變化x×a或y×ax×a,y×ax×(-1)或y×(-1)x×(-1),y×(-1)x+a或y+ax+a,y+a圖形的變化被橫向或縱向拉長(壓縮)為原來的a倍放大(縮小)為原來的a倍關(guān)于y軸或x軸對稱關(guān)于原點成中心對稱沿x軸或y軸平移a個單位沿x軸平移a個單位,再沿y軸平移a個單第五章一次函數(shù)
一、函數(shù):
一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
二、自變量取值范圍
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負(fù)數(shù))、實際意義幾方面考慮。三、函數(shù)的三種表示法
(1)關(guān)系式(解析)法
兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做關(guān)系式(解析)法。
。2)列表法
把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
。3)圖象法
用圖象表示函數(shù)關(guān)系的方法叫做圖象法。
四、由函數(shù)關(guān)系式畫其圖像的一般步驟
。1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值
。2)描點:以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
五、正比例函數(shù)和一次函數(shù)1、正比例函數(shù)和一次函數(shù)的概念
一般地,若兩個變量x,y間的關(guān)系可以表示成ykxb(k,b為常數(shù),k0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。
特別地,當(dāng)一次函數(shù)ykxb中的b=0時(即ykx)(k為常數(shù),k0),稱y是x的正比例函數(shù)。
2、一次函數(shù)的圖像:所有一次函數(shù)的圖像都是一條直線3、一次函數(shù)、正比例函數(shù)圖像的主要特征:
一次函數(shù)ykxb的圖像是經(jīng)過點(0,b)的直線;正比例函數(shù)ykx的圖像是經(jīng)過原點(0,0)的直線。
k的符號b的符號函數(shù)圖像yb>00xyb0xyb0時,圖像經(jīng)過第一、三象限,y隨x的增大而增大;
。2)當(dāng)k0時,y隨x的增大而增大(2)當(dāng)k(1)平均數(shù):一般地,對于n個數(shù)x1,x2,,xn,我們把個數(shù)的算術(shù)平均數(shù),簡稱平均數(shù),記為x。
。2)加權(quán)平均數(shù):
1n(x1x2xn)叫做這n
3、眾數(shù)
一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。
4、中位數(shù)
一般地,將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。
八年級數(shù)學(xué)上冊知識點總結(jié)6
第十一章全等三角形
1、全等三角形的性質(zhì):全等三角形對應(yīng)邊相等、對應(yīng)角相等。
2、全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對邊對應(yīng)相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL)。
3、角平分線的性質(zhì):角平分線平分這個角,角平分線上的點到角兩邊的距離相等
4、角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點在叫的平分線上。
5、證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書寫證明格式(順序和對應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題)。
第十二章軸對稱
1、如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2、軸對稱圖形的對稱軸,是任何一對對應(yīng)點所連線段的垂直平分線。
3、角平分線上的點到角兩邊距離相等。
4、線段垂直平分線上的任意一點到線段兩個端點的距離相等。
5、與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
6、軸對稱圖形上對應(yīng)線段相等、對應(yīng)角相等。
7、畫一圖形關(guān)于某條直線的軸對稱圖形的步驟:找到關(guān)鍵點,畫出關(guān)鍵點的對應(yīng)點,按照原圖順序依次連接各點。
8、點(x,y)關(guān)于x軸對稱的點的坐標(biāo)為(x,—y)
點(x,y)關(guān)于y軸對稱的點的坐標(biāo)為(—x,y)
點(x,y)關(guān)于原點軸對稱的點的坐標(biāo)為(—x,—y)
