1. <rp id="zsypk"></rp>

      2. 高中數(shù)學(xué)教案

        時(shí)間:2024-07-22 13:27:01 數(shù)學(xué)教案 我要投稿

        高中數(shù)學(xué)教案15篇(合集)

          作為一名默默奉獻(xiàn)的教育工作者,常常要根據(jù)教學(xué)需要編寫教案,借助教案可以恰當(dāng)?shù)剡x擇和運(yùn)用教學(xué)方法,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。那么問題來了,教案應(yīng)該怎么寫?以下是小編幫大家整理的高中數(shù)學(xué)教案,僅供參考,希望能夠幫助到大家。

        高中數(shù)學(xué)教案15篇(合集)

        高中數(shù)學(xué)教案1

          一、教學(xué)目標(biāo)

          1、知識(shí)與能力目標(biāo)

         、偈箤W(xué)生理解數(shù)列極限的概念和描述性定義。

         、谑箤W(xué)生會(huì)判斷一些簡單數(shù)列的極限,了解數(shù)列極限的“e—N"定義,能利用逐步分析的方法證明一些數(shù)列的極限。

         、弁ㄟ^觀察運(yùn)動(dòng)和變化的過程,歸納總結(jié)數(shù)列與其極限的特定關(guān)系,提高學(xué)生的數(shù)學(xué)概括能力和抽象思維能力。

          2、過程與方法目標(biāo)

          培養(yǎng)學(xué)生的極限的思想方法和獨(dú)立學(xué)習(xí)的能力。

          3、情感、態(tài)度、價(jià)值觀目標(biāo)

          使學(xué)生初步認(rèn)識(shí)有限與無限、近似與精確、量變與質(zhì)變的辯證關(guān)系,培養(yǎng)學(xué)生的辯證唯物主義觀點(diǎn)。

          二、教學(xué)重點(diǎn)和難點(diǎn)

          教學(xué)重點(diǎn):數(shù)列極限的概念和定義。

          教學(xué)難點(diǎn):數(shù)列極限的“ε―N”定義的理解。

          三、教學(xué)對(duì)象分析

          這節(jié)課是數(shù)列極限的第一節(jié)課,足學(xué)生學(xué)習(xí)極限的入門課,對(duì)于學(xué)生來說是一個(gè)全新的內(nèi)容,學(xué)生的思維正處于由經(jīng)驗(yàn)型抽象思維向理論型抽象思維過渡階段,在《立體幾何》內(nèi)容求球的表面積和體積時(shí)對(duì)極限思想已有接觸,而學(xué)生在以往的數(shù)學(xué)學(xué)習(xí)中主要接觸的是關(guān)于“有限”的問題,很少涉及“無限”的問題。極限這一抽象概念能夠使他們做基于直觀的理解,并引導(dǎo)他們作出描述性定義“當(dāng)n無限增大時(shí),數(shù)列{an}中的項(xiàng)an無限趨近于常數(shù)A,也就是an與A的差的絕對(duì)值無限趨近于0”,并能用這個(gè)定義判斷一些簡單數(shù)列的極限。但要使他們在一節(jié)課內(nèi)掌握“ε—N”語言求極限要求過高。因此不宜講得太難,能夠通過具體的幾個(gè)例子,歸納研究一些簡單的數(shù)列的極限。使學(xué)生理解極限的基本概念,認(rèn)識(shí)什么叫做數(shù)列的極限以及數(shù)列極限的定義即可。

          四、教學(xué)策略及教法設(shè)計(jì)

