【熱門】高中數(shù)學(xué)說課稿
作為一名教師,就不得不需要編寫說課稿,寫說課稿能有效幫助我們總結(jié)和提升講課技巧。那么大家知道正規(guī)的說課稿是怎么寫的嗎?以下是小編為大家整理的高中數(shù)學(xué)說課稿,歡迎閱讀與收藏。
高中數(shù)學(xué)說課稿1
我今天說課的課題是新課標(biāo)高中數(shù)學(xué)人教版A版必修第二冊第三章“3.1.1傾斜角與斜率”。我說課的程序主要由說教材、說教法、說學(xué)法、說教學(xué)程序這四個部分組成。
一、說教材:
1、教材分析:直線的傾斜角和斜率是解析幾何的重要概念之一,也是直線的重要的幾何要素。學(xué)生在原有的對直線的有關(guān)性質(zhì)及平面向量的相關(guān)知識理解的基礎(chǔ)上,重新以坐標(biāo)化(解析化)的方式來研究直線相關(guān)性質(zhì),而本節(jié)直線的傾斜角與斜率,是直線的重要的幾何性質(zhì),是研究直線的方程形式,直線的位置關(guān)系等的思維的起點;另外,本節(jié)也初步向?qū)W生滲透解析幾何的基本思想和基本方法。因此,本節(jié)課的有著開啟全章,奠定基調(diào),滲透方法,明確方向,承前啟后的作用。
2、教學(xué)目標(biāo)
根據(jù)本課教材的特點,新大綱對本節(jié)課的教學(xué)要求,結(jié)合學(xué)生身心發(fā)展的合理需要,我從三個方面確定了以下教學(xué)目標(biāo):
。1)知識與技能目標(biāo):
了解直線的方程和方程的直線的概念;在新的問題的情境中,去主動構(gòu)建理解直線的傾斜角和斜率的定義;初步感悟用代數(shù)方法解決幾何問題的思想方法。
(2)過程與方法目標(biāo):
引導(dǎo)學(xué)生觀察發(fā)現(xiàn)、類比,猜想和實驗探索,培養(yǎng)學(xué)生的創(chuàng)新能力和動手能力
。3)情感、態(tài)度與價值觀目標(biāo):
在平等的教學(xué)氛圍中,通過學(xué)生之間、師生之間的交流、合作和評價,實現(xiàn)共同探究、教學(xué)相長的教學(xué)情境。
3、教學(xué)重點、難點
。1)教學(xué)重點:理解直線的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫直線斜率的過程,掌握過兩點的直線的斜率的計算公式。
。2)教學(xué)難點:斜率公式的推導(dǎo)
二、說教法
課堂教學(xué)應(yīng)有利于學(xué)生的數(shù)學(xué)素質(zhì)的形成與發(fā)展,即在課堂教學(xué)過程中,創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生主動的發(fā)現(xiàn)問題解決問題,充分調(diào)動學(xué)生學(xué)習(xí)的主動性、積極性;有效地滲透數(shù)學(xué)思想方法,發(fā)展學(xué)生個性思維品質(zhì),這是本節(jié)課的教學(xué)原則。根據(jù)這樣的原則及所要完成的教學(xué)目標(biāo),我采用觀察發(fā)現(xiàn)、啟發(fā)引導(dǎo)、探索實驗相結(jié)合的教學(xué)方法。啟發(fā)引導(dǎo)學(xué)生積極的思考并對學(xué)生的思維進行調(diào)控,使學(xué)生優(yōu)化思維過程;在此基礎(chǔ)上,通過學(xué)生交流與合作,從而擴展自已的數(shù)學(xué)知識和使用數(shù)學(xué)知識及數(shù)學(xué)工具的能力,實現(xiàn)自覺地、主動地、積極地學(xué)習(xí)。
三、說學(xué)法
在實際教學(xué)中,根據(jù)學(xué)生對問題的感受程度不同,學(xué)習(xí)熱情、身心特點等,對學(xué)生進行針對性的學(xué)法指導(dǎo)。主要運用引導(dǎo)、啟發(fā)、情感暗示等隱性形式來影響學(xué)生,多提供機會讓學(xué)生去想、去做,給學(xué)生自己動手、參與教學(xué)過程、發(fā)現(xiàn)問題、討論問題提供了很好的機會。這不僅讓學(xué)生對所學(xué)內(nèi)容留下了深刻的印象,而且能力得到培養(yǎng),素質(zhì)得以提高,充分地調(diào)動學(xué)生學(xué)習(xí)的熱情,讓學(xué)生學(xué)會學(xué)習(xí),學(xué)會探索問題的方法,培養(yǎng)學(xué)生的能力。
四、說教學(xué)程序:
1、導(dǎo)入新課:
提出問題:如何確定一條直線的位置?
(1)兩點確定一條直線;
(2)一點能確定一條直線嗎?
過一點P可以作無數(shù)條直線,這些直線的傾斜程度不同,如何描述直線的傾斜程度?本節(jié)課將解決這個問題。
設(shè)計意圖:打開了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識的創(chuàng)新做好了準(zhǔn)備;同時也讓學(xué)生領(lǐng)會到,直線的傾斜角這一概念的產(chǎn)生是因為研究直線的需要,從而明確新課題研究的必要性,觸發(fā)學(xué)生積極思維活動的展開。
2、探究發(fā)現(xiàn):
。1)直線的傾斜角:
有新課導(dǎo)入直接引出此概念,學(xué)生易于接受,但是容易忽視其中的重點字。因此重點強調(diào)定義的幾個注意點:①x軸正半軸;②直線向上方向;③當(dāng)直線與x軸平行或重合時,直線的傾斜角為0度。由此得出直線傾斜角的取值范圍。
(2)直線的確定方法:
確定平面直角坐標(biāo)系中一條直線位置的幾何要素:直線上的一個定點以及它的傾斜角,二者缺一不可。
。3)直線的斜率:
注:直線的傾斜角與斜率的區(qū)別:
所有的直線都有傾斜角;但是不是所有直線都有斜率(傾斜角為90°的直線沒有斜率,因為90°的正切不存在。)
(4)由兩點確定的直線的斜率:
先讓學(xué)生自主探究、學(xué)生之間互相交流,然后再由師生共同歸納得出結(jié)論:
經(jīng)過兩點P1(x1.y1),P2(x2,y2)直線的斜率公式:(x1≠x2)。
3、學(xué)用結(jié)合:
。1)例題講解:P89-90/例題1和例題2。
例題的講解主要關(guān)注思路的點撥以及解題過程的規(guī)范書寫。
。2)課堂練習(xí):
P91/練習(xí)第1、2題
4、總結(jié)歸納:
直線的傾斜角直線的斜率直線的斜率公式
定義
取值范圍
5、布置作業(yè):P 91/練習(xí)第3、4題。
高中數(shù)學(xué)說課稿2
一、教學(xué)目標(biāo)
。1)知識與能力目標(biāo):學(xué)習(xí)橢圓的定義,掌握橢圓標(biāo)準(zhǔn)方程的兩種形式及其推
導(dǎo)過程;能根據(jù)條件確定橢圓的標(biāo)準(zhǔn)方程,掌握用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程。
。2)過程與方法目標(biāo):通過對橢圓概念的引入教學(xué),培養(yǎng)學(xué)生的觀察能力和探
索能力;通過對橢圓標(biāo)準(zhǔn)方程的推導(dǎo),使學(xué)生進一步掌握求曲線方程的一般方法,提高學(xué)生運用坐標(biāo)法解決幾何問題的能力,并滲透數(shù)形結(jié)合和等價轉(zhuǎn)化的數(shù)學(xué)思想方法。
。3)情感、態(tài)度與價值觀目標(biāo):通過讓學(xué)生大膽探索橢圓的定義和標(biāo)準(zhǔn)方程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新意識,培養(yǎng)學(xué)生勇于探索的精神和滲透辯證唯物主義的方法論和認(rèn)識論。
二、教學(xué)重點、難點
(1)教學(xué)重點:橢圓的定義及橢圓標(biāo)準(zhǔn)方程,用待定系數(shù)法和定義法求曲線方程。
。2)教學(xué)難點:橢圓標(biāo)準(zhǔn)方程的建立和推導(dǎo)。
三、教學(xué)過程
(一)創(chuàng)設(shè)情境,引入概念
1、動畫演示,描繪出橢圓軌跡圖形。
2、實驗演示。
思考:橢圓是滿足什么條件的點的軌跡呢?
(二)實驗探究,形成概念
1、動手實驗:學(xué)生分組動手畫出橢圓。
實驗探究:
保持繩長不變,改變兩個圖釘之間的距離,畫出的橢圓有什么變化?
思考:根據(jù)上面探究實踐回答,橢圓是滿足什么條件的點的軌跡?
2、概括橢圓定義
引導(dǎo)學(xué)生概括橢圓定義橢圓定義:平面內(nèi)與兩個定點距離的和等于常數(shù)(大于)的點的軌跡叫橢圓。
教師指出:這兩個定點叫橢圓的焦點,兩焦點的距離叫橢圓的焦距。
思考:焦點為的橢圓上任一點M,有什么性質(zhì)?
令橢圓上任一點M,則有
(三)研討探究,推導(dǎo)方程
1、知識回顧:利用坐標(biāo)法求曲線方程的一般方法和步驟是什么?
2、研討探究
問題:如圖已知焦點為的橢圓,且=2c,對橢圓上任一點M,有
,嘗試推導(dǎo)橢圓的方程。
思考:如何建立坐標(biāo)系,使求出的方程更為簡單?
將各組學(xué)生的討論方案歸納起來評議,選定以下兩種方案,由各組學(xué)生自己完成設(shè)點、列式、化簡。
方案一方案二
按方案一建立坐標(biāo)系,師生研討探究得到橢圓標(biāo)準(zhǔn)方程
=1(),其中b2=a2-c2(b>0);
選定方案二建立坐標(biāo)系,由學(xué)生完成方程化簡過程,可得出=1,同樣也有a2-c2=b2(b>0)。
教師指出:我們所得的兩個方程=1和=1()都是橢圓的標(biāo)準(zhǔn)方程。
(四)歸納概括,方程特征
1、觀察橢圓圖形及其標(biāo)準(zhǔn)方程,師生共同總結(jié)歸納
。1)橢圓標(biāo)準(zhǔn)方程對應(yīng)的橢圓中心在原點,以焦點所在軸為坐標(biāo)軸;
。2)橢圓標(biāo)準(zhǔn)方程形式:左邊是兩個分式的平方和,右邊是1;
(3)橢圓標(biāo)準(zhǔn)方程中三個參數(shù)a,b,c關(guān)系:;
。4)橢圓焦點的位置由標(biāo)準(zhǔn)方程中分母的大小確定;
。5)求橢圓標(biāo)準(zhǔn)方程時,可運用待定系數(shù)法求出a,b的值。
2、在歸納總結(jié)的基礎(chǔ)上,填下表
標(biāo)準(zhǔn)方程
圖形a,b,c關(guān)系焦點坐標(biāo)焦點位置
在x軸上
在y軸上
(五)例題研討,變式精析
例1、求適合下列條件的橢圓的標(biāo)準(zhǔn)方程
(1)兩個焦點的坐標(biāo)分別是,橢圓上一點P到兩焦點距離和等于10。
。2)兩焦點坐標(biāo)分別是,并且橢圓經(jīng)過點。
例2、(1)若橢圓標(biāo)準(zhǔn)方程為及焦點坐標(biāo)。
。2)若橢圓經(jīng)過兩點求橢圓標(biāo)準(zhǔn)方程。
。3)若橢圓的一個焦點是,則k的值為。
。ˋ)(B)8(C)(D)32
例3、如圖,已知一個圓的圓心為坐標(biāo)原點,半徑為2,從這個圓上任意一點P向x軸作垂線段,求線段中點M的軌跡。
(六)變式訓(xùn)練,探索創(chuàng)新
1、寫出適合下列條件的橢圓標(biāo)準(zhǔn)方程
(1),焦點在x軸上;
。2)焦點在x軸上,焦距等于4,并且經(jīng)過點P;
2、若方程表示焦點在y軸上的橢圓,則k的范圍。
3、已知B,C是兩個定點,周長為16,求頂點A的軌跡方程。
4、已知橢圓的焦距相等,求實數(shù)m的值。
5、在橢圓上上求一點,使它與兩個焦點連線互相垂直。
6、已知P是橢圓上一點,其中為其焦點且,求三解形面積。
(七)小結(jié)歸納,提高認(rèn)識
師生共同歸納本節(jié)所學(xué)內(nèi)容、知識規(guī)律以及所學(xué)的數(shù)學(xué)思想和方法。
(八)作業(yè)訓(xùn)練,鞏固提高
課本第96頁習(xí)題§8。1第3題、第5題、第6題。
課后思考題:
1、知是橢圓的兩個焦點,AB是過的弦,則周長是。
。ˋ)2a(B)4a(C)8a(D)2a2b
2、的兩個頂點A,B的坐標(biāo)分別是邊AC,BC所在直線的斜
率之積等于,求頂點C的軌跡方程。
2、與圓外切,同時與圓內(nèi)切,求動圓圓心的軌跡方程,并說明它是什么樣的曲線?