9、等腰三角形的性質(zhì):等腰三角形的兩個底角相等,(等邊對等角)
等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。
10、等腰三角形的判定:等角對等邊。
11、等邊三角形的三個內(nèi)角相等,等于60°,
12、等邊三角形的判定:三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形。
有兩個角是60°的三角形是等邊三角形。
13、直角三角形中,30°角所對的直角邊等于斜邊的一半。
14、直角三角形斜邊上的中線等于斜邊的一半
第十三章實數(shù)
※算術(shù)平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作。0的算術(shù)平方根為0;從定義可知,只有當(dāng)a≥0時,a才有算術(shù)平方根。
※平方根:一般地,如果一個數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。
※正數(shù)有兩個平方根(一正一負(fù))它們互為相反數(shù);0只有一個平方根,就是它本身;負(fù)數(shù)沒有平方根。
※正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。
數(shù)a的相反數(shù)是—a,一個正實數(shù)的絕對值是它本身,一個負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0
第十四章一次函數(shù)
1、畫函數(shù)圖象的一般步驟:一、列表(一次函數(shù)只用列出兩個點即可,其他函數(shù)一般需要列出5個以上的點,所列點是自變量與其對應(yīng)的函數(shù)值),二、描點(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)函數(shù)的值為縱坐標(biāo),描出表格中的個點,一般畫一次函數(shù)只用兩點),三、連線(依次用平滑曲線連接各點)。
2、根據(jù)題意寫出函數(shù)解析式:關(guān)鍵找到函數(shù)與自變量之間的等量關(guān)系,列出等式,既函數(shù)解析式。
3、若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時,稱y是x的正比例函數(shù)。
4、正比列函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過原點(0,0)的一條直線。
5、正比列函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過原點的直線,當(dāng)k>0時,直線y=kx經(jīng)過第一、三象限,y隨x的增大而增大,當(dāng)k<0時,直線y=kx經(jīng)過第二、四象限,y隨x的增大而減小,在一次函數(shù)y=kx+b中:k="">0時,y隨x的增大而增大;當(dāng)k<0時,y隨x的增大而減小。
6、已知兩點坐標(biāo)求函數(shù)解析式(待定系數(shù)法求函數(shù)解析式):
把兩點帶入函數(shù)一般式列出方程組
求出待定系數(shù)
把待定系數(shù)值再帶入函數(shù)一般式,得到函數(shù)解析式
7、會從函數(shù)圖象上找到一元一次方程的解(既與x軸的交點坐標(biāo)橫坐標(biāo)值),一元一次不等式的解集,二元一次方程組的解(既兩函數(shù)直線交點坐標(biāo)值)
第十五章整式的乘除與因式分解
1、同底數(shù)冪的乘法
※同底數(shù)冪的乘法法則:(m,n都是正數(shù))是冪的運算中最基本的法則,在應(yīng)用法則運算時,要注意以下幾點:
、俜▌t使用的前提條件是:冪的底數(shù)相同而且是相乘時,底數(shù)a可以是一個具體的數(shù)字式字母,也可以是一個單項或多項式;
、谥笖(shù)是1時,不要誤以為沒有指數(shù);
、鄄灰獙⑼讛(shù)冪的乘法與整式的加法相混淆,對乘法,只要底數(shù)相同指數(shù)就可以相加;而對于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;
、墚(dāng)三個或三個以上同底數(shù)冪相乘時,法則可推廣為(其中m、n、p均為正數(shù));
⑤公式還可以逆用:(m、n均為正整數(shù))
2、冪的乘方與積的乘方
※1、冪的乘方法則:(m,n都是正數(shù))是冪的乘法法則為基礎(chǔ)推導(dǎo)出來的,但兩者不能混淆。
※2、底數(shù)有負(fù)號時,運算時要注意,底數(shù)是a與(—a)時不是同底,但可以利用乘方法則化成同底,如將(—a)3化成—a3。
※3、底數(shù)有時形式不同,但可以化成相同。
※4、要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
※5、積的乘方法則:積的乘方,等于把積每一個因式分別乘方,再把所得的冪相乘,即(n為正整數(shù))。
※6、冪的乘方與積乘方法則均可逆向運用。