          本課是采用啟發(fā)式講授教學(xué)法,通過多媒體課件演示及學(xué)生討論的方法進(jìn)行教學(xué)。通過學(xué)生比較熟悉的一個(gè)實(shí)際問題入手,引起學(xué)生的注意,激發(fā)學(xué)生的學(xué)習(xí)興趣。然后通過具體的.兩個(gè)比較簡單的數(shù)列,運(yùn)用多媒體課件演示向?qū)W生展示了數(shù)列中的各項(xiàng)隨著項(xiàng)數(shù)的增大,無限地趨向于某個(gè)常數(shù)的過程,讓學(xué)生在觀察的基礎(chǔ)上討論總結(jié)出這兩個(gè)數(shù)列的特征,從而得出數(shù)列極限的一個(gè)描述性定義。再在教師的引導(dǎo)下分析數(shù)列極限的各種不同情況。從而對(duì)數(shù)列極限有了直觀上的認(rèn)識(shí),接著讓學(xué)生根據(jù)數(shù)列中各項(xiàng)的情況判斷一些簡單的數(shù)列的極限。從而達(dá)到深化定義的效果。最后進(jìn)行練習(xí)鞏固,通過這樣的一個(gè)完整的教學(xué)過程,由觀察到分析、由定量到定性,由直觀到抽象,并借助于多媒體課件的演示,使得學(xué)生逐步地了解極限這個(gè)新的概念,為下節(jié)課的極限的運(yùn)算及應(yīng)用做準(zhǔn)備,為以后學(xué)習(xí)高等數(shù)學(xué)知識(shí)打下基礎(chǔ)。在整個(gè)教學(xué)過程中注意突出重點(diǎn),突破難點(diǎn),達(dá)到教學(xué)目標(biāo)的要求。

          五、教學(xué)過程

          1、創(chuàng)設(shè)情境

          課件展示創(chuàng)設(shè)情境動(dòng)畫。

          今天我們將要學(xué)習(xí)一個(gè)很重要的新的知識(shí)。

          情境

         。1)我國古代數(shù)學(xué)家劉徽于公元263年創(chuàng)立“割圓術(shù)”,“割之彌細(xì),所失彌少。割之又割,以至不可割,則與圓周合體而無所失矣”。

          情境

          (2)我國古代哲學(xué)家莊周所著的《莊子·天下篇》引用過一句話:一尺之棰,日取其半,萬世不竭。也就是說拿一根木棒,將它切成一半,拿其中一半來再切成一半,得到四分之一,再切成一半,就得到了八分之?如此下去,無限次地切,每次都切一半,問是否會(huì)切完?

          大家都知道,這是不可能切完的,但是每次切了以后,木棒都比原來的少了一半,也就是說木棒的長度越來越短,但永遠(yuǎn)不會(huì)變成零。從而引出極限的概念。

          2、定義探究

          展示定義探索(一)動(dòng)畫演示。

          問題1:請觀察以下無窮數(shù)列,當(dāng)n無限增大時(shí),a,I的變化趨勢有什么特點(diǎn)?

          (1)1/2,2/3,3/4,n/n—1

         。2)0.9,0.99,0.999,0.9999,1—1/10n

          問題2:觀察課件演示,請分析以上兩個(gè)數(shù)列隨項(xiàng)數(shù)n的增大項(xiàng)有那些特點(diǎn)?

          師生一起歸納總結(jié)出以下結(jié)論:數(shù)列(1)項(xiàng)數(shù)n無限增大時(shí),項(xiàng)無限趨近于1;數(shù)列(2)項(xiàng)數(shù)n無限增大時(shí),項(xiàng)無限趨近于1。

          那么就把1叫數(shù)列(1)的極限,1叫數(shù)列(2)的極限。這兩個(gè)數(shù)列只是形式不同,它們都是隨項(xiàng)數(shù)n的無限增大,項(xiàng)無限趨近于某一確定常數(shù),這個(gè)常數(shù)叫做這個(gè)數(shù)列的極限。

          那么,什么叫數(shù)列的極限呢?對(duì)于無窮數(shù)列an,如果當(dāng)n無限增大時(shí),an無限趨向于某一個(gè)常數(shù)A,則稱A是數(shù)列an的極限。

          提出問題3:怎樣用數(shù)學(xué)語言來定量描述呢?怎樣用數(shù)學(xué)語言來描述上述數(shù)列的變化趨勢?