教學(xué)設(shè)計說明
橢圓是圓錐曲線中重要的一種,本節(jié)內(nèi)容的學(xué)習(xí)是后繼學(xué)習(xí)其它圓錐曲線的基礎(chǔ),坐標(biāo)法是解析幾何中的重要數(shù)學(xué)方法,橢圓方程的推導(dǎo)是利用坐標(biāo)法求曲線方程的很好應(yīng)用實例。本節(jié)課內(nèi)容的學(xué)習(xí)能很好地在課堂教學(xué)中展現(xiàn)新課程的理念,主要采用學(xué)生自主探究學(xué)習(xí)的方式,使培養(yǎng)學(xué)生的探索精神和創(chuàng)新能力的教學(xué)思想貫穿于本節(jié)課教學(xué)設(shè)計的始終。
橢圓是生活中常見的圖形,通過實驗演示,創(chuàng)設(shè)生動而直觀的情境,使學(xué)生親身體會橢圓與生活聯(lián)系,有助于激發(fā)學(xué)生對橢圓知識的學(xué)習(xí)興趣;在橢圓概念引入的過程中,改變了直接給出橢圓概念和動畫畫出橢圓的方式,而采用學(xué)生動手畫橢圓并合作探究的學(xué)習(xí)方式,讓學(xué)生親身經(jīng)歷橢圓概念形成的數(shù)學(xué)化過程,有利于培養(yǎng)學(xué)生觀察分析、抽象概括的能力。
橢圓方程的化簡是學(xué)生從未經(jīng)歷的問題,方程的推導(dǎo)過程采用學(xué)生分組探究,師生共同研討方程的化簡和方程的特征,可以讓學(xué)生主體參與橢圓方程建立的具體過程,使學(xué)生真正了解橢圓標(biāo)準(zhǔn)方程的來源,并在這種師生嘗試探究、合作討論的活動中,使學(xué)生體會成功的快樂,提高學(xué)生的數(shù)學(xué)探究能力,培養(yǎng)學(xué)生獨立主動獲取知識的能力。
設(shè)計例題、習(xí)題的研討探究變式訓(xùn)練,是為了讓學(xué)生能靈活地運用橢圓的知識解決問題,同時也是為了更好地調(diào)動、活躍學(xué)生的思維,發(fā)展學(xué)生數(shù)學(xué)思維能力,讓學(xué)生在解決問題中發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識和創(chuàng)新能力,同時培養(yǎng)學(xué)生大膽實踐、勇于探索的精神,開闊學(xué)生知識應(yīng)用視野。
高中數(shù)學(xué)說課稿3
一.內(nèi)容和內(nèi)容分析
“函數(shù)的奇偶性”是人教版數(shù)學(xué)必修教材必修一第一章第三節(jié)的內(nèi)容,本節(jié)的主要內(nèi)容是研究函數(shù)的一個性質(zhì)—函數(shù)的奇偶性,學(xué)習(xí)奇函數(shù)和偶函數(shù)的概念.奇偶性是函數(shù)的一條重要性質(zhì),教材從學(xué)生熟悉的兩個特殊函數(shù)入手,從特殊到一般,從具體到抽象,從感性到理性比較系統(tǒng)地介紹了函數(shù)的奇偶性.從知識結(jié)構(gòu)看,它既是函數(shù)概念的拓展和深化,又為后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎(chǔ),因此,本節(jié)課起著承上啟下的重要作用。 本節(jié)課的教學(xué)重點:函數(shù)奇偶性的概念及判定。
二.目標(biāo)和目標(biāo)分析
。1)知識目標(biāo):從形和數(shù)兩個方面進行引導(dǎo),使學(xué)生理解奇偶性的概念,學(xué)會利用定義判斷
簡單函數(shù)的奇偶性。
。2)能力目標(biāo):通過設(shè)置問題情境培養(yǎng)學(xué)生判斷、推理的能力,同時滲透數(shù)形結(jié)合和由特殊
到一般的數(shù)學(xué)思想方法.
(3)情感目標(biāo):在學(xué)生感受數(shù)學(xué)美的同時,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神。
三.教學(xué)問題診斷分析
導(dǎo)入有點慢,講的有點細(xì),導(dǎo)致時間上沒有完成教學(xué)任務(wù),感覺還是自己講的太多,不能充分調(diào)動學(xué)生的積極性。
四.教學(xué)支持條件分析
用了多媒體,使用ppt,使得奇偶性函數(shù)概念的探究過程更形象更直觀,是學(xué)生理解更深刻。
五.教學(xué)過程設(shè)計
為了達到預(yù)期的教學(xué)目標(biāo),我對整個教學(xué)過程進行了系統(tǒng)地規(guī)劃,設(shè)計了四個主要的教學(xué)程序是:
1.設(shè)疑導(dǎo)入、觀圖激趣:
使用幻燈片展示圖片蝴蝶、雪花等讓學(xué)生感受生活中的美,從而引入對稱在函數(shù)中的體現(xiàn)。
2.指導(dǎo)觀察、形成概念:
作出函數(shù)y=x的圖象,并觀察這兩個函數(shù)圖象的對稱性如何?
借助課件演示,讓學(xué)生分別計算f(1),f(-1),f(2),f(-2),學(xué)生很快會得到f(-1)=f(1),f(-2)=f(2),進而提出在定義域內(nèi)是否對所有的x,都有類似的情況?借助課件演示,學(xué)生會得出結(jié)論,f(-x)=f(x),從而引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。根據(jù)以上特點,請學(xué)生用完整的語言敘述定義,同時給出板書:
函數(shù)f(x)的定義域為A,且關(guān)于原點對稱,如果有f(-x)=f(x),則稱f(x)為偶函數(shù),類比探究2
偶函數(shù)的過程,得到奇函數(shù)的概念,又通過具體的例子說明了定義域關(guān)于原點對稱是研究奇偶性的前提。
3.學(xué)生探索、發(fā)展思維。
接著通過學(xué)案上的例一,總結(jié)函數(shù)奇偶性的判斷方法及步驟:
(1)求出函數(shù)的定義域,并判斷是否關(guān)于原點對稱
(2)驗證f(-x)=f(x)或f(-x)=-f(x)
(3)得出結(jié)論
由學(xué)生小結(jié)判斷奇偶性的步驟之后,提出新的問題:函數(shù)按奇偶性如何分類?既奇又偶的函數(shù)是不是只有一個?試舉例說明。
4.布置作業(yè):
六.目標(biāo)檢測設(shè)計
學(xué)案上的題型主要包括奇偶性函數(shù)的判斷及應(yīng)用
七.教學(xué)反思:(從兩方面)
1.思成功
一:是通過設(shè)計富有挑戰(zhàn)性的問題來呈現(xiàn)背景,通過問題的探究和自主學(xué)習(xí)來獲取相關(guān)概念,實現(xiàn)了 “教學(xué)邏輯”與“學(xué)習(xí)邏輯”的連通、“知識邏輯”與“認(rèn)知邏輯”的連通;二:是在老師創(chuàng)設(shè)的情境中,每個學(xué)生都積極投入探究過程,學(xué)生在疑惑中探索,在探索中思考,在思考中發(fā)現(xiàn),大部分學(xué)生積極性高漲,通過看別人怎樣觀察,
聽別人怎樣介紹,也學(xué)到了知識.
2.思不足
學(xué)生練習(xí):在教學(xué)過程中應(yīng)多注意學(xué)生的活動,由單一的問答式轉(zhuǎn)化為多方位的考察,以采用
學(xué)生板演或者把學(xué)生練習(xí)投影到屏幕上讓全班學(xué)生糾正等方式,更好的考察學(xué)生掌握情況。
語言組織:
在講授過程中還要注意到說話語速,語言組織等講授技巧,應(yīng)該用平緩的語氣講授,語言描述要簡練易懂,不能拖泥帶水。
教學(xué)環(huán)節(jié)(的完整):
在授課過程中要注意到教學(xué)環(huán)節(jié)設(shè)計,我們的教學(xué)過程有復(fù)習(xí)引入、講授新課、例題講解、學(xué)生練習(xí)、課時小結(jié)、布置作業(yè)等幾個重要的環(huán)節(jié),由于時間的關(guān)系沒有來得及小結(jié)造成教學(xué)設(shè)計不完善。在以后的教學(xué)過程中要注意這些環(huán)節(jié)。
以上是我對這節(jié)課以后的教學(xué)反思,還有很多地方做的還不完善,我要在以后的教學(xué)中努力改進這些錯誤,以便更好的適應(yīng)教學(xué),努力使自己的教學(xué)更上一層樓。
高中數(shù)學(xué)說課稿4
一、說教材
1.內(nèi)容分析:本節(jié)課是“反比例函數(shù)”的第一節(jié)課,是繼正比例函數(shù)、一次函數(shù)之后,二次函數(shù)之前的又一類型函數(shù),本節(jié)課主要通過豐富的生活事例,讓學(xué)生歸納出反比例函數(shù)的概念,并進一步體會函數(shù)是刻畫變量之間關(guān)系的數(shù)學(xué)模型,從中體會函數(shù)的模型思想。因此本節(jié)課重點是理解和領(lǐng)悟反比例函數(shù)的概念,所滲透的數(shù)學(xué)思想方法有:類比,轉(zhuǎn)化,建模。
2.學(xué)情分析:對八年級學(xué)生來說,雖然他們已經(jīng)對函數(shù),正比例函數(shù),一次函數(shù)的概念、圖象、性質(zhì)以及應(yīng)用有所掌握,但他們面對新的一次函數(shù)時,還可能存在一些思維障礙,如學(xué)生不能準(zhǔn)確地找出變量之間的自變量和因變量,以及如何從事例中領(lǐng)悟和總結(jié)出反比例函數(shù)的概念,因此,本節(jié)課的難點是理解和領(lǐng)悟反比例函數(shù)的概念。
二、說教學(xué)目標(biāo)
根據(jù)本人對《數(shù)學(xué)課程標(biāo)準(zhǔn)》的理解與分析,考慮學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我把本課的目標(biāo)定為:
1.從現(xiàn)實的情境和已有的知識經(jīng)驗出發(fā),討論兩個變量之間的相依關(guān)系,加深對函數(shù)概念的理解。
2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念。
三、說教法
本節(jié)課從知識結(jié)構(gòu)呈現(xiàn)的角度看,為了實現(xiàn)教學(xué)目標(biāo),我建立了“創(chuàng)設(shè)情境→建立模型→解釋知識→應(yīng)用知識”的學(xué)習(xí)模式,這種模式清晰地再現(xiàn)了知識的生成與發(fā)展的過程,也符合學(xué)生的認(rèn)知規(guī)律。于是,從教學(xué)內(nèi)容的性質(zhì)出發(fā),我設(shè)計了如下的課堂結(jié)構(gòu):創(chuàng)設(shè)出電流、行程等情境問題讓學(xué)生發(fā)現(xiàn)新知,把上述問題進行類比,導(dǎo)出概念,獲得新知,最后總結(jié)評價、內(nèi)化新知。
四、說學(xué)法
我認(rèn)為學(xué)生將實際問題轉(zhuǎn)化成函數(shù)的能力是有限的,所以我借助多媒體輔助教學(xué),指導(dǎo)學(xué)生通過類比、轉(zhuǎn)化、直觀形象的觀察與演示,親身經(jīng)歷函數(shù)模型的轉(zhuǎn)化過程,為學(xué)生攻克難點創(chuàng)造條件,同時考慮到本課的重點是反比例函數(shù)概念的教學(xué),也考慮到概念教學(xué)要從大量實際出發(fā),通過事例幫助完成定義。
好學(xué)教育:
因此,我采用了“問題式探究法”的教法,利用多媒體設(shè)置豐富的問題情境,讓學(xué)生的思維由問題開始,到問題深化,讓學(xué)生的思維始終處于積極主動的狀態(tài),并隨著問題的深入而跳躍。
高中數(shù)學(xué)說課稿5
尊敬的各位專家、評委:
上午好!
今天我說課的課題是人教A版必修1第二章第二節(jié)《對數(shù)函數(shù)》。
我嘗試?yán)眯抡n標(biāo)的理念來指導(dǎo)教學(xué),對于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標(biāo)分析、教法學(xué)法分析、教學(xué)過程分析和評價分析五個方面來談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設(shè)計,敬請各位專家、評委批評指正。
一、教材分析
地位和作用
本章學(xué)習(xí)是在學(xué)生完成函數(shù)的第一階段學(xué)習(xí)(初中)的基礎(chǔ)上,進行第二階段的函數(shù)學(xué)習(xí)。而對數(shù)函數(shù)作為這一階段的重要的基本初等函數(shù)之一,它是在學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)函數(shù)及對數(shù)的內(nèi)容,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。“對數(shù)函數(shù)”這節(jié)教材,是在沒有學(xué)習(xí)反函數(shù)的基礎(chǔ)上研究的指數(shù)函數(shù)和對數(shù)函數(shù)的自變量和因變量之間的關(guān)系。同時對數(shù)函數(shù)作為常用數(shù)學(xué)模型在解決社會生活中的實例有著廣泛的應(yīng)用,本節(jié)課的學(xué)習(xí)為學(xué)生進一步學(xué)習(xí),參加生產(chǎn)和實際生活提供必要的基礎(chǔ)知識。
二、目標(biāo)分析
(一)、教學(xué)目標(biāo)
根據(jù)《對數(shù)函數(shù)》在教材內(nèi)容中的地位與作用,結(jié)合學(xué)情分析,本節(jié)課教學(xué)應(yīng)實現(xiàn)如下的教學(xué)目標(biāo):
1、知識與技能
(1)、進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型;
。2)、理解對數(shù)函數(shù)的概念、掌握對數(shù)函數(shù)的圖像和性質(zhì);
。3)、由實際問題出發(fā),培養(yǎng)學(xué)生探索知識和抽象概括知識等方面的能力。
2、過程與方法
引導(dǎo)學(xué)生觀察,探尋變量和變量的對應(yīng)關(guān)系,通過歸納、抽象、概括,自主建構(gòu)對數(shù)函數(shù)的概念;體驗結(jié)合舊知識探索新知識,研究新問題的快樂。
3、情感態(tài)度與價值觀
通過對對數(shù)函數(shù)函數(shù)圖像和性質(zhì)的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。在民主、和諧的教學(xué)氣氛中,促進師生的情感交流。
(二)教學(xué)重點、難點及關(guān)鍵
1、重點:對數(shù)函數(shù)的概念、圖像和性質(zhì);在教學(xué)中只有突出這個重點,才能使教材脈絡(luò)分明,才能有利于學(xué)生聯(lián)系舊知識,學(xué)習(xí)新知識。
2、 難點:底數(shù)a對對數(shù)函數(shù)的圖像和性質(zhì)的影響。
[關(guān)鍵]對數(shù)函數(shù)與指數(shù)函數(shù)的類比教學(xué)。
由指數(shù)函數(shù)的圖像過渡到對數(shù)函數(shù)的圖像,通過類比分析達到深刻地了解對數(shù)函數(shù)的圖像及其性質(zhì)是掌握重點和突破難點的關(guān)鍵,在教學(xué)中一定要使學(xué)生的思考緊緊圍繞圖像,數(shù)形結(jié)合,加強直觀教學(xué),使學(xué)生能形成以圖像為根本,以性質(zhì)為主體的知識網(wǎng)絡(luò),同時在立體的講解中,重視加強題組的設(shè)計和變形,使教學(xué)真正體現(xiàn)出由淺入深,由易到難,由具體到抽象的特點,從而突破重點、突破難點。
三、教法、學(xué)法分析
(一)、教法
教學(xué)過程是教師和學(xué)生共同參與的過程,啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動學(xué)生的積極性、主動性;有效地滲透數(shù)學(xué)思想方法,提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法:
1、啟發(fā)引導(dǎo)學(xué)生思考、分析、實驗、探索、歸納;
2、采用“從特殊到一般”、“從具體到抽象”的方法;
3、體現(xiàn)“對比聯(lián)系”、“數(shù)形結(jié)合”及“分類討論”的思想方法;
4、投影儀演示法。
在整個過程中,應(yīng)以學(xué)生看,學(xué)生想,學(xué)生議,學(xué)生練為主體,教師在學(xué)生仔細(xì)觀察、類比、想象的基礎(chǔ)上通過問題串的形式加以引導(dǎo)點撥,與指數(shù)函數(shù)性質(zhì)對照,歸納,整理,只有這樣,才能喚起學(xué)生對原有知識的回憶,自覺地找到新舊知識的聯(lián)系,使新學(xué)知識更牢固,理解更深刻。
。ǘ、學(xué)法
教給學(xué)生方法比教給學(xué)生知識更重要,本節(jié)課注重調(diào)動學(xué)生積極思考、主動探索,盡可能地增加學(xué)生參與教學(xué)活動的時間和空間,我進行了以下學(xué)法指導(dǎo):
1、對照比較學(xué)習(xí)法:學(xué)習(xí)對數(shù)函數(shù),處處與指數(shù)函數(shù)相對照;
2、探究式學(xué)習(xí)法:學(xué)生通過分析、探索,得出對數(shù)函數(shù)的定義;
3、自主性學(xué)習(xí)法:通過實驗畫出函數(shù)圖像、觀察圖像自得其性質(zhì);
4、反饋練習(xí)法:檢驗知識的應(yīng)用情況,找出未掌握的內(nèi)容及其差距。
四、教學(xué)過程分析
(一)、教學(xué)過程設(shè)計
1、創(chuàng)設(shè)情境,提出問題。
在某細(xì)胞分裂過程中,細(xì)胞個數(shù)y是分裂次數(shù)x的函數(shù)y=2x,因此,知道x的值(輸入值是分裂次數(shù))就能求出y的值(輸出值為細(xì)胞的個數(shù)),這樣就建立了一個細(xì)胞個數(shù)和分裂次數(shù)x之間的函數(shù)關(guān)系式。
問題一:這是一個怎樣的函數(shù)模型類型呢?
