- 約數(shù)和倍數(shù)教學(xué)實(shí)錄 推薦度:
- 相關(guān)推薦
(優(yōu)選)約數(shù)和倍數(shù)教學(xué)實(shí)錄
約數(shù)和倍數(shù)教學(xué)實(shí)錄1
教學(xué)內(nèi)容:“約數(shù)和倍數(shù)”。
教學(xué)目標(biāo):
1.知識(shí)目標(biāo):使學(xué)生理解整除的意義,理清“除盡”和“整除”的關(guān)系;理解和掌握約數(shù)和倍數(shù)的意義,了解約數(shù)和倍數(shù)相互依存的關(guān)系。
2.能力目標(biāo):能判斷一個(gè)數(shù)能否被另一個(gè)數(shù)整除,會(huì)根據(jù)約數(shù)和倍數(shù)的意義描述兩個(gè)數(shù)之間的關(guān)系,培養(yǎng)學(xué)生根據(jù)信息進(jìn)行分類、總結(jié)、概括的能力,培養(yǎng)學(xué)生會(huì)進(jìn)行初步的觀察、比較、分析、判斷、概括的能力。
3.情感目標(biāo):滲透初步的辯證唯物主義思想教育;并通過各種方式,激發(fā)學(xué)生的交流、對(duì)話的意識(shí),積極探索的精神,從而樹立學(xué)好數(shù)學(xué)的自信心。
教學(xué)重點(diǎn):理解和掌握整除的意義、約數(shù)和倍數(shù)的意義。
教學(xué)難點(diǎn):引導(dǎo)學(xué)生探索并理解約數(shù)和倍數(shù)之間的相互依存的關(guān)系。
教學(xué)過程:
一、創(chuàng)設(shè)情境
1.交流生活中的數(shù)學(xué)信息
師:(拿著數(shù)學(xué)課本)問這是一本?
生:數(shù)學(xué)課本
師:“數(shù)學(xué)”就是關(guān)于“數(shù)”的學(xué)問,我們的身邊有“數(shù)”嗎?
生:有
師:你能舉幾個(gè)例子嗎?
生1:我有7本書。
生2:我有3個(gè)好朋友。
生3:我們班里有26名女同學(xué)。
……
2.根據(jù)信息組成應(yīng)用題。
師:今天老師也帶來了一些數(shù)學(xué)信息,讓我們一起來看一下吧。ㄕn件出示)
A組 B組
(1)35張圣誕賀卡 (8)共用去6.6元
。2)每本練習(xí)本2.2元 (9)平均分給11個(gè)同學(xué)
(3)有5個(gè)同學(xué)給災(zāi)區(qū)捐款 (10)共捐了15.5元
。4)小紅每天讀2頁課外書 (11)已經(jīng)讀了24頁
(5)買了4枝同樣的鋼筆 (12)共用布15米
。6)小東參加三門考試 (13)共考了273分
(7)做7套同樣的校服 (14)小明帶32元錢買鋼筆
師:請(qǐng)根據(jù)你們的生活經(jīng)驗(yàn),選擇兩條相關(guān)的信息組成一道簡(jiǎn)單的應(yīng)用題,并列式計(jì)算。(學(xué)生伴隨輕音樂讀題思考)同桌的同學(xué)可以互相說一說。
師:誰來說說看,你先擇的是哪兩條,求的是什么?怎么列式?
生1:我選(2)和(8)求的是可買多少本?列式為6.6÷2.2=3
生2:我選的是(1)和(9)求的是平均每人得到幾張賀卡,列式為35÷11=3……2
生3:……
共得到7道算式,分別是:6.6÷2.2=3 35÷11=3……2 15.5÷5=3.1
24÷2=12 32÷4=8 273÷3=91 15÷7=2……1
[學(xué)生的學(xué)習(xí)材料來源于學(xué)生自己,并從學(xué)生的已有知識(shí)經(jīng)驗(yàn)出發(fā),找準(zhǔn)知識(shí)的生長(zhǎng)點(diǎn)。這樣的學(xué)習(xí),可以使學(xué)生一開始就處于積極狀態(tài),使學(xué)生對(duì)學(xué)習(xí)充滿著興趣,學(xué)生樂于繼續(xù)學(xué)習(xí)下去,而無須教師強(qiáng)迫學(xué)生學(xué)習(xí)。]
二、自主探究
師:請(qǐng)同學(xué)們觀察以上這些算式,并根據(jù)算式的特點(diǎn)分類,分好后小組交流。
。▽W(xué)生自己分好類后小組交流)
師:哪位同學(xué)來說說你是怎么分類的?
師:為了方便,老師給它們加上序號(hào)。(分別給7道算式加上序號(hào))
、6.6÷2.2=3 ②35÷11=3……2 ③15.5÷5=3.1
、24÷2=12 ⑤32÷4=8 ⑥273÷3=91 ⑦15÷7=2……1
生1:我將②和⑦分為一類,①為一類,③④⑤⑥分為一類,第一類是有余數(shù)的,第二類的被除數(shù)和除數(shù)都是小數(shù),第三類的除數(shù)都是整數(shù)。
生2:我也將②和⑦分為一類,①③④⑤⑥分為一類。第一類是有余數(shù)的,第二類是沒有余數(shù)的。
生3……
師:從同學(xué)們的分類中可以看出:分類的標(biāo)準(zhǔn)不同所得的答案也不同。那我們先選擇其中的.一種分類來研究。(課件出示)
師:(先擇②和⑦分為一類,①③④⑤⑥分為一類)這位同學(xué)他是按是不是除盡來分類的,那什么叫除盡?什么又叫除不盡呢?