          展示定義探索(二)動(dòng)畫演示。

          師生共同總結(jié)發(fā)現(xiàn)在數(shù)軸上兩點(diǎn)間距離越小,項(xiàng)與1越趨近,因此可以借助兩點(diǎn)間距離無限小的方式來描述項(xiàng)無限趨近常數(shù)。無論預(yù)先指定多么小的正數(shù)e,如取e=O—1,總能在數(shù)列中找到一項(xiàng)am,使得an項(xiàng)后面的所有項(xiàng)與1的差的絕對(duì)值都小于ε,若取£=0.0001,則第6項(xiàng)后面的所有項(xiàng)與1的差的絕對(duì)值都小于ε,即1是數(shù)列(1)的極限。最后,師生共同總結(jié)出數(shù)列的極限定義中應(yīng)包含哪量(用這些量來描述數(shù)列1的極限)。

          數(shù)列的極限為:對(duì)于任意的ε>0,如果總存在自然數(shù)N,當(dāng)n>N時(shí),不等式|an—A|n的極限。

          課件可以實(shí)現(xiàn)任意輸入一個(gè)n值,可以計(jì)算出相應(yīng)的數(shù)列第n項(xiàng)的值,并且動(dòng)畫演示數(shù)列的變化過程。如圖1所示是課件運(yùn)行時(shí)的一個(gè)畫面。

          定義探索動(dòng)畫(二)課件可以實(shí)現(xiàn)任意輸入一個(gè)n值,可以計(jì)算出相應(yīng)的數(shù)列第n項(xiàng)的值和Ian一1I的值,并且動(dòng)畫演示出第an項(xiàng)和1之間的距離。如圖2所示是課件運(yùn)行時(shí)的一個(gè)畫面。

          3、知識(shí)應(yīng)用

          這里舉了3道例題,與學(xué)生一塊思考,一起分析作答。

          例1、已知數(shù)列:

          1,—1/2,1/3,—1/4,1/5,(—1)n+11/n,(1)計(jì)算an—0(2)第幾項(xiàng)后面的所有項(xiàng)與0的差的絕對(duì)值都小于0.017都小于任意指定的正數(shù)。

         。3)確定這個(gè)數(shù)列的極限。

          例2、已知數(shù)列:

          已知數(shù)列:3/2,9/4,15/8,2+(—1/2)n。

          猜測這個(gè)數(shù)列有無極限,如果有,應(yīng)該是什么數(shù)?并求出從第幾項(xiàng)開始,各項(xiàng)與這個(gè)極限的差都小于0.1,從第幾項(xiàng)開始,各項(xiàng)與這個(gè)極限的差都小于0.017

          例3、求常數(shù)數(shù)列一7,一7,一7,一7,的極限。

          4、知識(shí)小結(jié)

          這節(jié)課我們研究了數(shù)列極限的概念,對(duì)數(shù)列極限有了初步的認(rèn)識(shí)。數(shù)列極限研究的是無限變化的趨勢,而通過對(duì)數(shù)列極限定義的探討,我們看到這一過程又是通過有限來把握的,有限與無限、近似與精確、量變與質(zhì)變之間的辯證關(guān)系在這里得到了充分的體現(xiàn)。

          課后練習(xí):

         。1)判斷下列數(shù)列是否有極限,如果有的話請求出它的極限值。①an=4n+l/n;②an=4—(1/3)m;③an=(—1)n/3n;④aan=—2;⑤an=n;⑥an=(—1)n。

         。2)課本練習(xí)1,2。

          5、探究性問題

          設(shè)計(jì)研究性學(xué)習(xí)的思考題。

          提出問題:

          芝諾悖論:阿基里斯是《荷馬史詩》中的善跑英雄。奔跑中的阿基里斯永遠(yuǎn)也無法超過在他前面慢慢爬行的烏龜,因?yàn)楫?dāng)阿基里斯到達(dá)烏龜?shù)钠鹋茳c(diǎn)時(shí),烏龜已經(jīng)走在前面一小段路了,阿基里斯又必須趕過這一小段路,而烏龜又向前走了。這樣,阿基里斯可無限接近它,但不能追到它。假定阿基里斯跑步的速度是烏龜速度的10倍,阿基里斯與烏龜賽跑的路程是1公里。如果讓烏龜先跑0.1公里,當(dāng)阿基里斯追到O。1公里的地方,烏龜又向前跑了0.01公里。當(dāng)阿基里斯追到0.01公里的地方,烏龜又向前跑了0.001公里這樣一直追下去,阿基里斯能追上烏龜嗎?