設(shè)計意圖
復(fù)習(xí)指數(shù)函數(shù)
問題二:現(xiàn)在我們來研究相反的問題,如果知道了細(xì)胞的個數(shù)y,如何求分裂的次數(shù)x呢?這將會是我們研究的哪類問題?
設(shè)計意圖
為了引出對數(shù)函數(shù)
問題三:在關(guān)系式x=log2y每輸入一個細(xì)胞的個數(shù)y的值,是否一定都能得到唯一一個分裂次數(shù)x的值呢?
設(shè)計意圖
。1)、為了讓學(xué)生更好地理解函數(shù);
。2)、為了讓學(xué)生更好地理解對數(shù)函數(shù)的概念。
2、引導(dǎo)探究,建構(gòu)概念。
(1)、對數(shù)函數(shù)的概念:
同樣,在前面提到的發(fā)射性物質(zhì),經(jīng)過的時間x年與物質(zhì)剩余量y的關(guān)系式為y=0.84x,我們也可以把它改成對數(shù)式x=log0.84y,其中x年夜可以看作物質(zhì)剩余量y的函數(shù),可見這樣的問題在現(xiàn)實生活中還是不少的。
設(shè)計意圖
前面的問題情景的底數(shù)為2,而這個問題情景的底數(shù)是0.84,我認(rèn)為這個情景并不是多余的,其實它暗示了對數(shù)函數(shù)的底數(shù)與指數(shù)函數(shù)的底數(shù)一樣有兩類。
但是在習(xí)慣上,我們用x表示自變量,用y表示函數(shù)值。
問題一:你能把以上兩個函數(shù)表示出來嗎?
問題二:你能得到此類函數(shù)的一般式嗎?
設(shè)計意圖
體現(xiàn)出了由特殊到一般的數(shù)學(xué)思想
問題三:在y=logax中,a有什么限制條件嗎?請結(jié)合指數(shù)式給以解釋。
問題四:你能根據(jù)指數(shù)函數(shù)的定義給出對數(shù)函數(shù)的定義嗎?
問題五:x=logay與y=ax中的x,y的相同之處是什么?不同之處是什么?
設(shè)計意圖
前四個問題是為了引導(dǎo)出對數(shù)函數(shù)的概念,然而,光有前四個問題還是不夠的,學(xué)生最容易忽略或最不容易理解的是函數(shù)的定義域,所以設(shè)計這個問題是為了讓學(xué)生更好地理解對數(shù)函數(shù)的定義域。
(2)、對數(shù)函數(shù)的圖像與性質(zhì)
問題:有了研究指數(shù)函數(shù)的經(jīng)歷,你覺得下面該學(xué)習(xí)什么內(nèi)容了?
設(shè)計意圖
提示學(xué)生進行類比學(xué)習(xí)
合作探究1:借助計算器在同一直角坐標(biāo)系中畫出下列兩組函數(shù)的圖像,并觀察各族函數(shù)圖像,探求他們之間的關(guān)系。
y=2x;y=log2x y=( )x,y=log x
合作探究2:當(dāng)a>0,a≠ 1,函數(shù)y=ax與y=logax圖像之間有什么關(guān)系?
設(shè)計意圖
在這兒體現(xiàn)“從特殊到一般”、“從具體到抽象”的方法。
合作探究3:分析你所畫的兩組函數(shù)的圖像,對照指數(shù)函數(shù)的性質(zhì),總結(jié)歸納對數(shù)函數(shù)的性質(zhì)。
設(shè)計意圖
學(xué)生討論并交流各自的而發(fā)現(xiàn)成果,教師結(jié)合學(xué)生的交流,適時歸納總結(jié),并板書對數(shù)函數(shù)的性質(zhì))。問題1:對數(shù)函數(shù)y=logax( a>0,a≠1,)是否具有奇偶性,為什么?
問題2:對數(shù)函數(shù)y=logax( a>0,a≠1,),當(dāng)a>1時,x取何值,y>0,x取何值,y<0,當(dāng)0 問題3:對數(shù)式logab的值的符號與a,b的取值之間有何關(guān)系? 知識拓展:函數(shù)y=ax稱為y=logax的'反函數(shù),反之,也成立,一般地,如果函數(shù)y=f(x)存在反函數(shù),那么它的反函數(shù)記作y=f-1(x)。 3、自我嘗試,初步應(yīng)用。 例1:求下列函數(shù)的定義域 y=log0.2(4-x)(該題主要考查對函數(shù)y=logax的定義域(0,+∞)這一限制條件,根據(jù)函數(shù)的解析式求得不等式,解對應(yīng)的不等式。) 例2:利用對數(shù)函數(shù)的性質(zhì),比較下列各組數(shù)中兩個數(shù)的大。 。1)、㏒2 3.4,log2 3.8; 。2)、log0.5 1.8,log0.5 2.1; (3)、log7 5,log6 7 。ㄔ谶@兒要求學(xué)生通過回顧指數(shù)函數(shù)的有關(guān)性質(zhì)比較大小的步驟和方法,完成完成前兩題,最后一題可以通過教師的適當(dāng)點撥完成解答,最后進行歸納總結(jié)比較數(shù)的大小常用的方法) 合作探究4:已知logm 4 設(shè)計意圖 該題不僅運用了對數(shù)函數(shù)的圖像和性質(zhì),還培養(yǎng)了學(xué)生數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想。 4、當(dāng)堂訓(xùn)練,鞏固深化。 通過學(xué)生的主體性參與,使學(xué)生深刻體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識的再次深化。 采用課后習(xí)題1,2,3. 5、小結(jié)歸納,回顧反思。 小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進行總結(jié)。 。1)、小結(jié): 、賹(shù)函數(shù)的概念 ②對數(shù)函數(shù)的圖像和性質(zhì) 、劾脤(shù)函數(shù)的性質(zhì)比較大小的一般方法和步驟, (2)、反思 我設(shè)計了三個問題 、佟⑼ㄟ^本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識? 、、通過本節(jié)課的學(xué)習(xí),你最大的體驗是什么? 、邸⑼ㄟ^本節(jié)課的學(xué)習(xí),你掌握了哪些技能? 。ǘ、作業(yè)設(shè)計 作業(yè)分為必做題和選做題,必做題是對本節(jié)課學(xué)生知識水平的反饋,選做題是對本節(jié)課內(nèi)容的延伸與連貫,強調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進學(xué)生的自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成。 我設(shè)計了以下作業(yè): 必做題:課后習(xí)題A 1,2,3; 選做題:課后習(xí)題B 1,2,3; (三)、板書設(shè)計 板書要基本體現(xiàn)課堂的內(nèi)容和方法,體現(xiàn)課堂進程,能簡明扼要反映知識結(jié)構(gòu)及其相互關(guān)系:能指導(dǎo)教師的教學(xué)進程、引導(dǎo)學(xué)生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。 五、評價分析 學(xué)生學(xué)習(xí)的結(jié)果評價固然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價。我采用了及時點評、延時點評與學(xué)生互評相結(jié)合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對本節(jié)是否有一個完整的集訓(xùn),并進行及時的調(diào)整和補充。 以上就是我對本節(jié)課的理解和設(shè)計,敬請各位專家、評委批評指正。 謝謝! 一、教材分析: 1、教材的地位與作用。 本節(jié)資料是在學(xué)生學(xué)習(xí)了"事件的可能性的基礎(chǔ)上來學(xué)習(xí)如何預(yù)測不確定事件(隨機事件)發(fā)生的可能性的大小。"用概率預(yù)測隨機發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著廣泛的應(yīng)用,學(xué)習(xí)本單元知識,無論是今后繼續(xù)深造(高中學(xué)習(xí)概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學(xué)生較難理解。 在教材的處理上,采取小單元教學(xué),本節(jié)課安排讓學(xué)生了解求隨機事件概率的兩種方法,目的是讓學(xué)生能夠比較系統(tǒng)地理解概率的意義及求概率的方法,為下頭學(xué)習(xí)求比較復(fù)雜的情景的概率打下基礎(chǔ)。 2、重點與難點。 重點:對概率意義的理解,經(jīng)過多次重復(fù)實驗,用頻率預(yù)測概率的方法,以及用列舉法求概率的方法。 難點:對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發(fā)生的總數(shù)及總的結(jié)果數(shù)的分析。 二、目的分析: 知識與技能:掌握用頻率預(yù)測概率和用列舉法求概率方法。 過程與方法:組織學(xué)生自主探究,合作交流,引導(dǎo)學(xué)生觀察試驗和統(tǒng)計的結(jié)果,進而進行分析、歸納、總結(jié),了解并感受概率的定義的過程,引導(dǎo)學(xué)生從數(shù)學(xué)的視角觀察客觀世界,用數(shù)學(xué)的思維思考客觀世界,以數(shù)學(xué)的語言描述客觀世界。 情感態(tài)度價值觀:學(xué)生經(jīng)歷觀察、分析、歸納、確認(rèn)等數(shù)學(xué)活動,感受數(shù)學(xué)活動充滿了探索性與創(chuàng)造性,感受量變與質(zhì)變的對立統(tǒng)一規(guī)律,同時為概率的精準(zhǔn)、新穎、獨特的思維方法所震撼,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,增強對數(shù)學(xué)價值觀的認(rèn)識。 三、教法、學(xué)法分析: 引導(dǎo)學(xué)生自主探究、合作交流、觀察分析、歸納總結(jié),讓學(xué)生經(jīng)歷知識(概率定義計算公式)的產(chǎn)生和發(fā)展過程,讓學(xué)生在數(shù)學(xué)活動中學(xué)習(xí)數(shù)學(xué)、掌握數(shù)學(xué),并能應(yīng)用數(shù)學(xué)解決現(xiàn)實生活中的實際問題,教師是學(xué)生學(xué)習(xí)的組織者、合作者和指導(dǎo)者,精心設(shè)計教學(xué)情境,有序組織學(xué)生活動,讓課堂充滿生機活力,體現(xiàn)"教"為"學(xué)"服務(wù)這一宗旨。 四、教學(xué)過程分析: 1、引導(dǎo)學(xué)生探究 精心設(shè)計問題一,學(xué)生經(jīng)過對問題一的探究,一方面復(fù)習(xí)前面學(xué)過的"確定事件和不確定事件"的知識,為學(xué)好本節(jié)資料理清知識障礙,二是讓學(xué)生明確為什么要學(xué)習(xí)概率(如何預(yù)測隨機事件可能性發(fā)生大。。引導(dǎo)學(xué)生對問題二的探究與觀察實驗數(shù)據(jù),使學(xué)生了解概率這一重要概念的實際背景,感受并相信隨機事件的發(fā)生中存在著統(tǒng)計規(guī)律性,感受數(shù)學(xué)規(guī)律的真實的發(fā)現(xiàn)過程。 2、歸納概括 學(xué)生從試驗中得到的統(tǒng)計數(shù)字及概率呈現(xiàn)穩(wěn)定在某一數(shù)值附近這一規(guī)律,讓學(xué)生明確概率定義的由來。 引導(dǎo)學(xué)生重新對問題一和問題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結(jié)果中所占比例,得到用列舉法求概率的公式,引導(dǎo)學(xué)生進行理性思維,邏輯分析,既培養(yǎng)學(xué)生的分析問題本事,又讓學(xué)生明確用列舉法求概率這一簡便快捷方法的合理性。 3、舉例應(yīng)用 、乓龑(dǎo)學(xué)生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學(xué)生掌握用列舉法求概率的方法。 、埔龑(dǎo)學(xué)生對練習(xí)中的問題思考與探究,鞏固對概率公式的應(yīng)用及加深對概率意義的理解。 4、深化發(fā)展 、旁O(shè)置3個小題目,引導(dǎo)學(xué)生歸納、分析、總結(jié),加深對知識與方法的理解,并學(xué)會靈活運用。 、谱寣W(xué)生設(shè)計活動資料,對知識進行升華和拓展,引導(dǎo)學(xué)生創(chuàng)造性地運用知識思考問題和解決問題,從而培養(yǎng)學(xué)生的創(chuàng)新意識和創(chuàng)新本事。 一、本節(jié)內(nèi)容的地位與重要性 "分類計數(shù)原理與分步計數(shù)原理"是《高中數(shù)學(xué)》一節(jié)獨特內(nèi)容。這一節(jié)課與排列、組合的基本概念有著緊密的聯(lián)系,通過對這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生接受、理解分類計數(shù)原理與分步計數(shù)原理,還為日后排列、組合和二項式定理的教學(xué)做好準(zhǔn)備,起到奠基的重要作用。 二、關(guān)于教學(xué)目標(biāo)的確定 根據(jù)兩個基本原理的地位和作用,我認(rèn)為本節(jié)課的教學(xué)目標(biāo)是: 。1)使學(xué)生正確理解兩個基本原理的概念; 。2)使學(xué)生能夠正確運用兩個基本原理分析、解決一些簡單問題; 。3)提高分析、解決問題的能力 (4)使學(xué)生樹立"由個別到一般,由一般到個別"的認(rèn)識事物的辯證唯物主義哲學(xué)思想觀點。 三、關(guān)于教學(xué)重點、難點的選擇和處理 中學(xué)數(shù)學(xué)課程中引進的關(guān)于排列、組合的計算公式都是以兩個計數(shù)原理為基礎(chǔ)的,而一些較復(fù)雜的排列、組合應(yīng)用題的求解,更是離不開兩個基本原理,所以正確理解兩個基本原理并能解決實際問題是學(xué)習(xí)本章的重點內(nèi)容。 正確使用兩個基本原理的前提是要學(xué)生清楚兩個基本原理使用的條件。而原理中提到的分步和分類,學(xué)生不是一下子就能理解深刻的,面對復(fù)雜的事物和現(xiàn)象學(xué)生對分類和分步的選擇容易產(chǎn)生錯誤的認(rèn)識,所以分類計數(shù)原理和分步計數(shù)原理的準(zhǔn)確應(yīng)用是本節(jié)課的教學(xué)難點。必需使學(xué)生認(rèn)清兩個基本原理的實質(zhì)就是完成一件事需要分類還是分步,才能使學(xué)生接受概念并對如何運用這兩個基本原理有正確清楚的認(rèn)識。教學(xué)中兩個基本問題的引用及引伸,就是為突破難點做準(zhǔn)備。 四、關(guān)于教學(xué)方法和教學(xué)手段的選用 根據(jù)本節(jié)課的內(nèi)容及學(xué)生的實際水平,我采取啟發(fā)引導(dǎo)式教學(xué)方法并充分發(fā)揮電腦多媒體的輔助教學(xué)作用。 啟發(fā)引導(dǎo)式作為一種啟發(fā)式教學(xué)方法,體現(xiàn)了認(rèn)知心理學(xué)的基本理論。符合教學(xué)論中的自覺性和積極性、鞏固性、可接受性、教學(xué)與發(fā)展相結(jié)合、教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一等原則,教學(xué)過程中,教師采用點撥的方法,啟發(fā)學(xué)生通過主動思考、動手操作來達到對知識的"發(fā)現(xiàn)"和接受,進而完成知識的內(nèi)化,使書本的知識成為自己的知識。 