生:商是有限小數(shù)的就是除盡,商是無限小數(shù)的就是除不盡。
[學(xué)生通過小組討論、觀察、分析、比較和分類,在頭腦中建立了小數(shù)除法、有余數(shù)的整數(shù)除法和沒有余數(shù)的整數(shù)除法三種類型的除法的表象。學(xué)生的分類,恰當(dāng)?shù)靥峁┝藢W(xué)生學(xué)習(xí)新知的素材資源,使學(xué)生樂學(xué)、會(huì)學(xué)。]
三、歸納特征
師:我們?cè)賮碜屑?xì)觀察這些除盡的算式(①6.6÷2.2=3 ③15.5÷5=3.1④24÷2=12 ⑤32÷4=8 ⑥273÷3=91) ,看看這些算式還能不能再分分類,你準(zhǔn)備怎么分?
生:①6.6÷2.2=3和 ③15.5÷5=3.1分為一類,因?yàn)檫@里面有小數(shù), ④24÷2=12、 ⑤32÷4=8和 ⑥273÷3=91這三個(gè)算式分為一類,因?yàn)檫@三個(gè)算式中的被除數(shù)、除數(shù)和商都是整數(shù),而且沒有余數(shù)。
師:我們可以將(學(xué)生分類后)指著整除的一組算式:象這樣被除數(shù)、除數(shù)和商都是整除而且沒有余數(shù)我們就稱它為“整除”(板書“整除”)(課件出示)
師:那我們仔細(xì)地觀察整除和除盡有什么關(guān)系呢?
生:除盡的范圍比整除的大。
師:如果我們用一個(gè)大圈來表示除盡,那整除就是其中的一個(gè)小圈。(課件出示集合圖)
師:你還能再舉出一些整除的算式嗎?
生1:4÷2=2。
生2:30÷5=6
生3:280÷70=4。
……
師:整除的算式實(shí)在是太多了(在整除的小圈后加……)那我們能不能用一個(gè)含有字母的式子來概括整除算式呢?
生:用a÷b=c(板書)
師:是不是要加個(gè)什么條件呢?
生:b≠0(板書),因?yàn)閎=0,除法就無意義了。
師:如果a、b、c都是整數(shù)(板書),且b≠0,那我們就說a能被b整除,或b能整除a。
[教師先從圈中拿去除不盡的除法算式,再將這些能除盡的算式進(jìn)行分類,揭示出整除的算式。這樣以集合圈的形式,滲透整除和除盡的關(guān)系。在學(xué)生找出了整除算式的特征后,教師請(qǐng)學(xué)生再舉一些這樣的算式,讓學(xué)生再次感悟和應(yīng)用整除算式的特征,并體會(huì)象這樣的算式有無數(shù)個(gè)。并通過用一個(gè)含有字母的算式來抽象概括,既讓學(xué)生感悟到用字母表示數(shù)的簡(jiǎn)便,又便于學(xué)生理解和掌握數(shù)的整除的概念。]
師:如15÷3=5,我們就說15能被3整除,或3能整除15。誰來說說這幾道的(指著黑板上的幾道整除算式)?
生1:24÷2=12我們就說24能被2整除,或2能整除24。
生2:32÷4=8我們就說32能被4整除,或4能整除32。
生3:273÷3=91我們就說273能被3整除,或3能整除273。
師:我們一起看看書P49的練一練1。(課件出示)
生答……
。劢處熱槍(duì)內(nèi)容的特殊性,采用傳統(tǒng)的教學(xué)方式,直接說明、學(xué)生模仿。不容忽視的是,有意義的接受性學(xué)習(xí)、記憶和模仿還是必要的。在教師揭示了數(shù)的整除的概念后,通過讓學(xué)生跟著老師一起說、請(qǐng)學(xué)生說和學(xué)生自己任選兩個(gè)算式說給同桌聽,到一起其說等多種方式讓學(xué)生通過讀來區(qū)分兩種說法的區(qū)別,自我感悟。]
四、感悟關(guān)系
師:我們已經(jīng)知道整數(shù)a除以整數(shù)b(b≠0),除得的商是整數(shù)而且沒有余數(shù),我們就說數(shù)
約數(shù)和倍數(shù)教學(xué)實(shí)錄2
1.投影出示P40“練一練”第一題。(略)
2.投影出示P43練習(xí)第2題。(鼓勵(lì)學(xué)生盡可能找到所有整除的關(guān)系)
四、建立倍數(shù)和約數(shù)的概念
師:如果數(shù)a能被數(shù)b整除,a和b之間就產(chǎn)生了一種關(guān)系,是什么關(guān)系?(學(xué)生自學(xué)P39內(nèi)容)
思考:①什么情況下,可以說a是b的倍數(shù),b是a的約數(shù)?②如果數(shù)a能被數(shù)b整除,可以說a是倍數(shù),b是約數(shù)嗎?
生1:在整除的情況下,a是b的倍數(shù),b是a的約數(shù)。
師:在15÷3=5這個(gè)整除的算式中,誰是誰的倍數(shù)?誰是誰的`約數(shù)?
生2:15是3的倍數(shù),3是15的約數(shù)。
師:28÷7=4和33÷11=3,你們誰來說一說?(生答略)
師(指20÷7=2……6):我們可以說20是7的倍數(shù),7是20的約數(shù)嗎?為什么?