3、整式的乘法
※(1)單項式乘法法則:單項式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數(shù)作為積的一個因式。
單項式乘法法則在運用時要注意以下幾點:
①積的系數(shù)等于各因式系數(shù)積,先確定符號,再計算絕對值。這時容易出現(xiàn)的錯誤的是,將系數(shù)相乘與指數(shù)相加混淆;
、谙嗤帜赶喑,運用同底數(shù)的乘法法則;
、壑辉谝粋單項式里含有的字母,要連同它的指數(shù)作為積的一個因式;
④單項式乘法法則對于三個以上的單項式相乘同樣適用;
、輪雾検匠艘詥雾検,結(jié)果仍是一個單項式。
※(2)單項式與多項式相乘
單項式乘以多項式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
單項式與多項式相乘時要注意以下幾點:
①單項式與多項式相乘,積是一個多項式,其項數(shù)與多項式的項數(shù)相同;
、谶\算時要注意積的符號,多項式的每一項都包括它前面的符號;
③在混合運算時,要注意運算順序。
※(3)多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的'每一項,再把所得的積相加。
多項式與多項式相乘時要注意以下幾點:
、俣囗検脚c多項式相乘要防止漏項,檢查的方法是:在沒有合并同類項之前,積的項數(shù)應(yīng)等于原兩個多項式項數(shù)的積;
、诙囗検较喑说慕Y(jié)果應(yīng)注意合并同類項;
、蹖型粋字母的一次項系數(shù)是1的兩個一次二項式相乘,其二次項系數(shù)為1,一次項系數(shù)等于兩個因式中常數(shù)項的和,常數(shù)項是兩個因式中常數(shù)項的積。對于一次項系數(shù)不為1的兩個一次二項式(mx+a)和(nx+b)相乘可以得
4、平方差公式
¤1、平方差公式:兩數(shù)和與這兩數(shù)差的積,等于它們的平方差,
※即。
¤其結(jié)構(gòu)特征是:
、俟阶筮吺莾蓚二項式相乘,兩個二項式中第一項相同,第二項互為相反數(shù);
②公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。
5、完全平方公式
¤1、完全平方公式:兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍。
¤即;
¤口決:首平方,尾平方,2倍乘積在中央;
¤2、結(jié)構(gòu)特征:
①公式左邊是二項式的完全平方;
、诠接疫吂灿腥棧嵌検街卸椀钠椒胶,再加上或減去這兩項乘積的2倍。
¤3、在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現(xiàn)這樣的錯誤。
添括號法則:添正不變號,添負(fù)各項變號,去括號法則同樣
6、同底數(shù)冪的除法
※1、同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即(a≠0,m、n都是正數(shù),且m>n)。
※2、在應(yīng)用時需要注意以下幾點:
、俜▌t使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0。
②任何不等于0的數(shù)的0次冪等于1,即,如,(—2.0=1),則00無意義。
、廴魏尾坏扔0的數(shù)的—p次冪(p是正整數(shù)),等于這個數(shù)的p的次冪的倒數(shù),即(a≠0,p是正整數(shù)),而0—1,0—3都是無意義的;當(dāng)a>0時,a—p的值一定是正的;當(dāng)a<0時,a—p的值可能是正也可能是負(fù)的,如,
④運算要注意運算順序。
7、整式的除法
¤1、單項式除法單項式
單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式;
¤2、多項式除以單項式
多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉(zhuǎn)化成單項式除以單項式,所得商的項數(shù)與原多項式的項數(shù)相同,另外還要特別注意符號。
8、分解因式
※1、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。
※2、因式分解與整式乘法是互逆關(guān)系。
因式分解與整式乘法的區(qū)別和聯(lián)系:
。1)整式乘法是把幾個整式相乘,化為一個多項式;
。2)因式分解是把一個多項式化為幾個因式相乘。
八年級數(shù)學(xué)上冊知識點總結(jié)7
1.勾股定理
1、勾股定理
直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2b2c22、勾股定理的逆定理
如果三角形的三邊長a,b,c有關(guān)系a2b2c2,那么這個三角形是直角三角形。
勾股數(shù):滿足a2b2c2的三個正整數(shù),稱為勾股數(shù)。
2.實數(shù)
一、實數(shù)的概念及分類