電腦多媒體以聲音、動畫、影像等多種形式強化對學(xué)生感觀的刺激,這一點是粉筆和黑板所不能比擬的,采取這種形式,可以極大提高學(xué)生的學(xué)習(xí)興趣,加大一堂課的信息容量,使教學(xué)目標(biāo)更完美地體現(xiàn)。另外,電腦軟件具有良好的交互性,可以將教師的思路和策略以軟件的形式來體現(xiàn),更好地為教學(xué)服務(wù)。 五、關(guān)于學(xué)法的指導(dǎo) "授人以魚,不如授人以漁",在教學(xué)過程中,不但要傳授學(xué)生課本知識,還要培養(yǎng)學(xué)生主動觀察、主動思考、自我發(fā)現(xiàn)的學(xué)習(xí)能力,增強學(xué)生的綜合素質(zhì),從而達到教學(xué)的目標(biāo)。教學(xué)中,教師創(chuàng)設(shè)疑問,學(xué)生想辦法解決疑問,通過教師的啟發(fā)點撥,類比推理,在積極的雙邊活動中,學(xué)生找到了解決疑難的方法。整個過程貫穿"設(shè)疑"——"思索"——"發(fā)現(xiàn)"——"解惑"四個環(huán)節(jié),學(xué)生隨時對所學(xué)知識產(chǎn)生有意注意,思想上經(jīng)歷了從肯定到否定、又從否定到肯定的辨證思維過程,符合學(xué)生認(rèn)知水平,培養(yǎng)了學(xué)習(xí)能力。 六、關(guān)于教學(xué)程序的設(shè)計 。ㄒ唬┱n題導(dǎo)入 這是本章的第一節(jié)課,是起始課,講起始課時,把這一學(xué)科的內(nèi)容作一個大概的介紹,能使學(xué)生從一開始就對將要學(xué)習(xí)的知識有一個初步的了解,并為下面的學(xué)習(xí)打下思想基礎(chǔ)。所以,首先閱讀引言,明確任務(wù),激發(fā)興趣。由學(xué)生感興趣的乒乓球比賽提出問題,引出學(xué)習(xí)本節(jié)的必要性,明確研究計數(shù)方法是本章內(nèi)容的獨特性,從應(yīng)用的廣泛看學(xué)習(xí)本章內(nèi)容的重要性。同時板書課題(分類計數(shù)原理與分步計數(shù)原理) 這樣做,能使學(xué)生明白本節(jié)內(nèi)容的地位和作用,激發(fā)其學(xué)習(xí)新知識的欲望,為順利完成教學(xué)任務(wù)做好思維上的準(zhǔn)備。 。ǘ┬抡n講授 通過幻燈片給出問題,配圖分析,講清坐火車與坐汽車兩類方法均可,每類中任一種辦法都可以獨立地把從甲地到乙地這件事辦好。 緊跟著給出: 引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點共有多少種不同的走法? 引伸2:若完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,每一類中的每一種方法均可完成這件事,那么完成這件事共有多少種不同方法? 這個問題的兩個引申由漸入深、循序漸進為學(xué)生接受分類計數(shù)原理做好了準(zhǔn)備。 板書分類計數(shù)原理內(nèi)容: 完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,那么完成這件事共有 種不同的方法。(也稱加法原理) 此時,趁學(xué)生對于原理有了一個較清晰的認(rèn)識,引導(dǎo)學(xué)生分析分類計數(shù)原理內(nèi)容,啟發(fā)總結(jié)得下面三點注意:(出示幻燈片) 。1)各分類之間相互獨立,都能完成這件事; 。2)根據(jù)問題的特點在確定的分類標(biāo)準(zhǔn)下進行分類; (3)完成這件事的任何一種方法必屬于某一類,并且分別屬于不同兩類的兩種方法都是不同的方法。 這樣做加深學(xué)生對分類計數(shù)原理的正確理解,突出了重點,突破了難點。 接下來給出問題2:(出示幻燈片) 由A村去B村的道路有3條,由B村去C村的道路有2條(見圖9-1),從A村經(jīng)B村去C村,共有多少種不同的走法? 提出問題:問題1與問題2同是研究從甲地到乙地的不同走法,請找出這兩個問題的不之處?學(xué)生會發(fā)現(xiàn)問題1中采用乘火車或乘汽車都可以從甲地到乙地,而問題2中必須經(jīng)過先乘火車后乘汽車兩個步驟才能完成從甲地到乙地這件事。 問題2的講授采用給出問題,配圖分析,組織討論,強調(diào)分步。用多媒體配不同的顏色閃現(xiàn)出六種不同的走法,讓學(xué)生列式求出不同走法數(shù),并列舉所有走法。 歸納得出:分步計數(shù)原理(板書原理內(nèi)容) 分步計數(shù)原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法。那么,完成這件事共有 N=m1×m2×…×mn 種不同的方法。 同樣趁學(xué)生對定理有一定的認(rèn)識,引導(dǎo)學(xué)生分析分步計數(shù)原理內(nèi)容,啟發(fā)總結(jié)得下面三點注意:(出示幻燈片) (1) 各步驟相互依存,只有各個步驟完成了,這件事才算完成; 。2) 根據(jù)問題的特點在確定的分步標(biāo)準(zhǔn)下分步; 。3) 分步時要注意滿足完成一件事必須并且只需連續(xù)完成這N個步驟這件事才算完成。 。ㄈ⿷(yīng)用舉例 教材例1:(書架取書問題)引導(dǎo)學(xué)生分析解答,注意區(qū)分是分類還是分步。 例2:由數(shù)字0,1,2,3,4可以組成多少個三位整數(shù)(各位上的數(shù)字允許重復(fù))?本題設(shè)置了4個問題: 。1) 每一個三位數(shù)是由什么構(gòu)成的?(三個整數(shù)字) 。2) 023是一個三位數(shù)嗎?(百位上不能是0) 。3) 組成一個三位數(shù)需要怎么做?(分成三個步驟來完成:第一步確定百位上的數(shù)字;第二步確定十位上的數(shù)字;第三步確定個位上的數(shù)字) 。4) 怎樣表述? 教師巡視指導(dǎo)、并歸納 解:要組成一個三位數(shù),需要分成三個步驟:第一步確定百位上的數(shù)字,從1~4這4個數(shù)字中任選一個數(shù)字,有4種選法;第二步確定十位上的數(shù)字,由于數(shù)字允許重復(fù),共有5種選法;第三步確定個位上的數(shù)字,仍有5種選法。根據(jù)分步計數(shù)原理,得到可以組成的三位整數(shù)的個數(shù)是N=4×5×5=100. 答:可以組成100個三位整數(shù)。 。ń處煹倪B續(xù)發(fā)問、啟發(fā)、引導(dǎo),幫助學(xué)生找到正確的解題思路和計算方法,使學(xué)生的分析問題能力有所提高。 教師在第二個例題中給出板書示范,能幫助學(xué)生進一步加深對兩個基本原理實質(zhì)的理解,周密的考慮,準(zhǔn)確的表達、規(guī)范的書寫,對于學(xué)生周密思考、準(zhǔn)確表達、規(guī)范書寫良好習(xí)慣的形成有著積極的促進作用,也可以為學(xué)生后面應(yīng)用兩個基本原理解排列、組合綜合題打下基礎(chǔ)) 。ㄋ模w納小結(jié) 師:什么時候用分類計數(shù)原理、什么時候用分步計數(shù)原理呢? 生:分類時用分類計數(shù)原理,分步時用分步計數(shù)原理。 師:應(yīng)用兩個基本原理時需要注意什么呢? 生:分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨立的。 (五)課堂練習(xí) P222:練習(xí)1~4.學(xué)生板演第4題 。▽τ陬}4,教師有必要對三個多項式乘積展開后各項的構(gòu)成給以提示) (六)布置作業(yè) P222:練習(xí)5,6,7. 補充題: 1.在所有的兩位數(shù)中,個位數(shù)字小于十位數(shù)字的共有多少個? 。ㄌ崾荆喊词簧蠑(shù)字的大小可以分為9類,共有9+8+7+…+2+1=45個個位數(shù)字小于十位數(shù)字的兩位數(shù)) 2.某學(xué)生填報高考志愿,有m個不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個不同的志愿,求該生填寫志愿的方式的種數(shù)。 。ㄌ崾荆盒枰慈齻志愿分成三步。共有m(m-1)(m-2)種填寫方式) 3.在所有的三位數(shù)中,有且只有兩個數(shù)字相同的三位數(shù)共有多少個? 。ㄌ崾荆嚎梢杂孟旅娣椒▉砬蠼猓海1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個只有兩個數(shù)字相同的三位數(shù)) 4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不同的選法? 。ㄌ崾荆河捎8+5=13>10,所以10人中必有3人既會英語又會日語。(1)N=5+2+3;(2)N=5×2+5×3+2×3) 只要大家用心學(xué)習(xí),認(rèn)真復(fù)習(xí),就有可能在高中的戰(zhàn)場上考取自己理想的成績。 一.說教材 1.本節(jié)課主要內(nèi)容是線性規(guī)劃的意義以及線性約束條件、線性目標(biāo)函數(shù)、可行域、可行解、最優(yōu)解等概念,根據(jù)約束條件建立線性目標(biāo)函數(shù)。應(yīng)用線性規(guī)劃的圖解法解決一些實際問題。 2.地位作用:線性規(guī)劃是數(shù)學(xué)規(guī)劃中理論較完整、方法較成熟、應(yīng)用較廣泛的一個分支,它可以解決科學(xué)研究、工程設(shè)計、經(jīng)濟管理等許多方面的實際問題。簡單的線性規(guī)劃是在學(xué)習(xí)了直線方程的基礎(chǔ)上,介紹直線方程的一個簡單應(yīng)用。通過這部分內(nèi)容的學(xué)習(xí),使學(xué)生進一步了解數(shù)學(xué)在解決實際問題中的應(yīng)用,以培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、應(yīng)用數(shù)學(xué)的意識和解決實際問題的能力。 3.教學(xué)目標(biāo) (1)知識與技能:了解線性規(guī)劃的意義以及線性約束條件、線性目標(biāo)函數(shù)、可行域、可行解、最優(yōu)解等概念,能根據(jù)約束條件建立線性目標(biāo)函數(shù)。 了解并初步應(yīng)用線性規(guī)劃的圖解法解決一些實際問題。 (2)過程與方法:提高學(xué)生數(shù)學(xué)地提出、分析和解決問題的能力,發(fā)展學(xué)生數(shù)學(xué)應(yīng)用意識,力求對現(xiàn)實世界中蘊含的一些數(shù)學(xué)模式進行思考和作出判斷。 (3)情感、態(tài)度與價值觀:體會數(shù)形結(jié)合、等價轉(zhuǎn)化等數(shù)學(xué)思想,逐步認(rèn)識數(shù)學(xué)的應(yīng)用價值,提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的自信心。 4.重點與難點 重點:理解和用好圖解法 難點:如何用圖解法尋找線性規(guī)劃的最優(yōu)解。 二.說教學(xué)方法 教學(xué)過程是教師和學(xué)生共同參與的過程,啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動學(xué)生的積極性、主動性;有效地滲透數(shù)學(xué)思想方法,提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法: (1)啟發(fā)引導(dǎo)學(xué)生思考、分析、實驗、探索、歸納。這能充分調(diào)動學(xué)生的主動性和積極性。 (2)采用“從特殊到一般”、“化抽象為具體”、“化靜為動”的方法。這有利于學(xué)生對知識進行主動建構(gòu);有利于突出重點、解決難點;也有利于發(fā)揮學(xué)生的創(chuàng)造性。 (3)體現(xiàn)“等價轉(zhuǎn)化”、“數(shù)形結(jié)合”的思想方法。這樣可發(fā)揮學(xué)生的主觀能動性,有利于提高學(xué)生的各種能力。 三.說學(xué)法指導(dǎo) 教給學(xué)生方法比教給學(xué)生知識更重要,本節(jié)課注重調(diào)動學(xué)生積極思考、主動探索,盡可能地增加學(xué)生參與教學(xué)活動的時間和空間,我進行了以下學(xué)法指導(dǎo):觀察分析、聯(lián)想轉(zhuǎn)化、動手實驗、練習(xí)鞏固。 (1)觀察分析:通過引例讓學(xué)生觀察化舊知為新知,造成學(xué)生認(rèn)知沖突。 (2)聯(lián)想轉(zhuǎn)化:學(xué)生通過分析、探索、得出解決問題的方法。 (3)動手實驗:通過作圖、實驗、從而得出一般解題步驟。 (4)練習(xí)鞏固:讓學(xué)生知道數(shù)學(xué)重在運用,從而檢驗知識的應(yīng)用情況,找出未掌握的內(nèi)容及其差距。 四.說教學(xué)程序 1、導(dǎo)入課題: 由一個不等式組表示平面區(qū)域轉(zhuǎn)化為在此平面區(qū)域內(nèi)一二元一次數(shù)的最值問題,造成學(xué)生認(rèn)知沖突。 3、導(dǎo)學(xué)達標(biāo)之一:創(chuàng)設(shè)情境、形成概念 通過引例的問題讓學(xué)生探索解決新問題的方法。 (設(shè)計意圖:利用已經(jīng)學(xué)過的知識逐步分析,學(xué)以致用,使學(xué)生經(jīng)歷數(shù)學(xué)知識的形成過程,從而提高學(xué)生數(shù)學(xué)的地提出、分析和解決問題的能力。) 然后老師逐步引導(dǎo),動手實驗,化抽象為直觀。從而得到解決此類問題的方法,并對比引例給出相關(guān)概念:線性約束條件、目標(biāo)函數(shù)、線性目標(biāo)函數(shù)、線性規(guī)劃、可行解、可行域、最優(yōu)解。并能根據(jù)引例提煉線性規(guī)劃問題的解法——圖解法。 (設(shè)計意圖:引導(dǎo)學(xué)生觀察和分析問題,激發(fā)學(xué)生的探索欲望,從而培養(yǎng)學(xué)生的解決問題和總結(jié)歸納的能力。) 4.導(dǎo)學(xué)達標(biāo)之二:針對問題、舉例講解、形成技能 例一:課本61頁例3 (創(chuàng)設(shè)意境:,練習(xí)是使學(xué)生明白數(shù)學(xué)來源于實際又運用于實際,同時使學(xué)生進初步應(yīng)用線性規(guī)劃的圖解法解決一些實際問題。) 6.鞏固目標(biāo): 練習(xí)一:學(xué)生做課堂練習(xí)P64例4 (叫學(xué)生提出解決問題的方法,并用多媒體展示,并根據(jù)問題的實際意義,考慮取值范圍。造成新的認(rèn)知沖突,從而研究探索,得到整點最優(yōu)解的一種求法。) 練習(xí)二:為了賺大錢,老張最近承包了一家具廠,可老張卻悶悶不樂,原來家具廠有方木料90m3,五合板600m2,老張準(zhǔn)備加工成書桌和書廚出售,他通過調(diào)查了解到:生產(chǎn)每張書桌需要方木料0.1m3、五合板2m2,生產(chǎn)每個書櫥需要方木料0.2m3、五合板1m2,出售一張書桌可獲利潤80元,出售一個書櫥可獲利潤120元。老張卻不知如何安排?(電腦顯示問題) (設(shè)計意圖:通過實際問題,激發(fā)學(xué)生興趣,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識,力求學(xué)生能夠?qū)ΜF(xiàn)實生活中蘊含的一些數(shù)學(xué)模式進行思考和作出判斷。) 7.歸納與小結(jié): 小結(jié)本課的主要學(xué)習(xí)內(nèi)容是什么?(由師生共同來完成本課小結(jié)) (創(chuàng)設(shè)意境:讓學(xué)生參與小結(jié),引導(dǎo)學(xué)生對所學(xué)知識進行反思,有利于加強學(xué)生記憶和形成良好的數(shù)學(xué)思維習(xí)慣) 8.布置作業(yè): P64. 2 五.說板書設(shè)計 板書設(shè)計為表格式,這樣的板書簡明清楚,重點突出,加深學(xué)生對重點知識的理解和掌握,同時便于記憶,有利于提高教學(xué)效果。 