生3:20不能被7整除,所以20不是7的倍數(shù),7也不是20的約數(shù)。
師:如果數(shù)a能被數(shù)b整除,能單獨(dú)說a是倍數(shù),b是約數(shù)嗎?為什么?
生4:a還可以是別的數(shù)的倍數(shù)。例如:12÷3=4,12是3的倍數(shù);12÷2=6,12也是2的倍數(shù)。
生5:數(shù)a能被數(shù)b整除,只能說a是b的倍數(shù),b是a的約數(shù)。
師:在整除的基礎(chǔ)上產(chǎn)生了約數(shù)與倍數(shù),約數(shù)和倍數(shù)就是數(shù)學(xué)中一種相互依存的關(guān)系,所以我們一定要講清誰是誰的倍數(shù),誰是誰的約數(shù)。
[評(píng)析:教師在橫向上拓寬了教材范圍,既讓學(xué)生認(rèn)識(shí)了約數(shù)與倍數(shù),又讓學(xué)生了解到在什么情況下,兩個(gè)整數(shù)之間不存在約數(shù)和倍數(shù)的關(guān)系。]
約數(shù)和倍數(shù)教學(xué)實(shí)錄3
1.投影出示P40“練一練”第2題。(略)
2.游戲:出數(shù)說關(guān)系。
師:4和20,請(qǐng)大家利用今天所學(xué)的知識(shí)說一說它們的關(guān)系。
生1:20能被4整除,4能整除20。
生2:20是4的倍數(shù),4是20的約數(shù)。
師:14和30呢?
生3:30不能被14整除,14不能整除30;30不是14的倍數(shù),14也不是30的約數(shù)。
……
[評(píng)析:以游戲的形式讓學(xué)生練習(xí),保持了學(xué)生的學(xué)習(xí)興趣,使學(xué)生靈活地掌握了整除、約數(shù)和倍數(shù)的特征。]
3.下面的說法對(duì)嗎?為什么?
(1)8能整除4。()
(2)因?yàn)?6÷6=6,所以36是倍數(shù),6是約數(shù)。()
(3)5是5的倍數(shù),5又是5的約數(shù)。()
(4)凡是能除盡的一定能整除。()
(5)63÷3=21,3和21都是63的約數(shù)。()
4.游戲:找朋友。
師:每個(gè)同學(xué)都有學(xué)號(hào),每個(gè)學(xué)號(hào)都是一個(gè)整數(shù)。如果老師要找的朋友是你,請(qǐng)你站起來,并且把卡片高高舉起,讓其他同學(xué)看看你是不是我要找的朋友。
師(舉卡片10):我是10,我的倍數(shù)朋友在哪里?
師(指學(xué)號(hào)是10的學(xué)生):你也是10,為什么是我的倍數(shù)朋友?
生1:10能被10整除。
師(舉卡片10):我是10,我的約數(shù)朋友在哪里?
師:你也是10,為什么又是我的約數(shù)朋友?
生1:因?yàn)?0÷10=1,10能被10整除,所以10也是10的約數(shù)。
師:1是不是10的約數(shù)?(學(xué)生討論交流)
生2:因?yàn)?0÷1=10,所以1是10的.約數(shù)。
師:99是1的倍數(shù)朋友嗎?1000呢?(生答略)
師:因?yàn)槿魏握麛?shù)都能被1整除,所以任何整數(shù)都是1的倍數(shù),1是任何整數(shù)的約數(shù)。
師(舉卡片1):我是1,我的倍數(shù)朋友在哪里?為什么大家都站起來了?
生:因?yàn)槲覀冞@些數(shù)都能被1整除。
師(舉卡片0):我是0,我的約數(shù)朋友在哪里?0有沒有約數(shù)朋友?如果有,那么誰是0的約數(shù)朋友呢?
(學(xué)生討論交流,也可打開課本P40自學(xué))
生3:我是24,0能被24整除,所以24是0的約數(shù)。
生4:我是10,10能整除0,所以10是0的約數(shù)。
……
師:因?yàn)?能被任何不是零的整數(shù)整除,所以0是任何不是零的整數(shù)的倍數(shù),任何不是零的整數(shù)也都是0的約數(shù)。
師:那么,0的約數(shù)朋友在哪里?(生答略)
師:今后學(xué)習(xí)中為了方便,通常在研究約數(shù)和倍數(shù)的時(shí)候,所說的數(shù)一般指不是零的自然數(shù)。
[評(píng)析:教師把“1是任何整數(shù)的約數(shù)”和“0是任何不是零的整數(shù)的倍數(shù),任何不是零的整數(shù)也都是0的約數(shù)”這兩個(gè)枯燥的知識(shí)點(diǎn)的教學(xué)變成了生動(dòng)活潑的舉卡片游戲,在師生互動(dòng)中解決問題。最后的練習(xí)有層次,具有開放性。]
六、總結(jié)全課
總評(píng)
這節(jié)課是概念教學(xué),教師沒有落入“枯燥乏味”的老套,而是根據(jù)學(xué)生的年齡特征和教材特點(diǎn),靈活地駕馭教材,取得了非常好的教學(xué)效果。概括起來主要有以下幾個(gè)特點(diǎn):
一、靜態(tài)教材動(dòng)態(tài)化