          這里是研究性學(xué)習(xí)內(nèi)容,以學(xué)生感興趣的悖論作為課后作業(yè),鞏固本節(jié)所學(xué)內(nèi)容,進(jìn)一步提高了學(xué)生學(xué)習(xí)數(shù)列的極限的興趣。同時(shí)也為學(xué)生創(chuàng)設(shè)了課下交流與討論的情境,逐步培養(yǎng)學(xué)生相互合作、交流和討論的習(xí)慣,使學(xué)生感受到了數(shù)學(xué)來源于生活,又服務(wù)于生活的實(shí)質(zhì),逐步養(yǎng)成用數(shù)學(xué)的知識(shí)去解決生活中遇到的實(shí)際問題的習(xí)慣。

        高中數(shù)學(xué)教案2

          【課題名稱】

          《等差數(shù)列》的導(dǎo)入

          【授課年級(jí)】

          高中二年級(jí)

          【教學(xué)重點(diǎn)】

          理解等差數(shù)列的概念,能夠運(yùn)用等差數(shù)列的定義判斷一個(gè)數(shù)列是否為等差數(shù)列。

          【教學(xué)難點(diǎn)】

          等差數(shù)列的性質(zhì)、等差數(shù)列“等差”特點(diǎn)的理解,

          【教具準(zhǔn)備】多媒體課件、投影儀

          【三維目標(biāo)】

          ㈠知識(shí)目標(biāo):

          了解公差的概念,明確一個(gè)等差數(shù)列的限定條件,能根據(jù)定義判斷一個(gè)等差數(shù)列是否是一個(gè)等差數(shù)列;

          ㈡能力目標(biāo):

          通過尋找等差數(shù)列的共同特征,培養(yǎng)學(xué)生的觀察力以及歸納推理的能力;

          ㈢情感目標(biāo):

          通過對(duì)等差數(shù)列概念的歸納概括,培養(yǎng)學(xué)生的觀察、分析資料的能力。

          【教學(xué)過程】

          導(dǎo)入新課

          師:上兩節(jié)課我們已經(jīng)學(xué)習(xí)了數(shù)列的定義以及給出表示數(shù)列的幾種方法—列舉法、通項(xiàng)法,遞推公式、圖像法。這些方法分別從不同的角度反映了數(shù)列的特點(diǎn)。下面我們觀察以下的幾個(gè)數(shù)列的例子:

          (1)我們經(jīng)常這樣數(shù)數(shù),從0開始,每個(gè)5個(gè)數(shù)可以得到數(shù)列:0,5,10,15,20,()

          (2)2000年,在澳大利亞悉尼舉行的奧運(yùn)會(huì)上,女子舉重被正式列為比賽項(xiàng)目,該項(xiàng)目工設(shè)置了7個(gè)級(jí)別,其中較輕的4個(gè)級(jí)別體重組成的數(shù)列(單位:kg)為48,53,58,63,()試問第五個(gè)級(jí)別體重多少?

          (3)為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,水庫管理員定期放水清庫以清除水庫中的雜魚。如果一個(gè)水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一個(gè)數(shù)列:18,15.5,13,10.5,8,(),則第六個(gè)數(shù)應(yīng)為多少?

          (4)10072,10144,10216,(),10360

          請同學(xué)們回答以上的四個(gè)問題

          生:第一個(gè)數(shù)列的第6項(xiàng)為25,第二個(gè)數(shù)列的第5個(gè)數(shù)為68,第三個(gè)數(shù)列的'第6個(gè)數(shù)為5.5,第四個(gè)數(shù)列的第4個(gè)數(shù)為10288。

          師:我來問一下,你是依據(jù)什么得到了這幾個(gè)數(shù)的呢?請以第二個(gè)數(shù)列為例說明一下。

          生:第二個(gè)數(shù)列的后一項(xiàng)總比前一項(xiàng)多5,依據(jù)這個(gè)規(guī)律我就得到了這個(gè)數(shù)列的第5個(gè)數(shù)為68.