1、實數(shù)的分類正有理數(shù)有理數(shù)零有限小數(shù)和無限循環(huán)小數(shù)實數(shù)負(fù)有理數(shù)正無理數(shù)無理數(shù)無限不循環(huán)小數(shù)負(fù)無理數(shù)
2、無理數(shù):無限不循環(huán)小數(shù)叫做無理數(shù)。
在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:
(1)開方開不盡的數(shù),如7,32等;π
。2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;
。3)有特定結(jié)構(gòu)的數(shù),如0.1010010001等;
。4)某些三角函數(shù)值,如sin60等二、實數(shù)的倒數(shù)、相反數(shù)和絕對值1、相反數(shù)
實數(shù)與它的相反數(shù)時一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應(yīng)的點關(guān)于原點對稱,如果a與b互為相反數(shù),則有a+b=0,a=b,反之亦成立。2、絕對值
在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離,叫做該數(shù)的絕對值。(|a|≥0)。零的絕對值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。
3、倒數(shù)
如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。
4、數(shù)軸
規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。
解題時要真正掌握數(shù)形結(jié)合的思想,理解實數(shù)與數(shù)軸的點是一一對應(yīng)的,并能靈活運用。
5、估算
三、平方根、算數(shù)平方根和立方根
1、算術(shù)平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x就叫做a的算術(shù)平方根。特別地,0的算術(shù)平方根是0。
表示方法:記作“a”,讀作根號a。
性質(zhì):正數(shù)和零的算術(shù)平方根都只有一個,零的算術(shù)平方根是零。
2、平方根:一般地,如果一個數(shù)x的平方等于a,即x2=a,那么這個數(shù)x就叫做a的平方根(或二次方根)。
表示方法:正數(shù)a的平方根記做“a”,讀作“正、負(fù)根號a”。
性質(zhì):一個正數(shù)有兩個平方根,它們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒有平方根。開平方:求一個數(shù)a的平方根的運算,叫做開平方。a0注意a的雙重非負(fù)性:a0
3、立方根
一般地,如果一個數(shù)x的立方等于a,即x=a那么這個數(shù)x就叫做a的立方根(或三次方根)。
表示方法:記作3a
性質(zhì):一個正數(shù)有一個正的立方根;一個負(fù)數(shù)有一個負(fù)的立方根;零的立方根是零。注意:3a3a,這說明三次根號內(nèi)的負(fù)號可以移到根號外面。
四、實數(shù)大小的比較
1、實數(shù)比較大。赫龜(shù)大于零,負(fù)數(shù)小于零,正數(shù)大于一切負(fù)數(shù);數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;兩個負(fù)數(shù),絕對值大的反而小。
2、實數(shù)大小比較的幾種常用方法
。1)數(shù)軸比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。
。2)求差比較:設(shè)a、b是實數(shù),
ab0ab,ab0ab,ab0ab
(3)求商比較法:設(shè)a、b是兩正實數(shù),1ab;baab1ab;ab1ab;
。4)絕對值比較法:設(shè)a、b是兩負(fù)實數(shù),則abab。
。5)平方法:設(shè)a、b是兩負(fù)實數(shù),則abab。五、算術(shù)平方根有關(guān)計算(二次根式)
1、含有二次根號“2、性質(zhì):
2(1)(a)a(a0)
22”;被開方數(shù)a必須是非負(fù)數(shù)。
a(a0)
。2)a2aa(a0)
第1頁共5頁數(shù)學(xué)知識必須經(jīng)過自己的加工、創(chuàng)造,才能真正領(lǐng)會,學(xué)以致用!
。3)abababab(a0,b0)(abab(a0,b0))n(n3)6、設(shè)多邊形的邊數(shù)為n,則多邊形的對角線共有
(a0,b0)(abab(a0,b0))2條。從n邊形的一個頂點出
3、運算結(jié)果若含有“a”形式,必須滿足:
。1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