新課程強(qiáng)調(diào)教師不僅是教材的使用者,同時(shí)也是教材的開發(fā)者。本教學(xué)中,教師在理解、研究教材的基礎(chǔ)上,大膽地對(duì)教材進(jìn)行二次開發(fā),實(shí)現(xiàn)了教材由靜態(tài)向動(dòng)態(tài)的轉(zhuǎn)變。
二、教學(xué)內(nèi)容探究化
“教學(xué)不是告訴!苯處煕]有直接把整除的意義告知學(xué)生,而是讓學(xué)生在比一比、擺一擺、議一議、說一說的過程中,探究除法算式的特點(diǎn),感知整除與除盡、小數(shù)除法的不同,順利突破教學(xué)重、難點(diǎn),體現(xiàn)了“學(xué)生是教學(xué)的主體”這一新課程的核心理念。
三、概念教學(xué)活動(dòng)化
以往教師在概念教學(xué)中大多采用講解法,教學(xué)沉悶,教師講的吃力,學(xué)生聽得費(fèi)勁。而在本節(jié)課中,教師讓學(xué)生在舉卡片、找朋友等游戲中掌握了有關(guān)概念,課堂氣氛活躍生動(dòng),學(xué)生學(xué)得輕松愉快,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
約數(shù)和倍數(shù)教學(xué)實(shí)錄4
教材動(dòng)起來 思維活起來——“約數(shù)和倍數(shù)”教學(xué)實(shí)錄與評(píng)析
教學(xué)內(nèi)容:
蘇教版小學(xué)數(shù)學(xué)第十冊(cè)P39~40。
教學(xué)目標(biāo):
1.使學(xué)生認(rèn)識(shí)整除的意義,認(rèn)識(shí)約數(shù)和倍數(shù),能判斷一個(gè)除法算式是不是整除的算式,并能說出兩個(gè)數(shù)是否存在約數(shù)與倍數(shù)的關(guān)系。
2.培養(yǎng)學(xué)生的觀察、比較和綜合概括等思維能力,提高學(xué)生依據(jù)概念判斷的能力。
教學(xué)過程:
一、聯(lián)系生活實(shí)際,理解“相互依存”關(guān)系
師:你在他的哪邊?他在你的哪邊?(師指左右兩生)
生1:我在他的左邊,他在我的右邊。
師(前、后各起立一位學(xué)生):哪位同學(xué)能說出這兩人的位置關(guān)系?
生2:生甲在生乙的前面,生乙在生甲的后面。
師:這是我們實(shí)際生活中相互依存的關(guān)系,在數(shù)學(xué)中,數(shù)與數(shù)之間也有這樣相互依存的現(xiàn)象。
[評(píng)析:數(shù)學(xué)源于生活。教師用學(xué)生身邊的事例,讓學(xué)生理解相互依存的關(guān)系,感受數(shù)學(xué)就在身邊。]
二、在探究過程中,建立整除的概念
15÷3=510÷3=3……11.5÷3=0.5
28÷7=43.3÷1.1=320÷7=2……6
28÷0.7=4035÷11=3……233÷11=3
師:請(qǐng)同學(xué)們仔細(xì)觀察,每道算式中的被除數(shù)、除數(shù)和商各有什么特點(diǎn)?如果要把這些算式進(jìn)行分類,你打算怎么分?為什么這樣分?
(學(xué)生小組討論,教師巡視指導(dǎo),然后匯報(bào)交流)
生1:我們組認(rèn)為可以分成兩類:一類是除不盡有余數(shù)的,另一類是除得盡沒有余數(shù)的。(同時(shí)展示)
、15÷3=5②10÷3=3……1
28÷0.7=4020÷7=2……6
33÷11=335÷11=3……2
3.3÷1.1=3
28÷7=4
1.5÷3=0.5
生2:我們組認(rèn)為可以分成這樣兩類:一類是整數(shù)除法,另一類是小數(shù)除法。(同時(shí)展示)
、15÷3=5②28÷0.7=40
28÷7=43.3÷1.1=3
33÷11=31.5÷3=0.5
10÷3=3……1
20÷7=2……6
35÷11=3……2
生3:我們組認(rèn)為可以分成三類:一類是沒有余數(shù)的整數(shù)除法,一類是有余數(shù)的整數(shù)除法,一類是小數(shù)除法。(同時(shí)展示)
、15÷3=5?②10÷3=3……1③1.5÷3=0.5
28÷7=420÷7=2……628÷0.7=40
33÷11=335÷11=3……23.3÷1.1=3
師(指生3的分法):請(qǐng)大家再仔細(xì)觀察,上述分類中的被除數(shù)、除數(shù)和商有什么特點(diǎn)?
生4:第①類被除數(shù)、除數(shù)是整數(shù),商是整數(shù)沒有余數(shù);第②類的商有余數(shù);第③類是小數(shù)除法。
師:像這樣一組被除數(shù)、除數(shù)是整數(shù),商是整數(shù)而且沒有余數(shù)的算式,我們把它稱為整除。
師:如15÷3=5,我們可以說15能被3整除,或者說3能整除15。
師:28÷7=4,這道算式誰來說一說?33÷11=3呢?(生答略)
師:像這樣的整除算式如果用字母a表示被除數(shù),用字母b表示除數(shù),a和b之間是什么關(guān)系?
生:a能被b整除,b能整除a。
師:那么,什么樣的式子稱為“整除”?