各位教師: 今天我說課的題目是《必修》4第二章第二單元中“平面向量的線性運算”的第一節(jié)課《向量的加法》,我從以下幾個方面闡述本課的教學(xué)設(shè)計。 一、教材分析: 《向量的加法》是《必修》4第二章第二單元中“平面向量的線性運算”的第一節(jié)課。本節(jié)內(nèi)容有向量加法的平行四邊形法則、三角形法則及應(yīng)用,向量加法的運算律及應(yīng)用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學(xué)習(xí)向量的減法運算及其幾何意義、向量的數(shù)乘運算及其幾何意義奠定了基礎(chǔ);其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應(yīng)用。所以本課在“平面向量”及“空間向量”中有很重要的地位。 二、學(xué)情分析: 學(xué)生在上節(jié)課中學(xué)習(xí)了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動,這是學(xué)習(xí)本節(jié)內(nèi)容的基礎(chǔ)。學(xué)生對數(shù)的運算了如指掌,并且在物理中學(xué)過力的合成、位移的合成等矢量的加法,所以向量的加法可通過類比數(shù)的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準(zhǔn)確把握兩個加法法則的特點。 三、教學(xué)目的: 1、通過對向量加法的探究,使學(xué)生掌握向量加法的概念,結(jié)合物理學(xué)實際理解向量加法的意義。能正確領(lǐng)會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。 2、在應(yīng)用活動中,理解向量加法滿足交換律和結(jié)合律以及表述兩個運算律的幾何意義。掌握有特殊位置關(guān)系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。 3、通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生類比、遷移、分類、歸納等數(shù)學(xué)方面的能力。 四、教學(xué)重、難點 重點:向量的加法法則。探究向量的加法法則并正確應(yīng)用是本課的重點。兩個加法法則各有特點,聯(lián)系緊密,你中有我,我中有你,實質(zhì)相同,但是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講內(nèi)容,平行四邊形法則在本課中所占份量略少于三角形法則。 難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學(xué)生認(rèn)識到三角形法則的實質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構(gòu)成三角形。 五、教學(xué)方法 本節(jié)采用以下教學(xué)方法:1、類比:由數(shù)的加法運算類比向量的加法運算。2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;通過圖形,觀察得出向量加法滿足交換律、結(jié)合律等,這些都體現(xiàn)探究式教學(xué)法的運用。3、講解與練習(xí):對兩個法則特點的分析,例題都采取了引導(dǎo)與講解的方法,學(xué)生課堂完成教材中的練習(xí)。4、多媒體技術(shù)的運用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。 六、數(shù)學(xué)思想的體現(xiàn): 1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規(guī)定,這樣對任意向量的加法都做了討論,線索清楚。 2、類比思想:使之與數(shù)的加法進行類比,使學(xué)生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從對比中看出兩者的不同,效果較好。 3、歸納思想:主要體現(xiàn)在以下三個環(huán)節(jié)①學(xué)完平行四邊形法則和三角形法則后,歸納總結(jié),對不共線向量相加,兩個法則都可以選用。②由共線向量的加法總結(jié)出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。③對向量加法的結(jié)合律和探討中,又使學(xué)生發(fā)現(xiàn)了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環(huán)節(jié)中的運用,使得學(xué)生對兩個加法法則,尤其是三角形法則的理解,步步深入。 七、教學(xué)過程: 1、回顧舊知:本節(jié)要進行向量的平移,且對向量加法分共線與不共線兩種情況,所以要復(fù)習(xí)向量、相等向量、共線向量等概念,這些都是新課學(xué)習(xí)中必要的知識鋪墊。 2、引入新課: (1)平行四邊形法則的引入。 學(xué)生在物理學(xué)中雖然接觸過位移的合成,但是并沒有形成三角形法則的概念;而對平行四邊形法則學(xué)生已學(xué)過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,但是物理中力的合成是在有相同的作用點的條件下合成的,引入到數(shù)學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現(xiàn)成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對相等向量的概念還沒有深刻的認(rèn)識,易產(chǎn)生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要通過講解例1,使學(xué)生認(rèn)識到可以通過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。 設(shè)計意圖:本著從學(xué)生最熟悉、離學(xué)生最近的知識經(jīng)驗為接入點,用學(xué)生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學(xué)生容易接受,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對向量加法的平行四邊形法則的“起點相同”這一特點的認(rèn)識,例1的講解使學(xué)生認(rèn)識到當(dāng)表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學(xué)生完成對平行四邊形法則理解真正到位。 。2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。 所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學(xué)生也起到了示例的作用。于是前面的例1還可以利用三角形法則來做。 這時,總結(jié)出兩個不共線向量求和時,平行四邊形法則與三角形法則都可以用。 設(shè)計意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學(xué)生從向何意義上認(rèn)識到兩個法則之間的密切聯(lián)系,理解它們的實質(zhì),而且銜接自然,能夠使學(xué)生對比地得出兩個法則的特點與實質(zhì),并對兩個法則的特點有較深刻的印象。 (3)共線向量的加法 方向相同的兩個向量相加,對學(xué)生來說較易完成,“將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度!币龑(dǎo)學(xué)生分析作法,結(jié)果發(fā)現(xiàn)還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。 方向相反的兩個向量相加,對學(xué)生來說是個難點,首先從作圖上不知道怎樣做。但是學(xué)生學(xué)過有理數(shù)加法中的異號兩數(shù)相加:“異號兩數(shù)相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數(shù)的符號。”類比異號兩數(shù)相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由老師引導(dǎo)學(xué)生嘗試運用三角形法則去做,發(fā)現(xiàn)結(jié)論正確。 反思過程,學(xué)生自然會想到方向相同的兩個向量相加,類似于同號兩數(shù)相加。這說明兩個共線向量相加依然可用三角形法則。對有如下規(guī)定: + = + = 通過以上幾個環(huán)節(jié)的討論,可以作個簡單的小結(jié):兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學(xué)方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。 設(shè)計意圖:通過對共線向量加法的探討,拓寬了學(xué)生對三角形法則的認(rèn)識,使得不同位置的向量相加都有了依據(jù),并且采用類比的方法,使學(xué)生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,可以化解難點。 。4)向量加法的運算律 ①交換律:交換律是利用平行四邊形法則的圖形,又結(jié)合三角形法則得出,理解起來沒什么困難,再一次強化了學(xué)生對兩個法則特點及實質(zhì)的認(rèn)識。 、诮Y(jié)合律:結(jié)合律是通過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結(jié)果相同。 接下來是對應(yīng)的兩個練習(xí),運用交換律與結(jié)合律計算向量的和。 設(shè)計意圖:運算律的引入給加法運算帶來方便,從后面的練習(xí)中學(xué)生能夠體會到這點。由結(jié)合律還使學(xué)生發(fā)現(xiàn),多個向量相加,同樣可以運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最后一個向量的終點。這樣使學(xué)生明白,三角形法則適用于任意多個向量相加。 3、小結(jié) 先由學(xué)生小結(jié),檢查學(xué)生對本課重要知識的認(rèn)識,也給學(xué)生一個概括本節(jié)知識的機會,然后用課件展示小結(jié)內(nèi)容,使學(xué)生印象更深。 。1)平行四邊形法則:起點相同,適用于不共線向量的求和。 。2)三角形法則首尾相接,適用于任意多個向量的求和。 。3)運算律 交換律: + = + 結(jié)合律:( + 。+ = +( + 。 4、作業(yè):P91,A組1、2、3。 《向量的加法》評課稿 本節(jié)所授內(nèi)容基本與原先設(shè)想一致,評略得當(dāng),重點突出,難點化解。在兩個加法則的引入、講解及運用的處理方法、時間安排都把握得比較好,能夠引導(dǎo)學(xué)生積極主動地探索平行四邊形法則和三角形法則,使學(xué)生對兩個加法法則形成了正確的認(rèn)識,留下了深刻的印象,通過反饋練習(xí),可以看出學(xué)生對兩個法則的運用掌握的比較好,比較完整地實現(xiàn)了教學(xué)目標(biāo)。 本節(jié)課的教學(xué)方法運用比較合理:采取了類比、探究、講練結(jié)合及多媒體技術(shù)等多種方法。對數(shù)學(xué)課來說,本節(jié)課最顯著的特點是將全部板書都移到了課件上,對我來說,是一次嘗試,因為以前,我認(rèn)為數(shù)學(xué)課沒必要用課件,對全部利用課件上課更是不能接受。但是這次講課改變了我的看法。從學(xué)生的反饋情況來看,這樣處理對教學(xué)效果沒有什么不良影響,反而使學(xué)生能更直觀地理解兩個加法法則和運算律,通過課件中的向量的平移,加深了學(xué)生對上節(jié)課所學(xué)的“相等向量”的概念的理解,也加大了課堂容量,還沒有擁擠之感。從學(xué)生對內(nèi)容小結(jié)的敘述看,沒有板書,并沒有妨礙本節(jié)內(nèi)容在學(xué)生腦海中留下的印象。原先的設(shè)計中,板書設(shè)計也有,打在教案的后面。 通過這節(jié)課的講授,我收獲很多:首先,從課程的構(gòu)思上,沒有按照教參建議及網(wǎng)上普遍的編排方法先講三角形法則,而是先由學(xué)生學(xué)過的力的合成引入了平行四邊形法則,由此又引入三角形法則,效果也不錯?梢姡瑢滩牡奶幚泶_實要根據(jù)學(xué)生情況,靈活裁剪,不能生搬硬套。 其次,通過這節(jié)課我感到,對有些與圖形聯(lián)系較多的課程,使用課件講解簡便易行,關(guān)鍵是要根據(jù)教學(xué)設(shè)計制作合適的課件,并且合理使用。 本節(jié)缺憾也很多。首先,學(xué)生活動還是偏少,沒有充分、全面地調(diào)動學(xué)生熱情。其次,語言不夠精煉,有時比較啰嗦,也耽誤了時間,第三,學(xué)生發(fā)言時,好打斷學(xué)生,總覺得學(xué)生說得不清楚,搶學(xué)生話頭,打擊了學(xué)生課堂參與的積極性,很不好。 以上是我對這節(jié)課的反思,不到之處,請大家指點。 各位評委老師,大家好! 我是本科數(shù)學(xué)**號選手,今天我要進行說課的課題是高中數(shù)學(xué)必修一第一章第三節(jié)第一課時《函數(shù)單調(diào)性與最大(。┲怠罚ǹ梢栽谶@時候板書課題,以緩解緊張)。我將從教材分析;教學(xué)目標(biāo)分析;教法、學(xué)法;教學(xué)過程;教學(xué)評價五個方面來陳述我對本節(jié)課的設(shè)計方案。懇請在座的專家評委批評指正。 一、教材分析 1、 教材的地位和作用 (1)本節(jié)課主要對函數(shù)單調(diào)性的學(xué)習(xí); 。2)它是在學(xué)習(xí)函數(shù)概念的基礎(chǔ)上進行學(xué)習(xí)的,同時又為基本初等函數(shù)的學(xué)習(xí)奠定了基礎(chǔ),所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來寫) 。3)它是歷年高考的熱點、難點問題 (根據(jù)具體的課題改變就行了,如果不是熱點難點問題就刪掉) 2、 教材重、難點 重點:函數(shù)單調(diào)性的定義 難點:函數(shù)單調(diào)性的證明 重難點突破:在學(xué)生已有知識的基礎(chǔ)上,通過認(rèn)真觀察思考,并通過小組合作探究的辦法來實現(xiàn)重難點突破。(這個必須要有) 3.學(xué)情分析 高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴(yán)密、意志力薄弱,故而整個教學(xué)環(huán)節(jié)總是創(chuàng)設(shè)恰當(dāng)?shù)膯栴}情境,引導(dǎo)學(xué)生積極思考,培養(yǎng)他們的邏輯思維能力。從學(xué)生的認(rèn)知結(jié)構(gòu)來看,他們只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大函數(shù)值增大”等變化趨勢,所以在教學(xué)中要充分利用好函數(shù)圖象的直觀性,發(fā)揮好多媒體教學(xué)的優(yōu)勢;由于學(xué)生在概念的掌握上缺少系統(tǒng)性、嚴(yán)謹(jǐn)性,在教學(xué)中注意加強. 二、教學(xué)目標(biāo) 知識目標(biāo): 。1)函數(shù)單調(diào)性的定義 。2)函數(shù)單調(diào)性的證明 能力目標(biāo): 培養(yǎng)學(xué)生全面分析、抽象和概括的能力,以及了解由簡單到復(fù)雜,由特殊到一般的化歸思想 情感目標(biāo): 培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識 。