。2)被開方數(shù)中不含能開得盡方的因數(shù)或因式
六、實數(shù)的運算
。1)六種運算:加、減、乘、除、乘方、開方
。2)實數(shù)的運算順序
先算乘方和開方,再算乘除,最后算加減,如果有括號,就先算括號里面的。
。3)運算律
加法交換律abba
加法結(jié)合律(ab)ca(bc)乘法交換律abba
乘法結(jié)合律(ab)ca(bc)乘法對加法的分配律a(bc)abac
3.圖形的平移與旋轉(zhuǎn)
一、平移
1、定義
在平面內(nèi),將一個圖形整體沿某方向移動一定的距離,這樣的圖形運動稱為平移。
2、性質(zhì)
平移前后兩個圖形是全等圖形,對應(yīng)點連線平行且相等,對應(yīng)線段平行且相等,對應(yīng)角相等。
二、旋轉(zhuǎn)
1、定義
在平面內(nèi),將一個圖形繞某一定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn),這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。
2、性質(zhì)
旋轉(zhuǎn)前后兩個圖形是全等圖形,對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角等于旋轉(zhuǎn)角。
4.四邊形性質(zhì)探索
一、四邊形的相關(guān)概念
1、四邊形
在同一平面內(nèi),由不在同一直線上的四條線段首尾順次相接組成的圖形叫做四邊形。
2、四邊形具有不穩(wěn)定性
3、四邊形的內(nèi)角和定理及外角和定理
四邊形的內(nèi)角和定理:四邊形的內(nèi)角和等于360°。四邊形的外角和定理:四邊形的外角和等于360°。
推論:多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n2)180°;多邊形的外角和定理:任意多邊形的外角和等于360°。
發(fā)能引(n-3)條對角線,將n邊形分成(n-2)個三角形。
二、平行四邊形
1、平行四邊形的定義
兩組對邊分別平行的四邊形叫做平行四邊形。
2、平行四邊形的性質(zhì)
。1)平行四邊形的對邊平行且相等。
。2)平行四邊形相鄰的角互補,對角相等
(3)平行四邊形的對角線互相平分。
。4)平行四邊形是中心對稱圖形,對稱中心是對角線的交點。常用點:
。1)若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段的中點是對角線的交點,并且這條直線二等分此平行四邊形的面積。
。2)推論:夾在兩條平行線間的平行線段相等。
3、平行四邊形的判定
(1)定義:兩組對邊分別平行的四邊形是平行四邊形
。2)定理
1:兩組對角分別相等的四邊形是平行四邊形
(3)定理2:兩組對邊分別相等的四邊形是平行四邊形
。4)定理3:對角線互相平分的四邊形是平行四邊形
(5)定理4:一組對邊平行且相等的四邊形是平行四邊形
4、兩條平行線的距離
兩條平行線中,一條直線上的任意一點到另一條直線的距離,叫做這兩條平行線的距離。
平行線間的距離處處相等。
5、平行四邊形的面積S平行四邊形=底邊長×高=ah
三、矩形
1、矩形的定義
有一個角是直角的平行四邊形叫做矩形。
2、矩形的性質(zhì)
。1)矩形的對邊平行且相等
。2)矩形的四個角都是直角
。3)矩形的對角線相等且互相平分
。4)矩形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(對稱中心到矩形四個頂點的距離相等);對稱軸有兩條,是對邊中點連線所在的直線。
3、矩形的判定
。1)定義:有一個角是直角的平行四邊形是矩形
。2)定理1:有三個角是直角的四邊形是矩形
(3)定理2:對角線相等的平行四邊形是矩形4、矩形的面積S矩形=長×寬=ab四、菱形
1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形
第2頁共5頁數(shù)學(xué)知識必須經(jīng)過自己的加工、創(chuàng)造,才能真正領(lǐng)會,學(xué)以致用!
2、菱形的性質(zhì)
。1)菱形的四條邊相等,對邊平行
(2)菱形的相鄰的角互補,對角相等
(3)菱形的對角線互相垂直平分,并且每一條對角線平分一組對角
(4)菱形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(對稱中心到菱形四條邊的距離相等);對稱軸有兩條,是對角線所在的直線。
3、菱形的判定
。1)定義:有一組鄰邊相等的平行四邊形是菱形
。2)定理1:四邊都相等的四邊形是菱形
。3)定理2:對角線互相垂直的平行四邊形是菱形
4、菱形的面積
S菱形=底邊長×高=兩條對角線乘積的一半
五、正方形(3~10分)
1、正方形的定義有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。
2、正方形的性質(zhì)
。1)正方形四條邊都相等,對邊平行
。2)正方形的四個角都是直角
(3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角