生5:被除數(shù)和除數(shù)都是整數(shù)。
生6:商也是整數(shù),而且沒有余數(shù)。
生7:b是除數(shù)不能為0。
師:整數(shù)a除以整數(shù)b(b≠0),除得的商正好是整數(shù)且沒有余數(shù),我們就說a能被b整除,或說b能整除a。
[評(píng)析:教師沒有被動(dòng)地照搬教材中靜態(tài)的教學(xué)資源,而是直接把九道除法算式的分類情況展示給學(xué)生,讓學(xué)生仔細(xì)觀察算式的特點(diǎn),并說說如何分類,充分調(diào)動(dòng)學(xué)生已有的知識(shí)儲(chǔ)備,使學(xué)生輕松自如地把握整除的特征,理解整除和除盡、小數(shù)除法的關(guān)系,提高了學(xué)生觀察、比較、分析、歸類的能力。]
師:你們認(rèn)為這段話中哪句比較重要?
生8:整數(shù)a除以整數(shù)b。
生9:除得的商正好是整數(shù),而且沒有余數(shù)。
生10:整數(shù)b不能為0。
師:為什么b不能為0?把b≠0去掉行嗎?
生11:整數(shù)b表示除數(shù),0不能做除數(shù)。
師:你能舉出整除的.算式再說一說嗎?(生答略)
師:如10÷3=3……1,我們可以說10能被3整除嗎?為什么?
生12:因?yàn)樯逃杏鄶?shù),所以10不能被3整除,3不能整除10。
師(指算式1.5÷3=0.5):如果說1.5能被3整除,你們同意嗎?
生13:因?yàn)楸怀龜?shù)和商都是小數(shù),所以1.5不能被3整除。
[評(píng)析:出示整除的意義之后,教師請(qǐng)學(xué)生說一說哪些詞比較重要,在學(xué)生交流的過程中,再次強(qiáng)化整除的特征,達(dá)到了“潤(rùn)物無聲”的效果。]
三、實(shí)踐與反思(1)
1.投影出示P40“練一練”第一題。(略)
2.投影出示P43練習(xí)第2題。(鼓勵(lì)學(xué)生盡可能找到所有整除的關(guān)系)
四、建立倍數(shù)和約數(shù)的概念
師:如果數(shù)a能被數(shù)b整除,a和b之間就產(chǎn)生了一種關(guān)系,是什么關(guān)系?(學(xué)生自學(xué)P39內(nèi)容)
思考:①什么情況下,可以說a是b的倍數(shù),b是a的約數(shù)?②如果數(shù)a能被數(shù)b整除,可以說a是倍數(shù),b是約數(shù)嗎?
生1:在整除的情況下,a是b的倍數(shù),b是a的約數(shù)。
師:在15÷3=5這個(gè)整除的算式中,誰是誰的倍數(shù)?誰是誰的約數(shù)?
生2:15是3的倍數(shù),3是15的約數(shù)。
師:28÷7=4和33÷11=3,你們誰來說一說?(生答略)
師(指20÷7=2……6):我們可以說20是7的倍數(shù),7是20的約數(shù)嗎?為什么?
約數(shù)和倍數(shù)教學(xué)實(shí)錄5
一、教學(xué)內(nèi)容
蘇教版九年義務(wù)教育小學(xué)數(shù)學(xué)第十冊(cè)第39~40頁。
二、教學(xué)目標(biāo)
1.使學(xué)生認(rèn)識(shí)整除的意義,認(rèn)識(shí)約數(shù)和倍數(shù),能判斷一個(gè)除法算式是不是整除的算式,并能說出兩個(gè)數(shù)是否存在約數(shù)和倍數(shù)的關(guān)系。
2.培養(yǎng)學(xué)生觀察、判斷、比較、綜合和概括等思維能力。
三、教學(xué)過程
。ㄒ唬┙虒W(xué)整除
1.分類引人。
。1)出示算式。
15÷3=5
4.5÷1.5=3
23÷7=3……2
10÷20=0.5
30÷5=6
24÷2=12
。2)師:如果要將這8個(gè)除法算式分分類,你打算怎樣分?
學(xué)生思考,組內(nèi)交流,個(gè)別學(xué)生在前面邊分邊說。
生1:被除數(shù)、除數(shù)和商都是整數(shù)的為一類;其他的為一類。
生2:商是整數(shù)為一類;商是小數(shù)為一類;商有余數(shù)為一類。
生3:分成沒有余數(shù)和有余數(shù)兩類。教師及時(shí)肯定學(xué)生的分類方法。
。3)師:按除法算式中有沒有小數(shù),可以分成兩大類。電腦出示“被除數(shù)、除數(shù)和商都是整數(shù)”的這5個(gè)算式。這些算式又可以分為哪兩類?
學(xué)生操作:有余數(shù)的為一類;沒有余數(shù)的為一類。
電腦演示分類情況。
(評(píng)析:讓學(xué)生經(jīng)歷觀察、比較、分類的學(xué)習(xí)過程,篩選出要研究的算式,為教學(xué)整除奠定基礎(chǔ)。)
2.認(rèn)識(shí)整除。
(1)建立整除的概念。
、賻煟海ㄖ钢怀龜(shù)、除數(shù)和商都是整數(shù)的算式)這一組的3個(gè)算式和其他算式比較一下,它們有什么特殊的地方?
學(xué)生通過觀察、比較,歸納得出:它們的被除數(shù)、除數(shù)和商都是整數(shù),而且沒有余數(shù)。
師:像這樣的被除數(shù)、除數(shù)和商都是整數(shù),而且沒有余數(shù)的除法算式就是整除的算式。(板書:整除)
、趲熥穯枺菏裁唇姓?
學(xué)生相互交流。
、劬毩(xí):在下面各式中,哪些是整除的算式,哪些不是?為什么?(出示算式)
51÷3=17 9÷18=0.5
38÷17=2……412÷12=1
91+÷7=138÷6=1……2
5.6÷7=0.835÷7=5
學(xué)生回答,并根據(jù)整除算式必須滿足的條件來說明自己判斷的理由。
提問:你能再說一道整除的算式嗎?為什么這是整除的算式?