ㄟ@樣的教學(xué)目標(biāo)設(shè)計更注重教學(xué)過程和情感體驗,立足教學(xué)目標(biāo)多元化) 三、教法學(xué)法分析 1、教法分析 “教必有法而教無定法”,只有方法得當(dāng)才會有效。新課程標(biāo)準(zhǔn)之處教師是教學(xué)的組織者、引導(dǎo)者、合作者,在教學(xué)過程要充分調(diào)動學(xué)生的積極性、主動性。本著這一原則,在教學(xué)過程中我主要采用以下教學(xué)方法:開放式探究法、啟發(fā)式引導(dǎo)法、小組合作討論法、反饋式評價法 2、學(xué)法分析 “授人以魚,不如授人以漁”,最有價值的知識是關(guān)于方法的只是。學(xué)生作為教學(xué)活動的主題,在學(xué)習(xí)過程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結(jié)法。 。ㄇ叭糠钟脮r控制在三分鐘以內(nèi),可適當(dāng)刪減) 四、教學(xué)過程 1、以舊引新,導(dǎo)入新知 通過課前小研究讓學(xué)生自行繪制出一次函數(shù)f(x)=x和二次函數(shù)f(x)=x^2的圖像,并觀察函數(shù)圖象的特點,總結(jié)歸納。通過課上小組討論歸納,引導(dǎo)學(xué)生發(fā)現(xiàn),教師總結(jié):一次函數(shù)f(x)=x的圖像在定義域是直線上升的,而二次函數(shù)f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當(dāng)添加手勢,這樣看起來更自然) 2、創(chuàng)設(shè)問題,探索新知 緊接著提出問題,你能用二次函數(shù)f(x)=x^2表達式來描述函數(shù)在(-∞,0)的圖像?教師總結(jié),并板書,揭示函數(shù)單調(diào)性的定義,并注意強調(diào)可以利用作差法來判斷這個函數(shù)的單調(diào)性。 讓學(xué)生模仿剛才的表述法來描述二次函數(shù)f(x)=x^2在(0,+∞)的圖像,并找個別同學(xué)起來作答,規(guī)范學(xué)生的數(shù)學(xué)用語。 讓學(xué)生自主學(xué)習(xí)函數(shù)單調(diào)區(qū)間的定義,為接下來例題學(xué)習(xí)打好基礎(chǔ)。 3、 例題講解,學(xué)以致用 例1主要是對函數(shù)單調(diào)區(qū)間的鞏固運用,通過觀察函數(shù)定義在(—5,5)的圖像來找出函數(shù)的單調(diào)區(qū)間。這一例題主要以學(xué)生個別回答為主,學(xué)生回答之后通過互評來糾正答案,檢查學(xué)生對函數(shù)單調(diào)區(qū)間的掌握。強調(diào)單調(diào)區(qū)間一般寫成半開半閉的形式 例題講解之后可讓學(xué)生自行完成課后練習(xí)4,以學(xué)生集體回答的方式檢驗學(xué)生的學(xué)習(xí)效果。 例2是將函數(shù)單調(diào)性運用到其他領(lǐng)域,通過函數(shù)單調(diào)性來證明物理學(xué)的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進行證明,以規(guī)范總結(jié)證明步驟。一設(shè)二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。 學(xué)生在熟悉證明步驟之后,做課后練習(xí)3,并以小組為單位找部分同學(xué)上臺板演,其他同學(xué)在下面自行完成,并通過自評、互評檢查證明步驟。 4、歸納小結(jié) 本節(jié)課我們主要學(xué)習(xí)了函數(shù)單調(diào)性的定義及證明過程,并在教學(xué)過程中注重培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識。 5、作業(yè)布置 為了讓學(xué)生學(xué)習(xí)不同的數(shù)學(xué),我將采用分層布置作業(yè)的方式:一組 習(xí)題1.3A組1、2、3 ,二組 習(xí)題1.3A組2、3、B組1、2 6、板書設(shè)計 我力求簡潔明了地概括本節(jié)課的學(xué)習(xí)要點,讓學(xué)生一目了然。 (這部分最重要用時六到七分鐘,其中定義講解跟例題講解一定要說明學(xué)生的活動) 五、教學(xué)評價 本節(jié)課是在學(xué)生已有知識的基礎(chǔ)上學(xué)習(xí)的,在教學(xué)過程中通過自主探究、合作交流,充分調(diào)動學(xué)生的積極性跟主動性,及時吸收反饋信息,并通過學(xué)生的自評、互評,讓內(nèi)部動機和外界刺激協(xié)調(diào)作用,促進其數(shù)學(xué)素養(yǎng)不斷提高。 一、教材分析: 1、教材的地位與作用: 線性規(guī)劃是運籌學(xué)的一個重要分支,在實際生活中有著廣泛的應(yīng)用。本節(jié)內(nèi)容是在學(xué)習(xí)了不等式、直線方程的基礎(chǔ)上,利用不等式和直線方程的有關(guān)知識展開的,它是對二元一次不等式的深化和再認(rèn)識、再理解。通過這一部分的學(xué)習(xí),使學(xué)生進一步了解數(shù)學(xué)在解決實際問題中的應(yīng)用,體驗數(shù)形結(jié)合和轉(zhuǎn)化的思想方法,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、應(yīng)用數(shù)學(xué)的意識和解決實際問題的能力。 2、教學(xué)重點與難點: 重點:畫可行域;在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。 難點:在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。 二、目標(biāo)分析: 在新課標(biāo)讓學(xué)生經(jīng)歷“學(xué)數(shù)學(xué)、做數(shù)學(xué)、用數(shù)學(xué)”的理念指導(dǎo)下,本節(jié)課的教學(xué)目標(biāo)分設(shè)為知識目標(biāo)、能力目標(biāo)和情感目標(biāo)。 知識目標(biāo): 1、了解線性規(guī)劃的意義,了解線性約束條件、線性目標(biāo)函數(shù)、可行解、可行 域和最優(yōu)解等概念; 2、理解線性規(guī)劃問題的圖解法; 3、會利用圖解法求線性目標(biāo)函數(shù)的最優(yōu)解. 能力目標(biāo): 1、在應(yīng)用圖解法解題的過程中培養(yǎng)學(xué)生的觀察能力、理解能力。 2、在變式訓(xùn)練的過程中,培養(yǎng)學(xué)生的分析能力、探索能力。 3、在對具體事例的感性認(rèn)識上升到對線性規(guī)劃的理性認(rèn)識過程中,培養(yǎng)學(xué)生運用數(shù)形結(jié)合思想解題的能力和化歸能力。 情感目標(biāo): 1、讓學(xué)生體驗數(shù)學(xué)來源于生活,服務(wù)于生活,體驗數(shù)學(xué)在建設(shè)節(jié)約型社會中的作用,品嘗學(xué)習(xí)數(shù)學(xué)的樂趣。 2、讓學(xué)生體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,培養(yǎng)學(xué)生勤于思考、勇于探索的精神; 3、讓學(xué)生學(xué)會用運動觀點觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認(rèn)識論的思想。 三、過程分析: 數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué)。因此,我將整個教學(xué)過程分為以下六個教學(xué)環(huán)節(jié):1、創(chuàng)設(shè)情境,提出問題;2、分析問題,形成概念;3、反思過程,提煉方法;4、變式演練,深入探究;5、運用新知,解決問題;6、歸納總結(jié),鞏固提高。 1、創(chuàng)設(shè)情境,提出問題: 在課堂教學(xué)的開始,我以一組生動的動畫(配圖片)描述出在神奇的數(shù)學(xué)王國里,有一種算法廣泛應(yīng)用于工農(nóng)業(yè)、軍事、交通運輸、決策管理與規(guī)劃等領(lǐng)域,應(yīng)用它已節(jié)約了億萬財富,還被列為20世紀(jì)對科學(xué)發(fā)展和工程實踐影響最大的十大算法之一。它為何有如此大的魅力?它又是怎樣的一種神奇算法呢?我以景激情,以情激思,點燃學(xué)生的求知欲,引領(lǐng)學(xué)生進入學(xué)習(xí)情境。 尊敬的各位評委、各位老師大家好!我說課的題目是《直線的點斜式方程》,選自人民教育出版社普通高中課程標(biāo)準(zhǔn)試驗教科書數(shù)學(xué)必修2(A版),是第三章直線與方程中的第2節(jié)的第一課時3.2.1直線的點斜式方程的內(nèi)容。下面我將從教學(xué)背景、教學(xué)方法、教學(xué)過程及教學(xué)特點等四個方面具體說明。 一、教學(xué)背景的分析 1.教材分析 直線的方程是學(xué)生在初中學(xué)習(xí)了一次函數(shù)的概念和圖象及高中學(xué)習(xí)了直線的斜率后進行研究的。直線的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究解析幾何學(xué)的開始,對后續(xù)研究兩條直線的位置關(guān)系、圓的方程、直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容,無論在知識上還是方法上都是地位顯要,作用非同尋常,是本章的重點內(nèi)容之一!爸本的點斜式方程”可以說是直線的方程的形式中最重要、最基本的形式,在此花多大的時間和精力都不為過。直線作為常見的最簡單的曲線,在實際生活和生產(chǎn)實踐中有著廣泛的應(yīng)用。同時在這一節(jié)中利用坐標(biāo)法來研究曲線的數(shù)形結(jié)合、幾何直觀等數(shù)學(xué)思想將貫穿于我們整個高中數(shù)學(xué)教學(xué)。 2.學(xué)情分析 我校的生源較差,學(xué)生的基礎(chǔ)和學(xué)習(xí)習(xí)慣都有待加強。又由于剛開始學(xué)習(xí)解析幾何,第一次用坐標(biāo)法來求曲線的方程,在學(xué)習(xí)過程中,會出現(xiàn)“數(shù)”與“形”相互轉(zhuǎn)化的困難。另外我校學(xué)生在探究問題的能力,合作交流的意識等方面更有待加強。 根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo): 3.教學(xué)目標(biāo) (1)了解直線的方程的概念和直線的點斜式方程的推導(dǎo)過程及方法; (2)明確點斜式、斜截式方程的形式特點和適用范圍;初步學(xué)會準(zhǔn)確地使用直線的點斜式、斜截式方程 ; (3)從實例入手,通過類比、推廣、特殊化等,使學(xué)生體會從特殊到一般再到特殊的認(rèn)知規(guī)律; (4)提倡學(xué)生用舊知識解決新問題,通過體會直線的斜截式方程與一次函數(shù)的關(guān)系等活動,培養(yǎng)學(xué)生主動探究知識、合作交流的意識,并初步了解數(shù)形結(jié)合在解析幾何中的應(yīng)用。 4. 教學(xué)重點與難點 (1)重點: 直線點斜式、斜截式方程的特點及其初步應(yīng)用。 (2)難點:直線的方程的概念,點斜式方程的推導(dǎo)及點斜式、斜截式方程的應(yīng)用。 二、教法學(xué)法分析 1.教法分析:根據(jù)學(xué)情,為了能調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“實例引導(dǎo)的啟發(fā)式”問題教學(xué)法。幫助學(xué)生將幾何問題代數(shù)化,用代數(shù)的語言描述直線的幾何要素及其關(guān)系,進而將直線的問題轉(zhuǎn)化為直線方程的問題,通過對直線的方程的研究,最終解決有關(guān)直線的一些簡單的問題。另外可以恰當(dāng)?shù)睦枚嗝襟w課件進行輔助教學(xué),激發(fā)學(xué)生的學(xué)習(xí)興趣。 2.學(xué)法分析:學(xué)生從問題中嘗試、總結(jié)、質(zhì)疑、運用,體會學(xué)習(xí)數(shù)學(xué)的樂趣;通過推導(dǎo)直線的點斜式方程的學(xué)習(xí),要了解用坐標(biāo)法求方程的思想;通過一個點和方向可以確定一條直線,進而可求出直線的點斜式方程,要能體會“形”與“數(shù)”的轉(zhuǎn)化思想。 下面我就對具體的教學(xué)過程和設(shè)計加以說明: 三、教學(xué)過程的設(shè)計及實施 整個教學(xué)過程是由六個問題組成,共分為四個環(huán)節(jié),學(xué)習(xí)或涉及四個概念: 溫故知新,澄清概念----直線的方程 深入探究,獲得新知--------點斜式 拓展知識,再獲新知--------斜截式 小結(jié)引申,思維延續(xù)--------兩點式 平面上的點可以用坐標(biāo)表示,直線的傾斜程度可以用斜率表示,那么平面上的直線如何表示呢?這就是本節(jié)要學(xué)習(xí)的內(nèi)容。 (一)溫故知新,澄清概念----直線的方程 問題一:畫出一次函數(shù)y=2x+1的圖象;y=2x+1是一個方程嗎?若是,那么方程的解與圖象上的點的坐標(biāo)有何關(guān)系? [學(xué)生活動] 通過動手畫圖,思考并嘗試用語言進行初步的表述。 [教師活動] 對于不同學(xué)生的表述進行分析、歸納,用規(guī)范的語言對方程和直線的方程進行描述。 [設(shè)計意圖]從學(xué)生熟知的舊知識出發(fā)澄清直線的方程的概念,試圖做到“用學(xué)生已有的數(shù)學(xué)知識去學(xué)數(shù)學(xué)”,從而突破難點。通過對這個問題的研究,一方面認(rèn)識到以方程的解為坐標(biāo)的點在直線上,另一方面認(rèn)識到直線上的點的坐標(biāo)滿足方程;從而使同學(xué)意識到直線可以由直線上任意一點P(x,y)的坐標(biāo)x和y之間的等量關(guān)系來表示。 問題二:若直線經(jīng)過點A(-1, 3),斜率為-2,點P在直線l上。 (1) 若點P在直線l上從A點開始運動,橫坐標(biāo)增加1時,點P的坐標(biāo)是 ; (2)畫出直線l,你能求出直線l的方程嗎? (3)若點P在直線l上運動,設(shè)P點的坐標(biāo)為(x,y),你會有什么方法找到x,y滿足的關(guān)系式? [學(xué)生活動]學(xué)生獨立思考5分鐘,必要的話可進行分組討論、合作交流。 [教師活動]巡視?隙▽W(xué)生的各種方法及大膽嘗試的行為;并引導(dǎo)學(xué)生觀察發(fā)現(xiàn),得到當(dāng)點P在直線l上運動時(除點 A外),點P與定點A(-1, 3)所確定的直線的斜率恒等于-2,體會“動中有靜”的思維策略。 [設(shè)計意圖]復(fù)習(xí)斜率公式;待定系數(shù)法;初步體會坐標(biāo)法。同時引導(dǎo)學(xué)生注意為什么要把分式化簡?(若不化簡,就少一點),感受數(shù)學(xué)簡潔的美感和嚴(yán)謹(jǐn)性。還要指出這樣的事實:當(dāng)點P在直線l上運動時,P的坐標(biāo)(x,y)滿足方程2x+y-1=0.反過來,以方程2x+y-1=0的解為坐標(biāo)的點在直線l上。把學(xué)生的思維引到用坐標(biāo)法研究直線的方程上來,此時再把問題深入,進入第二環(huán)節(jié)。 (二)深入探究,獲得新知----點斜式 問題三: ① 若直線l經(jīng)過點P0(x0,y0),且斜率為k,求直線l的方程。 、谥本的點斜式方程能否表示經(jīng)過P0(x0,y0)的所有直線? [學(xué)生活動] ①學(xué)生敘述,老師板書,強調(diào)斜率公式與點斜式的區(qū)別。 ②指導(dǎo)學(xué)生用筆轉(zhuǎn)一轉(zhuǎn)不難發(fā)現(xiàn),當(dāng)直線l的傾斜角α=90°時,斜率k不存在,當(dāng)然不存在點斜式方程;討論k=0的情況;觀察并總結(jié)點斜式方程的特征。 [設(shè)計意圖] 由特殊到一般的學(xué)習(xí)思路,突破難點,培養(yǎng)學(xué)生的歸納概括能力。通過對這個問題的探究使學(xué)生獲得直線點斜式方程;由②知:當(dāng)直線斜率k不存在時,不能用點斜式方程表示直線,培養(yǎng)思維的嚴(yán)謹(jǐn)性,這時直線l與y軸平行,它上面的每一點的橫坐標(biāo)都等于x0,直線l的方程是:x=x0;通過學(xué)生的觀察討論總結(jié),明確點斜式方程的形式特點和適用范圍,通過下面的例題和基礎(chǔ)練習(xí),突破重難點。 問題四:分別求經(jīng)過點且滿足下列條件的直線的方程 (1) 斜率;(2)傾斜角; (3)與軸平行 ;(4)與軸垂直。 [練習(xí)]P95.1、2。 [學(xué)生活動]學(xué)生獨立完成并展示或敘述,老師點評。 [設(shè)計意圖]充分用好教材的例題和習(xí)題,因為這些題都是專家精心編排的,充分體現(xiàn)必要性及合理性;做到及時反饋,便于反思本環(huán)節(jié)的教學(xué),指導(dǎo)下個環(huán)節(jié)的安排;突破重點內(nèi)容后,進入第三環(huán)節(jié)。 (三)拓展知識,再獲新知----斜截式 問題五:(1)一條直線與y軸交于點(0,3),直線的斜率為2,求這條直線的方程。 (2)若直線l斜率為k,且與y軸的交點是 P(0,b),求直線l的方程。 [學(xué)生活動]學(xué)生獨立完成后口述,教師板書。 [設(shè)計意圖] 由一般到特殊再到一般,培養(yǎng)學(xué)生的推理能力,同時引出截距的概念及斜截式方程,強調(diào)截距不是距離。類比點斜式明確斜截式方程的形式特點和適用范圍及幾何意義,并討論其與一次函數(shù)的關(guān)系。通過下面的基礎(chǔ)練習(xí),突破重點。 [練習(xí)]P95.3。 [設(shè)計意圖]充分用好教材習(xí)題,及時反饋本環(huán)節(jié)的教學(xué)情況,指導(dǎo)下個環(huán)節(jié)的安排。 (四)小結(jié)引申,思維延續(xù)----兩點式 課堂小結(jié) 1、有哪些收獲?(點斜式方程:;斜截式方程:;求直線方程的方法:公式法、等斜率法、待定系數(shù)法。) 2、哪些地方還沒有學(xué)好? 問題六:(1)直線l過(1,0)點,且與直線平行,求直線l的方程。 (2)直線l過點(2,-1)和點(3,-3),求直線l的方程。 [學(xué)生活動]學(xué)生獨立思考并嘗試自主完成,可以相互討論,探討解題思路。 [教師活動]教師深入學(xué)生中,與學(xué)生交流,了解學(xué)生思考問題的進展過程,有時間的話,可以讓學(xué)生口述解題思路,也可以投影學(xué)生的證明過程,糾正出現(xiàn)的錯誤,規(guī)范書寫的格式;沒時間就布置分層作業(yè)。 [設(shè)計意圖](1)小題與上一節(jié)的平行綜合,學(xué)生應(yīng)該有思路求出方程;(2)小題解決方法較多,預(yù)設(shè)有利用公式法、等斜率法、待定系數(shù)法,讓好一點的學(xué)生有一些發(fā)散思維的機會,以及課后學(xué)習(xí)的空間,使探究氣氛有一點高潮。另外也為下節(jié)課研究直線的兩點式方程作了重要的準(zhǔn)備。 分層作業(yè) 必做題:P100.A組:1.(1)(2)(3)、5. 選做題:P100.A組:1.(4)(5)(6). [設(shè)計意圖]通過分層作業(yè),做到因材施教,使不同的學(xué)生在數(shù)學(xué)上得到不同的發(fā)展,讓每一個學(xué)生都得到符合自身實踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進學(xué)生自主發(fā)展。 四、教學(xué)特點分析 (一)實例引導(dǎo)。在字母運算、公式推導(dǎo)之前,總是用實例作為鋪墊,使學(xué)生有學(xué)習(xí)知識的可能和興趣,關(guān)注學(xué)困生的成長與發(fā)展。 (二)啟發(fā)式教學(xué)。教學(xué)中總是以提問的方式敘述所學(xué)內(nèi)容,如:1.直角坐標(biāo)系內(nèi)的所有直線都有點斜式方程嗎?2.截距是距離嗎?它可以是負(fù)數(shù)嗎?3.你會求直線在軸上的截距嗎?4.觀察方程 ,它的形式具有什么特點?它與我們學(xué)過的一次函數(shù)有什么關(guān)系?等等。啟發(fā)學(xué)生的思維,作好與學(xué)生的對話與交流活動。 (三)注重自主探究。設(shè)計問題鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終。教師總是站在學(xué)生思維的最近發(fā)展區(qū)上,布設(shè)了由淺入深的學(xué)習(xí)環(huán)境突破重點、難點,引導(dǎo)學(xué)生逐步發(fā)現(xiàn)知識的形成過程。設(shè)計了兩次思維發(fā)散點,分別是問題二和問題六的第(2)問,要求學(xué)生分組討論,合作交流,為學(xué)生創(chuàng)造充分的探究空間,學(xué)生在交流成果的過程中,高效的完成教學(xué)任務(wù)。 一、教材分析 集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。 本節(jié)課主要分為兩個部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關(guān)系。 二、教學(xué)目標(biāo) 1、學(xué)習(xí)目標(biāo) (1)通過實例,了解集合的含義,體會元素與集合之間的關(guān)系以及理解“屬 于”關(guān)系; 。2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用; 2、能力目標(biāo) 。1)能夠把一句話一個事件用集合的方式表示出來。 。2)準(zhǔn)確理解集合與及集合內(nèi)的元素之間的關(guān)系。 3、情感目標(biāo) 通過本節(jié)的把實際事件用集合的方式表示出來,從而培養(yǎng)數(shù)學(xué)敏感性,了 解到數(shù)學(xué)于生活中。 三、教學(xué)重點與難點 重點 集合的基本概念與表示方法; 難點 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡單的集合; 四、教學(xué)方法 。1)本課將采用探究式教學(xué),讓學(xué)生主動去探索,激發(fā)學(xué)生的學(xué)習(xí)興趣。并分層教學(xué),這樣可顧及到全體學(xué)生,達到優(yōu)生得到培養(yǎng),后進生也有所收獲的效果; 。2)學(xué)生在老師的引導(dǎo)下,通過閱讀教材,自主學(xué)習(xí)、思考、交流、討論和概括,從而完成本節(jié)課的教學(xué)目標(biāo)。 五、學(xué)習(xí)方法 。1)主動學(xué)習(xí)法:舉出例子,提出問題,讓學(xué)生在獲得感性認(rèn)識的同時, 教師層層深入,啟發(fā)學(xué)生積極思維,主動探索知識,培養(yǎng)學(xué)生思維想象 的綜合能力。 。2)反饋補救法:在練習(xí)中,注意觀察學(xué)生對學(xué)習(xí)的反饋情況,以實現(xiàn)“培 優(yōu)扶差,滿足不同。” 六、教學(xué)思路 具體的思路如下 復(fù)習(xí)的引入:講一些集合的相關(guān)數(shù)學(xué)及相關(guān)數(shù)學(xué)家的經(jīng)歷故事!這可以讓學(xué)生更加了解數(shù)學(xué)史從何使學(xué)生對數(shù)學(xué)更加感興趣,有助于上課的效率!因為時間關(guān)系這里我就不說相關(guān)數(shù)學(xué)史咯。 一、 引入課題 軍訓(xùn)前學(xué)校通知:8月15日8點,高一年段在體育館集合進行軍訓(xùn)動員;試問這個通知的對象是全體的高一學(xué)生還是個別學(xué)生? 在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學(xué)習(xí)一個新的概念——集合,即是一些研究對象的總體。 二、 正體部分 學(xué)生閱讀教材,并思考下列問題: 。1)集合有那些概念? 。2)集合有那些符號? 。3)集合中元素的特性是什么? (4)如何給集合分類? (一)集合的有關(guān)概念 。1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號, 都可以稱作對象. 。2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由 這些對象的全體構(gòu)成的集合. 。3)元素:集合中每個對象叫做這個集合的元素. 集合通常用大寫的拉丁字母表示,如A、B、C、??元素通常用小寫的拉丁字母表示,如a、b、c、?? 1. 思考:課本P3的思考題,并再列舉一些集合例子和不能構(gòu)成集合的例子, 對學(xué)生的例子予以討論、點評,進而講解下面的問題。 2、元素與集合的關(guān)系 。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A 。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作a?A 要注意“∈”的方向,不能把a∈A顛倒過來寫. (舉例) 集合A={3,4,6,9}a=2 因此我們知道a?A 3、集合中元素的特性 。1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了. 。2)互異性:集合中的元素一定是不同的. 。3)無序性:集合中的元素沒有固定的順序. 4、集合分類 根據(jù)集合所含元素個屬不同,可把集合分為如下幾類: 。1)把不含任何元素的集合叫做空集Ф 。2)含有有限個元素的集合叫做有限集 。3)含有無窮個元素的集合叫做無限集 注:應(yīng)區(qū)分?,{?},{0},0等符號的含義 5、常用數(shù)集及其表示方法 (1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合.記作N 。2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集.記作N*或N+ 。3)整數(shù)集:全體整數(shù)的集合.記作Z 。4)有理數(shù)集:全體有理數(shù)的集合.記作Q 。5)實數(shù)集:全體實數(shù)的集合.記作R 注:(1)自然數(shù)集包括數(shù)0. (2)非負(fù)整數(shù)集內(nèi)排除0的集.記作N*或N+,Q、Z、R等其它數(shù)集內(nèi)排 除0的集,也這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z* (二)集合的表示方法 我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。 (1) 列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)。 如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?; 例1.(課本例1) 思考2,引入描述法 說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。 。2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內(nèi)。 具體方法:在大括號內(nèi)先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。 如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?; 例2.(課本例2) 說明:(課本P5最后一段) 思考3:(課本P6思考) 強調(diào):描述法表示集合應(yīng)注意集合的代表元素 {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。 辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實數(shù)集},{R}也是錯誤的。 說明:列舉法與描述法各有優(yōu)點,應(yīng)該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。 (三)課堂練習(xí)(課本P6練習(xí)) 三、 歸納小結(jié)與作業(yè) 本節(jié)課從實例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。 書面作業(yè):習(xí)題1.1,第1- 4題 一、說設(shè)計理念 《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出要讓學(xué)生感受生活中處處有數(shù)學(xué),用數(shù)學(xué)知識解決生活中的實際問題。 基于這一理念,我在教學(xué)過程中力求聯(lián)系學(xué)生生活實際和已有的知識經(jīng)驗,從學(xué)生感興趣的素材,設(shè)計新穎的導(dǎo)入與例題教學(xué),給數(shù)學(xué)課富予新的生命力。課堂中力求構(gòu)建一種自主探究、和諧合作的教學(xué)氛圍,讓學(xué)生經(jīng)歷知識的探究過程,培養(yǎng)學(xué)生感受生活中的數(shù)學(xué)和用數(shù)學(xué)知識解決生活問題的能力,體驗數(shù)學(xué)的應(yīng)用價值。 二、教材分析: 。ㄒ唬┙滩牡牡匚缓妥饔 有關(guān)統(tǒng)計圖的認(rèn)識,小學(xué)階段主要認(rèn)識條形統(tǒng)計圖、折線統(tǒng)計圖和扇形統(tǒng)計圖?紤]到扇形統(tǒng)計圖在日常生活中的廣泛應(yīng)用,《標(biāo)準(zhǔn)》把它作為必學(xué)內(nèi)容安排在本單元。本單元是在前面學(xué)習(xí)了條形統(tǒng)計圖和折線統(tǒng)計圖的特點和作用的基礎(chǔ)上進行教學(xué)的。主要通過熟悉的事例使學(xué)生體會到扇形統(tǒng)計圖的實用價值。 。ǘ┙虒W(xué)目標(biāo) 1、聯(lián)系生活情境了解扇形統(tǒng)計圖的特點和作用 2、能讀懂扇形統(tǒng)計圖,從中獲取有效的信息。 3、讓學(xué)生在觀察、比較、討論和交流中體會扇形統(tǒng)計圖反映的是整體和部分的關(guān)系。 。ㄈ┙虒W(xué)重點: 1、能讀懂扇形統(tǒng)計圖,理解扇形統(tǒng)計圖的特點和作用,并能從中獲取有效信息。 2、認(rèn)識折線統(tǒng)計圖,了解折線統(tǒng)計圖的特點。 。ㄋ模┙虒W(xué)難點: 1、能從扇形統(tǒng)計圖中獲得有用信息,并做出合理推斷。 2、能根據(jù)統(tǒng)計圖和數(shù)據(jù)進行數(shù)據(jù)變化趨勢的分析。 二、學(xué)情分析 本單元的教學(xué)是在學(xué)生已有統(tǒng)計經(jīng)驗的基礎(chǔ)上,學(xué)習(xí)新知的。六年級的學(xué)生已經(jīng)學(xué)習(xí)了條形統(tǒng)計圖和折線統(tǒng)計圖,知道他們的特點,并具有一定的概括、分析能力,在此基礎(chǔ)上,通過新舊知識對比,自然生成新知識點。 三、設(shè)計理念和教法分析 1、本堂課力爭做到由“關(guān)注知識”轉(zhuǎn)向“關(guān)注學(xué)生”,由“傳授知識”轉(zhuǎn)向“引導(dǎo)探索”,“教師是組織者、領(lǐng)導(dǎo)者!