          師:說的很好!同學(xué)們再仔細(xì)地觀察一下以上的四個(gè)數(shù)列,看看以上的四個(gè)數(shù)列是否有什么共同特征?請注意,是共同特征。

          生1:相鄰的兩項(xiàng)的差都等于同一個(gè)常數(shù)。

          師:很好!那作差是否有順序?是否可以顛倒?

          生2:作差的順序是后項(xiàng)減去前項(xiàng),不能顛倒!

          師:正如生1的總結(jié),這四個(gè)數(shù)列有共同的特征:從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)(即等差)。我們叫這樣的數(shù)列為等差數(shù)列。這就是我們這節(jié)課要研究的內(nèi)容。

          推進(jìn)新課

          等差數(shù)列的定義:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)就叫做等差數(shù)列的公差,公差常用字母d表示。從剛才的分析,同學(xué)們應(yīng)該注意公差d一定是由后項(xiàng)減前項(xiàng)。

          師:有哪個(gè)同學(xué)知道定義中的關(guān)鍵字是什么?

          生2:“從第二項(xiàng)起”和“同一個(gè)常數(shù)”

        高中數(shù)學(xué)教案3

          教學(xué)目標(biāo)

         。1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;

          (2)使學(xué)生掌握組合數(shù)的計(jì)算公式;

          (3)通過學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問題和解決問題的能力;

          教學(xué)重點(diǎn)難點(diǎn)

          重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;

          難點(diǎn)是解組合的應(yīng)用題.

          教學(xué)過程設(shè)計(jì)

          (-)導(dǎo)入新課

         。ń處熁顒(dòng))提出下列思考問題,打出字幕.

         。圩帜唬菀粭l鐵路線上有6個(gè)火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價(jià)的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?

          (學(xué)生活動(dòng))討論并回答.

          答案提示:(1)排列;(2)組合.

          [評(píng)述]問題(1)是從6個(gè)火車站中任選兩個(gè),并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個(gè)火車站中任選兩個(gè)并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.

          設(shè)計(jì)意圖:組合與排列所研究的問題幾乎是平行的.上面設(shè)計(jì)的問題目的是從排列知識(shí)中發(fā)現(xiàn)并提出新的問題.

          (二)新課講授

         。厶岢鰡栴} 創(chuàng)設(shè)情境]

         。ń處熁顒(dòng))指導(dǎo)學(xué)生帶著問題閱讀課文.

         。圩帜唬1.排列的定義是什么?

          2.舉例說明一個(gè)組合是什么?

          3.一個(gè)組合與一個(gè)排列有何區(qū)別?

          (學(xué)生活動(dòng))閱讀回答.

         。ń處熁顒(dòng))對(duì)照課文,逐一評(píng)析.

          設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過渡,并盡快適應(yīng)新的環(huán)境.

          【歸納概括 建立新知】

         。ń處熁顒(dòng))承接上述問題的回答,展示下面知識(shí).

         。圩帜唬菽P停簭 個(gè)不同元素中取出 個(gè)元素并成一組,叫做從 個(gè)不同元素中取出 個(gè)元素的一個(gè)組合.如前面思考題:6個(gè)火車站中甲站→乙站和乙站→甲站是票價(jià)相同的車票,是從6個(gè)元素中取出2個(gè)元素的一個(gè)組合.

          組合數(shù):從 個(gè)不同元素中取出 個(gè)元素的所有組合的個(gè)數(shù),稱之,用符號(hào) 表示,如從6個(gè)元素中取出2個(gè)元素的組合數(shù)為 .

          [評(píng)述]區(qū)分一個(gè)排列與一個(gè)組合的關(guān)鍵是:該問題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.

          (學(xué)生活動(dòng))傾聽、思索、記錄.

         。ń處熁顒(dòng))提出思考問題.

         。弁队埃 與 的關(guān)系如何?

         。◣熒顒(dòng))共同探討.求從 個(gè)不同元素中取出 個(gè)元素的排列數(shù) ,可分為以下兩步:

          第1步,先求出從這 個(gè)不同元素中取出 個(gè)元素的組合數(shù)為 ;

          第2步,求每一個(gè)組合中 個(gè)元素的全排列數(shù)為 .