教師補(bǔ)充:強(qiáng)調(diào)除法算式中除數(shù)不能為0,并作如下板書:
整數(shù) a÷b=c(b≠0)
(評(píng)析:這個(gè)環(huán)節(jié)先通過比較,讓學(xué)生清晰地認(rèn)識(shí)整除算式的特征,接著通過判斷說理和舉例,鞏固對(duì)整除算式特征的認(rèn)識(shí),最后,認(rèn)識(shí)用字母表示的整除算式。逐步抽象,幫助學(xué)生層層深入理解整除的概念。)
。2)學(xué)習(xí)整除算式的表述。
①說算式。
師:(指35÷7=5這個(gè)算式)我們已經(jīng)知道這是整除的算式,那我們就可以說“35能被7整除,也可以說7能整除35”。
提問:(指91÷+7=13)這個(gè)算式可以怎么說?(學(xué)生齊說)
讓學(xué)生把剩下來的整除算式說給自己的同桌聽。
、谡f字母式。
提問:(指著字母式)這個(gè)算式該怎么說?
。◣煱鍟篴能被b整除,b能整除a)
指著板書說明:整數(shù)a除以整數(shù)b,b不為0,除得的商正好也是整數(shù),而且沒有余數(shù),那我們就可以說“a能被b整除,b能整除a。
、劬毩(xí):在下面的數(shù)中,哪幾組的兩個(gè)數(shù)可以構(gòu)成整除的關(guān)系?
68和424和28和323.6和1.2
追問:兩數(shù)構(gòu)成怎樣的整除關(guān)系?為什么可以這么說?
(評(píng)析:這一環(huán)節(jié)又通過三個(gè)層次,讓學(xué)生敘述、辨析,從而解決理解整除意義的難點(diǎn)。)
二、教學(xué)倍數(shù)和約數(shù)
1.布置自學(xué)。
師:當(dāng)數(shù)a能被數(shù)b整除后,a和b就產(chǎn)生了一種關(guān)系。是什么關(guān)系呢?請(qǐng)同學(xué)們自學(xué)課本第39頁倒數(shù)第4~5行,并思考下面兩個(gè)問題(投影出示自學(xué)題目)。
(1)在什么情況下可以說“a是b的倍數(shù),b是a的約數(shù)”?
。2)如果a能被b整除,能不能說“a是倍數(shù),b是約數(shù)”?
學(xué)生先自學(xué)教材內(nèi)容,然后討論研究。
同桌先相互說說思考結(jié)果。
2.解疑。
(1)(教師指第1個(gè)自學(xué)題)提問:在什么情況下可以說“a是b的倍數(shù),b是a的約數(shù)”?
生:當(dāng)a能被b整除時(shí)才可以說a是b的倍數(shù),b是a的約數(shù)。(師板書)
師:(出示算式18÷9=2)這個(gè)算式可以怎么說?
生:18是9的倍數(shù);9是18的約數(shù)。
教師追問:為什么可以這么說?
生:因?yàn)?8能被9整除。
教師說明:如果把語序倒一下就更好了。我們已經(jīng)知道是先有整除,后有倍數(shù)和約數(shù)的關(guān)系,那我們就可以說“因?yàn)?8能被9整除;所以18是9的倍數(shù),9是18的約數(shù)”。
師:(出示算式14÷2=7)這個(gè)算式可以怎么說?
師:(出示算式4.8÷1.2=4)這個(gè)算式呢?為什么不能說4.8是1.2的倍數(shù)?
學(xué)生回答。
師:同桌相互合作,一人說整除的算式,一人用幾句話說說這幾個(gè)數(shù)之間的關(guān)系。學(xué)生交流。
(2)(指第2個(gè)自學(xué)題)提問:這樣說行嗎?那該怎樣說?
3.小結(jié)。
在整除的基礎(chǔ)上產(chǎn)生了約數(shù)和倍數(shù)(板書課題),而且在說約數(shù)和倍數(shù)的時(shí)候一定要講清“誰是誰的倍數(shù),誰是誰的約數(shù)”。
(評(píng)析:安排學(xué)生自學(xué),創(chuàng)設(shè)自主學(xué)習(xí)、合作交流的情境,在設(shè)疑解疑過程中,引領(lǐng)學(xué)生參與師生交往互動(dòng)的學(xué)習(xí)活動(dòng),既體現(xiàn)了學(xué)生學(xué)習(xí)的主體地位,又體現(xiàn)了教師的主導(dǎo)性。做到循序漸進(jìn)、扎實(shí)有效地幫助學(xué)生理解所學(xué)內(nèi)容。)
三、鞏固練習(xí)
1.判斷:下面的`說法正確嗎?(投影出示)
。1)60能被5整除。
。2)8能整除4。
。3)8.1是0.9的倍數(shù)。
。4)24÷8=3,所以24是倍數(shù),8是約數(shù)。
。5)老師的年齡是6的倍數(shù),老師的年齡不可能是25歲。
。6)21÷3=7,3和7都是21的約數(shù)。
2.找一找,哪兩個(gè)數(shù)能構(gòu)成整除的關(guān)系?