。4)正方形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點;對稱軸有四條,是對角線所在的直線和對邊中點連線所在的直線。
3、正方形的判定
判定一個四邊形是正方形的主要依據(jù)是定義,途徑有兩種:先證它是矩形,再證它是菱形。先證它是菱形,再證它是矩形。
4、正方形的面積
設(shè)正方形邊長為a,對角線長為b,S正方形=a2
。ㄈ┑妊菪1、等腰梯形的定義
兩腰相等的梯形叫做等腰梯形。
2、等腰梯形的性質(zhì)
。1)等腰梯形的兩腰相等,兩底平行。
。2)等腰梯形同一底上的兩個角相等,同一腰上的兩個角互補。
。3)等腰梯形的對角線相等。
。4)等腰梯形是軸對稱圖形,它只有一條對稱軸,即兩底的垂直平分線。
3、等腰梯形的判定
。1)定義:兩腰相等的梯形是等腰梯形
。2)定理:在同一底上的兩個角相等的梯形是等腰梯形
(3)對角線相等的梯形是等腰梯形。(選擇題和填空題可直接用)
。ㄋ模┨菪蔚拿娣e
。1)如圖,S梯形ABCD12(CDAB)DE
(2)梯形中有關(guān)圖形的面積:
、賁ABDSBAC;②SAODSBOC;③SADCSBCD
七、有關(guān)中點四邊形問題的知識點:
(1)順次連接任意四邊形的四邊中點所得的四邊形是平行四邊形;
(2)順次連接矩形的四邊中點所得的四邊形是菱形;
(3)順次連接菱形的四邊中點所得的四邊形是矩形;
。4)順次連接等腰梯形的四邊中點所得的四邊形是菱形;
。5)順次連接對角線相等的四邊形四邊中點所得的四邊形是菱形;
。6)順次連接對角線互相垂直的四邊形四邊中點所得的四邊形是矩形;
。7)順次連接對角線互相垂直且相等的四邊形四邊中點所得的四邊形是正方形;
八、中心對稱圖形
1、定義
在平面內(nèi),一個圖形繞某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。
2、性質(zhì)
。1)關(guān)于中心對稱的兩個圖形是全等形。
(2)關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。
。3)關(guān)于中心對稱的兩個圖形,對應(yīng)線段平行(或在同一直線上)且相等。
3、判定
如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱。
九、四邊形、矩形、菱形、正方形、梯形、等腰梯形、直角梯形的關(guān)系圖:
b22
六、梯形
(一)1、梯形的相關(guān)概念
一組對邊平行而另一組對邊不平行的四邊形叫做梯形。
梯形中平行的兩邊叫做梯形的底,通常把較短的底叫做上底,較長的底叫做下底。梯形中不平行的兩邊叫做梯形的腰。梯形的兩底的距離叫做梯形的高。2、梯形的判定
(1)定義:一組對邊平行而另一組對邊不平行的四邊形是梯形。
(2)一組對邊平行且不相等的四邊形是梯形。
(二)直角梯形的定義:一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分類如下:一般梯形
梯形直角梯形特殊梯形
等腰梯形
第3頁共5頁數(shù)學(xué)知識必須經(jīng)過自己的加工、創(chuàng)造,才能真正領(lǐng)會,學(xué)以致用!
5.位置的確定
一、在平面內(nèi),確定物體的位置一般需要兩個數(shù)據(jù)。
二、平面直角坐標(biāo)系及有關(guān)概念1、平面直角坐標(biāo)系
在平面內(nèi),兩條互相垂直且有公共原點的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點O稱為直角坐標(biāo)系的原點;建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
2、為了便于描述坐標(biāo)平面內(nèi)點的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(坐標(biāo)軸上的點),不屬于任何一個象限。
3、點的坐標(biāo)的概念
對于平面內(nèi)任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應(yīng)的數(shù)a,b分別叫做點P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(a,b)叫做點P的坐標(biāo)。
點的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點的坐標(biāo)是有序?qū)崝?shù)對,當(dāng)ab時,(a,b)和(b,a)是兩個不同點的坐標(biāo)。
平面內(nèi)點的與有序?qū)崝?shù)對是一一對應(yīng)的。
4、不同位置的點的坐標(biāo)的特征
。1)、各象限內(nèi)點的坐標(biāo)的特征
點P(x,y)在第一象限x0,y0
點P(x,y)在第二象限x0,y0點P(x,y)在第三象限x0,y0點P(x,y)在第四象限x0,y0
。2)、坐標(biāo)軸上的點的特征
點P(x,y)在x軸上y0,x為任意實數(shù)點P(x,y)在y軸上x0,y為任意實數(shù)