睂⒄n堂設(shè)置問題給學(xué)生,讓學(xué)生自己獲取信息、分析信息,自主探索、合作交流,參與知識的構(gòu)建。 2、運用探究法。探究學(xué)習(xí)的內(nèi)容以問題的形式出現(xiàn)在教師的引導(dǎo)下,學(xué)生自主探究,讓學(xué)生在課堂上多活動、多思考,自主構(gòu)建知識體系。引導(dǎo)學(xué)生獲取信息并合作交流。 四、說學(xué)法 《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出有效的數(shù)學(xué)學(xué)習(xí)不能單純的依賴模仿和記憶,動手操作、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。教學(xué)時,我通過學(xué)生感興趣的話題引入,引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),使學(xué)生體會到觀察、概括、想象、遷移等數(shù)學(xué)學(xué)習(xí)方法,在師生互動中讓每個學(xué)生都動口,動手,動腦。培養(yǎng)學(xué)生學(xué)習(xí)的主動性和積極性。 五、說教學(xué)程序 本課分成創(chuàng)設(shè)情境,感知特點——分析數(shù)據(jù),理解特征——嘗試制圖,看圖分析——實踐應(yīng)用,全課總結(jié)四環(huán)節(jié)。 六、說教學(xué)過程 (一)復(fù)習(xí)引新 1、復(fù)習(xí)舊知 提問:我們學(xué)習(xí)過哪些統(tǒng)計方法?其中條形統(tǒng)計圖和折線統(tǒng)計圖各有什么特點? 2、引入新課 。ǘ┳灾魈剿,學(xué)習(xí)新知 新知識教學(xué)分二步教學(xué):第一步整體感知,看懂統(tǒng)計圖,理解特征,這是本節(jié)課的重點。在教學(xué)中,以知識遷移的方式建立新舊知識之間的聯(lián)系,放手讓學(xué)生獨立思考,互相合作,進一步了解統(tǒng)計圖的特征。 第二步實踐應(yīng)用環(huán)節(jié)。在教學(xué)中,精心地選取了大量的生活素材,使統(tǒng)計知識與生活建立緊密的聯(lián)系。根據(jù)統(tǒng)計圖回答問題,是讓學(xué)生運用到剛才學(xué)習(xí)到的知識來解決生活中的一些問題,并鞏固剛才所學(xué)的知識,為學(xué)生自己發(fā)現(xiàn)問題、提出問題及自己解決問題提供了較大的空間。同時,讓學(xué)生感悟由于數(shù)據(jù)變化帶來的啟示,并能合理地進行推理與判斷 三、課堂總結(jié) 四、布置作業(yè)。 五、板書設(shè)計: 【一】教學(xué)背景分析 1.教材結(jié)構(gòu)分析 《圓的方程》安排在高中數(shù)學(xué)第二冊(上)第七章第六節(jié).圓作為常見的簡單幾何圖形,在實際生活和生產(chǎn)實踐中有著廣泛的應(yīng)用.圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個解析幾何中起著承前啟后的作用. 2.學(xué)情分析 圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進行研究的.但由于學(xué)生學(xué)習(xí)解析幾何的時間還不長、學(xué)習(xí)程度較淺,且對坐標(biāo)法的運用還不夠熟練,在學(xué)習(xí)過程中難免會出現(xiàn)困難.另外學(xué)生在探究問題的能力,合作交流的意識等方面有待加強. 根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo): 3.教學(xué)目標(biāo) (1) 知識目標(biāo):①掌握圓的標(biāo)準(zhǔn)方程; 、跁蓤A的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程; 、劾脠A的標(biāo)準(zhǔn)方程解決簡單的實際問題. (2) 能力目標(biāo):①進一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力; 、诩由顚(shù)形結(jié)合思想的理解和加強對待定系數(shù)法的運用; 、墼鰪妼W(xué)生用數(shù)學(xué)的意識. (3) 情感目標(biāo):①培養(yǎng)學(xué)生主動探究知識、合作交流的意識; 、谠隗w驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣. 根據(jù)以上對教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點和難點: 4. 教學(xué)重點與難點 (1)重點:圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用. (2)難點: ①會根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程; ②選擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實際問題. 為使學(xué)生能達到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上進行分析: 好學(xué)教育: 【二】教法學(xué)法分析 1.教法分析 為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上.另外我恰當(dāng)?shù)睦枚嗝襟w課件進行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程. 2.學(xué)法分析 通過推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對用坐標(biāo)法求軌跡方程的理解.通過求圓的標(biāo)準(zhǔn)方程,理解必須具備三個獨立的條件才可以確定一個圓.通過應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過程. 下面我就對具體的教學(xué)過程和設(shè)計加以說明: 【三】教學(xué)過程與設(shè)計 整個教學(xué)過程是由七個問題組成的問題鏈驅(qū)動的,共分為五個環(huán)節(jié): 創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高 反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申 下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計意圖. 首先:縱向敘述教學(xué)過程 (一)創(chuàng)設(shè)情境——啟迪思維 問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個隧道? 通過對這個實際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決.一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時學(xué)生自己推導(dǎo)出了圓心在原點,半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進入了本課的主題.用實際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實際,應(yīng)用于實際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望.這樣獲取的知識,不但易于保持,而且易于遷移. 通過對問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來,此時再把問題深入,進入第二環(huán)節(jié). (二)深入探究——獲得新知 問題二 1.根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程? 2.如果圓心在,半徑為時又如何呢? 好學(xué)教育: 這一環(huán)節(jié)我首先讓學(xué)生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點,半徑為r的圓的標(biāo)準(zhǔn)方程.然后再讓學(xué)生對圓心不在原點的情況進行探究.我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法. 得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計了由淺入深的三個應(yīng)用平臺,進入第三環(huán)節(jié). (三)應(yīng)用舉例——鞏固提高 I.直接應(yīng)用 內(nèi)化新知 問題三 1.寫出下列各圓的標(biāo)準(zhǔn)方程: (1)圓心在原點,半徑為3; (2)經(jīng)過點,圓心在點. 2.寫出圓的圓心坐標(biāo)和半徑. 我設(shè)計了兩個小問題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問題作準(zhǔn)備. II.靈活應(yīng)用 提升能力 問題四 1.求以點為圓心,并且和直線相切的圓的方程. 2.求過點,圓心在直線上且與軸相切的圓的方程. 3.已知圓的方程為,求過圓上一點的切線方程. 你能歸納出具有一般性的結(jié)論嗎? 已知圓的方程是,經(jīng)過圓上一點的切線的方程是什么? 我設(shè)計了三個小問題,第一個小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程.第二個小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓.第三個小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間.最后我讓學(xué)生由第三小題的結(jié)論進行歸納、猜想,在論證經(jīng)過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達到高潮. III.實際應(yīng)用 回歸自然 問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m). 好學(xué)教育: 我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應(yīng)用,同時也與引例相呼應(yīng),使學(xué)生形成解決實際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識. (四)反饋訓(xùn)練——形成方法 問題六 1.求過原點和點,且圓心在直線上的圓的標(biāo)準(zhǔn)方程. 2.求圓過點的切線方程. 3.求圓過點的切線方程. 接下來是第四環(huán)節(jié)——反饋訓(xùn)練.這一環(huán)節(jié)中,我設(shè)計三個小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強學(xué)習(xí)數(shù)學(xué)的愿望與信心.另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進行判斷,這樣的設(shè)計對培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果. (五)小結(jié)反思——拓展引申 1.課堂小結(jié) 把圓的標(biāo)準(zhǔn)方程與過圓上一點圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法 ①圓心為,半徑為r 的圓的標(biāo)準(zhǔn)方程為: 圓心在原點時,半徑為r 的圓的標(biāo)準(zhǔn)方程為:. ②已知圓的方程是,經(jīng)過圓上一點的切線的方程是:. 2.分層作業(yè) (A)鞏固型作業(yè):教材P81-82:(習(xí)題7.6)1,2,4.(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點的切線方程. 3.激發(fā)新疑 問題七 1.把圓的標(biāo)準(zhǔn)方程展開后是什么形式? 2.方程表示什么圖形? 在本課的結(jié)尾設(shè)計這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產(chǎn)生了.在知識的拓展中再次掀起學(xué)生探究的熱情.另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備. 以上是我縱向的教學(xué)過程及簡單的設(shè)計意圖,接下來,我從三個方面橫向的進一步闡述我的教學(xué)設(shè)計: 橫向闡述教學(xué)設(shè)計 (一)突出重點 抓住關(guān)鍵 突破難點 好學(xué)教育: 求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點也是難點,為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點. 第二個教學(xué)難點就是解決實際應(yīng)用問題,這是學(xué)生固有的難題,主要是因為應(yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發(fā)學(xué)生的求知欲,同時我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強了信心.最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個應(yīng)用問題——問題五.這樣的設(shè)計,使學(xué)生在解決問題的同時,形成了方法,難點自然突破. (二)學(xué)生主體 教師主導(dǎo) 探究主線 本節(jié)課的設(shè)計用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終.從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的.另外,我重點設(shè)計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅(qū)動下,高效的完成本節(jié)的學(xué)習(xí)任務(wù). (三)培養(yǎng)思維 提升能力 激勵創(chuàng)新 為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力.在問題的設(shè)計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行. 以上是我對這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進行轉(zhuǎn)變.最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”. 【高中數(shù)學(xué)說課稿】相關(guān)文章: 高中數(shù)學(xué)經(jīng)典說課稿07-11 高中數(shù)學(xué)的說課稿07-11 高中數(shù)學(xué)免費說課稿09-30 高中數(shù)學(xué)說課稿08-26 高中數(shù)學(xué)向量說課稿07-11 高中數(shù)學(xué)集合的說課稿07-12高中數(shù)學(xué)說課稿6
高中數(shù)學(xué)說課稿7
高中數(shù)學(xué)說課稿8
高中數(shù)學(xué)說課稿9
高中數(shù)學(xué)說課稿10
高中數(shù)學(xué)說課稿11
高中數(shù)學(xué)說課稿12
高中數(shù)學(xué)說課稿13
高中數(shù)學(xué)說課稿14
高中數(shù)學(xué)說課稿15