72 8 9 28 4 7
學(xué)生獨(dú)立思考后指名回答。
改變題目:找一找,72還能和哪些數(shù)構(gòu)成整除的關(guān)系?學(xué)生相互交流后指名回答。
3.填空。
(1)15能被( 。┱15是( 。┑模ā 。⿺(shù),( 。┦15的( 。⿺(shù)。
。2)16能被( )整除,所以( 。┦牵ā 。┑模ā 。⿺(shù)。
4.游戲“找朋友”。
師:接下來老師和同學(xué)們做一個(gè)“找朋友”的游戲。同學(xué)們每人都有一個(gè)學(xué)號(hào),每個(gè)學(xué)號(hào)都是一個(gè)整數(shù),如果我要找的朋友是你,請(qǐng)你站起來,并把寫著自己學(xué)號(hào)的卡片高高舉起,讓其他同學(xué)也看看你是不是我要找的朋友。
。1)我是20,我找我的倍數(shù)。(讓學(xué)生判斷,同時(shí)說說理由)
師指舉20的學(xué)生回答:你也是20,為什么是我的倍數(shù)朋友呢?
。2)我是20,我找我的約數(shù)。
教師指舉20的學(xué)生回答:你也是20,為什么是我的約數(shù)呢?學(xué)生回答后教師說明:一個(gè)不是0的自然數(shù),本身既是自己的倍數(shù),又是自己的約數(shù)。
。3)我是1,我找我的倍數(shù)。
師:為什么大家都是1的倍數(shù)呢?
。4)我是0,我找我的約數(shù)。
師:為什么大家都是0的約數(shù)呢?
指出:0能被任何不是0的自然數(shù)整除,所以0是任何不是0的自然數(shù)的倍數(shù),任何不是0的自然數(shù)都是0的約數(shù)。
但是在以后的學(xué)習(xí)中,為了方便,通常在研究倍數(shù)、約數(shù)問題時(shí)不包括0。
(評(píng)析:教師設(shè)計(jì)四個(gè)層次的練習(xí),提供具有價(jià)值的學(xué)習(xí)內(nèi)容,讓學(xué)生思考辨析。特別是“找朋友”的設(shè)計(jì)別具匠心,使全體學(xué)生參與到有趣的數(shù)學(xué)活動(dòng)中來,既體會(huì)到學(xué)習(xí)數(shù)學(xué)的樂趣,又在輕松活躍的氣氛中復(fù)習(xí)鞏固了全課學(xué)習(xí)內(nèi)容,同時(shí)又讓學(xué)生認(rèn)識(shí)“0”與“1”在整除問題上的特殊性。)
約數(shù)和倍數(shù)教學(xué)實(shí)錄6
(一)聯(lián)系生活實(shí)際。理解“相互依存”關(guān)系
(老師走到前排的一位學(xué)生面前。)
師:你叫什么名字?你能告訴我們,你媽媽姓什么嗎?
生:我叫xxx,我媽媽姓x。
師:xxx的媽媽姓x,我們就叫她x阿姨,好嗎?
(板書:x阿姨xxx)
師:那么,x阿姨和xxx之間是什么關(guān)系呢?
生:x阿姨足xxx的媽媽,xxx是x阿姨的女兒。
師:x阿姨是xxx的媽媽,xxx是x阿姨的女兒;xxx是x阿姨的女兒,x阿姨就一定是xxx的媽媽。媽媽和女兒是一種相互依存著的關(guān)系。(板書:相互依存)
師:(指板書)這是生活中的相互依存關(guān)系。在數(shù)學(xué)中,數(shù)與數(shù)之間也有相互依存的關(guān)系,今天,我們一起來認(rèn)識(shí)兩個(gè)數(shù)的概念:倍數(shù)和約數(shù)。
(對(duì)應(yīng)黑板上的“x阿姨”和“xxx”板書:“倍數(shù)”“約數(shù)”)
(二)在探究的過程中。建立整除的概念
師:研究倍數(shù)和約數(shù),整除是一個(gè)重要的前提。你能說出整除的含義嗎?
生:一個(gè)整數(shù)除以另一個(gè)不為零的整數(shù),商是整數(shù)而沒有余數(shù),我們就說第一個(gè)整數(shù)能被第二個(gè)整數(shù)整除。
師:準(zhǔn)能說出一些除法算式,算式中的被除數(shù)能被除數(shù)整除。
學(xué)生口答,教師板書(如下左邊)。
15÷3:5 15÷4=3……3
24÷12=2 24÷1.2=20
45÷5=9 45÷50=0.9
19÷19=l 19÷19=1
師:如果老師把同學(xué)們說的算式改成這樣(如上右邊),算式中的被除數(shù)和除數(shù)還具有整除關(guān)系嗎?為什么?
生:因?yàn)榈谝坏浪闶降纳毯竺嬗杏鄶?shù),第二道算式的除數(shù)是小數(shù),第三道算式的商是小數(shù),第四道算式的被除數(shù)和除數(shù)是小數(shù),所以,這些算式中的被除數(shù)和除數(shù)不具有整除關(guān)系。
師:在什么情況下,才可以說“數(shù)a能被數(shù)b整除”?整除要具備哪些條件?請(qǐng)各小組合作學(xué)習(xí),
把整除要具備的條件填寫在記錄單上。
(小組派代表匯報(bào),師生共同歸納整除要具備的條件。)
師:整數(shù)a除以不為0的整數(shù)b,所得的商是整數(shù)而沒有余數(shù),我們就說“數(shù)a能被數(shù)b整除”,又可以說成“數(shù)b能整除數(shù)a”。
(三)建立倍數(shù)和約數(shù)的概念
師:當(dāng)數(shù)a能被數(shù)b整除時(shí),a就叫做b的什么?b就叫做a的什么?請(qǐng)同學(xué)們自學(xué)課本后回答,并舉例說明。
(老師根據(jù)學(xué)生的回答,用板書揭示整除和倍數(shù)、約數(shù)之間的關(guān)系。)
師:“因?yàn)?5能被3整除,3能整除15,所以15是3的倍數(shù),3是15的約數(shù)!边@句話你會(huì)說嗎?請(qǐng)同學(xué)們選一個(gè)算式,也可以自己寫兩個(gè)數(shù),同桌互相說一說。
生:……
師:如果數(shù)a不能被數(shù)b整除,數(shù)a就不是數(shù)b的`倍數(shù),數(shù)b就不是數(shù)a的約數(shù)。你能用右邊算式中的數(shù)說一句話嗎?