點P(x,y)既在x軸上,又在y軸上x,y同時為零,即點P坐標(biāo)為(0,0)即原點
(3)、兩條坐標(biāo)軸夾角平分線上點的坐標(biāo)的特征
點P(x,y)在第一、三象限夾角平分線(直線y=x)上x與y相等點P(x,y)在第二、四象限夾角平分線上x與y互為相反數(shù)
。4)、和坐標(biāo)軸平行的直線上點的坐標(biāo)的特征位于平行于x軸的直線上的各點的縱坐標(biāo)相同。位于平行于y軸的直線上的各點的橫坐標(biāo)相同。
(5)、關(guān)于x軸、y軸或原點對稱的點的坐標(biāo)的特征
點P與點p’關(guān)于x軸對稱橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即點P(x,y)關(guān)于x軸的對稱點為P’(x,-y)
點P與點p’關(guān)于y軸對稱縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),即點P(x,y)關(guān)于y軸的對稱點為P’(-x,y)
點P與點p’關(guān)于原點對稱橫、縱坐標(biāo)均互為相反數(shù),即點P(x,y)關(guān)于原點的對稱點為P’(-x,-y)
(6)、點到坐標(biāo)軸及原點的距離點P(x,y)到坐標(biāo)軸及原點的距離:
。1)點P(x,y)到x軸的距離等于y
(2)點P(x,y)到y(tǒng)軸的距離等于x
。3)點P(x,y)到原點的距離等于三、坐標(biāo)變化與圖形變化的規(guī)律:
坐標(biāo)(x,y)的變化x×a或y×ax×a,y×ax×(-1)或y×(-1)x×(-1),y×(-1)x+a或y+ax+a,y+axy22
圖形的變化被橫向或縱向拉長(壓縮)為原來的a倍放大(縮。樵瓉淼腶倍關(guān)于y軸或x軸對稱關(guān)于原點成中心對稱沿x軸或y軸平移a個單位沿x軸平移a個單位,再沿y軸平移a個單6.一次函數(shù)
一、函數(shù):
一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
二、自變量取值范圍
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負(fù)數(shù))、實際意義幾方面考慮。
三、函數(shù)的三種表示法及其優(yōu)缺點
。1)關(guān)系式(解析)法
兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做關(guān)系式(解析)法。
。2)列表法
把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
。3)圖象法
用圖象表示函數(shù)關(guān)系的方法叫做圖象法。
四、由函數(shù)關(guān)系式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值
。2)描點:以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點
。3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
五、正比例函數(shù)和一次函數(shù)
1、正比例函數(shù)和一次函數(shù)的概念
一般地,若兩個變量x,y間的關(guān)系可以表示成ykxb(k,b為常數(shù),k0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。
特別地,當(dāng)一次函數(shù)ykxb中的b=0時(即ykx)(k為常數(shù),k0),稱y是x的正比例函數(shù)。
2、一次函數(shù)的圖像:所有一次函數(shù)的圖像都是一條直線3、一次函數(shù)、正比例函數(shù)圖像的主要特征:
一次函數(shù)ykxb的圖像是經(jīng)過點(0,b)的直線;正比例函數(shù)ykx的圖像是經(jīng)過原點(0,0)的直線。
第4頁共5頁數(shù)學(xué)知識必須經(jīng)過自己的加工、創(chuàng)造,才能真正領(lǐng)會,學(xué)以致用!
k的符號b的符號函數(shù)圖像y0x圖像特征b>0圖像經(jīng)過一、二、三象限,y隨x的增大而增大。k>0yb00x圖像經(jīng)過一、二、四象限,y隨x的增大而減小K
【八年級數(shù)學(xué)上冊知識點總結(jié)】相關(guān)文章:
八年級上冊數(shù)學(xué)的知識點總結(jié)07-25
八年級上冊數(shù)學(xué)知識點總結(jié)03-15
數(shù)學(xué)八年級上冊第四單元知識點總結(jié)10-14
八年級數(shù)學(xué)上冊基礎(chǔ)知識點總結(jié)10-06
八年級上冊生物知識點總結(jié)03-29
八年級英語上冊知識點總結(jié)01-18
八年級上冊生物知識點總結(jié)01-19
八年級上冊的物理知識點總結(jié)08-26
生物八年級上冊知識點總結(jié)11-02