生:因?yàn)?5不能被4整除,4不能整除15,所以15不是4的倍數(shù),4不是15的約數(shù)。
師:接下來,我們一起來玩一個(gè)互相出題說一句話的游戲。先由學(xué)生出題老師說,再由老師出題學(xué)生說。
生:……
師:當(dāng)數(shù)a能被數(shù)b整除時(shí),a就叫做b的倍數(shù),b就叫做a的約數(shù)。a是b的倍數(shù)’b就一定是a的約數(shù);b是a的約數(shù),a就一定是b的倍數(shù)?梢,倍數(shù)和約數(shù)是一種什么樣的關(guān)系?
生:倍數(shù)和約數(shù)是相互依存的關(guān)系。
(四)小結(jié)與質(zhì)疑
師:對(duì)今天學(xué)習(xí)的內(nèi)容還有什么疑問嗎?
生:老師,今天學(xué)的“倍數(shù)”跟以前學(xué)的“倍”有什么不同?
師:哪位同學(xué)能回答這個(gè)問題?
生:我認(rèn)為,“倍數(shù)”是以整除為前提,表示兩個(gè)數(shù)之間的一種關(guān)系,而以前學(xué)的“倍”表示兩個(gè)數(shù)相除的結(jié)果,這兩個(gè)數(shù)不一定是整除關(guān)系。
師:這位同學(xué)說得非常棒!
(五)實(shí)踐與反思
1.投影出示(略)。
師:哪幾個(gè)算式的被除數(shù)能被除數(shù)整除?哪幾個(gè)算式的被除數(shù)能除盡除數(shù)?
(學(xué)生回答后,老師在投影片上運(yùn)用疊片揭示整除與除盡之間的關(guān)系。)
2.下面的說法對(duì)嗎?為什么?
(1)40能被8整除。
(2)18能被5整除。
(3)32÷4=8,所以4是約數(shù),32是倍數(shù)。
(4)凡是能夠除盡的一定能夠整除。
3.填空:24能被口整除。
師:口內(nèi)可以填幾?怎樣才能一個(gè)不漏地填出來?(提示:按順序。)
師:同學(xué)們填的這些數(shù)都是24的什么?(約數(shù)。)24是這些數(shù)的什么?(倍數(shù)。)24能被這些數(shù)——(整除。)
(六)動(dòng)腦筋出教室
師:下課前,我們一起玩一個(gè)游戲好不好?平時(shí),老師宣布下課,同學(xué)們都一起走出教室。今天,請(qǐng)同學(xué)們按要求離開教室。老師出示一張數(shù)字卡片,如果你的學(xué)號(hào)數(shù)能被卡片上的數(shù)整除,你就可以先出教室。
(游戲開始,老師出示第一張卡片2。學(xué)號(hào)是2的倍數(shù)的同學(xué)走上講臺(tái),依次說出一句話后離開教室。當(dāng)學(xué)生們躍躍欲試的時(shí)候,老師出示了第二張卡片0.3,有幾位同學(xué)一下子沖到講臺(tái)前,見其他同學(xué)沒有動(dòng),想了想,又走回自己的座位。老師讓學(xué)生討論:他們?yōu)槭裁从只厝チ?接著,老師出示卡片3和5,學(xué)生按同樣要求依次走出教室。最后,還剩下學(xué)號(hào)是1、7、11、13、17、19、23、29、31、37的10位同學(xué)。)
師:你們?yōu)槭裁床蛔哐?
生:因?yàn)槲覀兊膶W(xué)號(hào)數(shù)不能被那些數(shù)整除。
師:老師這里只剩一張卡片了,怎么辦?
生:老師你給個(gè)“l(fā)”,我們剩下的同學(xué)就都可以出教室了。
師:為什么?
生:因?yàn)槿魏巫匀粩?shù)都能被1整除,任何自然數(shù)都是1的倍數(shù),l是任何自然數(shù)的約數(shù)。
師:如果老師第一張卡片就出l,哪些同學(xué)可以走?
生:全班同學(xué)都可以走。
【約數(shù)和倍數(shù)教學(xué)實(shí)錄】相關(guān)文章:
約數(shù)和倍數(shù)教學(xué)實(shí)錄03-12
陶罐和鐵罐教學(xué)實(shí)錄12-07
(優(yōu)秀)《酸的和甜的》教學(xué)實(shí)錄03-03
《狼和鹿》課時(shí)教學(xué)實(shí)錄03-08
《酸的和甜的》教學(xué)實(shí)錄8篇[精華]03-09
(精華)《酸的和甜的》教學(xué)實(shí)錄8篇03-11
《春曉》教學(xué)實(shí)錄03-06
前方教學(xué)實(shí)錄03-07
《檢閱》教學(xué)實(shí)錄03-08