          根據(jù)分步計(jì)數(shù)原理,得到

         。圩帜唬莨1:

          公式2:

         。▽W(xué)生活動(dòng))驗(yàn)算 ,即一條鐵路上6個(gè)火車站有15種不同的`票價(jià)的普通客車票.

          設(shè)計(jì)意圖:本著以認(rèn)識(shí)概念為起點(diǎn),以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識(shí)的形成過程,使學(xué)生思維層層被激活、逐漸深入到問題當(dāng)中去.

          (三)小結(jié)

         。◣熒顒(dòng))共同小結(jié).

          本節(jié)主要內(nèi)容有

          1.組合概念.

          2.組合數(shù)計(jì)算的兩個(gè)公式.

          (四)布置作業(yè)

          1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.

          2.思考題:某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?

          3.研究性題:

          在 的 邊上除頂點(diǎn) 外有 5個(gè)點(diǎn),在 邊上有 4個(gè)點(diǎn),由這些點(diǎn)(包括 )能組成多少個(gè)四邊形?能組成多少個(gè)三角形?

          (五)課后點(diǎn)評(píng)

          在學(xué)習(xí)了排列知識(shí)的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時(shí)調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問題、解決問題的能力.

          作業(yè)參考答案

          2.解;設(shè)有男同學(xué) 人,則有女同學(xué) 人,依題意有 ,由此解得 或 或2.即男同學(xué)有5人或6人,女同學(xué)相應(yīng)為3人或2人.

          3.能組成 (注意不能用 點(diǎn)為頂點(diǎn))個(gè)四邊形, 個(gè)三角形.

          探究活動(dòng)

          同室四人各寫一張賀年卡,先集中起來,然后每人從中拿一張別人送出的賀年卡,那么四張不同的分配萬式可有多少種?

          解 設(shè)四人分別為甲、乙、丙、丁,可從多種角度來解.

          解法一 可將拿賀卡的情況,按甲分別拿乙、丙、丁制作的賀卡的情形分為三類,即:

          甲拿乙制作的賀卡時(shí),則賀卡有3種分配方法.

          甲拿丙制作的賀卡時(shí),則賀卡有3種分配方法.

          甲拿丁制作的賀卡時(shí),則賀卡有3種分配方法.

          由加法原理得,賀卡分配方法有3+3+3=9種.

          解法二 可從利用排列數(shù)和組合數(shù)公式角度來考慮.這時(shí)還存在正向與逆向兩種思考途徑.

          正向思考,即從滿足題設(shè)條件出發(fā),分步完成分配.先可由甲從乙、丙、丁制作的賀卡中選取1張,有 種取法,剩下的乙、丙、丁中所制作賀卡被甲取走后可在剩下的3張賀卡中選取1張,也有 種,最后剩下2人可選取的賀卡即是這2人所制作的賀卡,其取法只有互取對(duì)方制作賀卡1種取法.根據(jù)乘法原理,賀卡的分配方法有 (種).

          逆向思考,即從4人取4張不同賀卡的所有取法中排除不滿足題設(shè)條件的取法.不滿足題設(shè)條件的取法為,其中只有1人取自己制作的賀卡,其中有2人取自己制作的賀卡,其中有3人取自己制作的賀卡(此時(shí)即為4人均拿自己制作的賀卡).其取法分別為 1.故符合題設(shè)要求的取法共有 (種).

        高中數(shù)學(xué)教案4

          各位評(píng)委、各位專家,大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級(jí)中學(xué)教科書(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。

          下面從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)、效果評(píng)價(jià)六方面進(jìn)行說課。

          一、教材分析

         。ㄒ唬┙滩牡牡匚缓妥饔

          “一元二次不等式解法”既是初中一元一次不等式解法在知識(shí)上的延伸和發(fā)展,又是本章集合知識(shí)的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識(shí)的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識(shí)。

         。ǘ┙虒W(xué)內(nèi)容

          本節(jié)內(nèi)容分2課時(shí)學(xué)習(xí)。本課時(shí)通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個(gè)一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂趣。

          二、教學(xué)目標(biāo)分析

          根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

          知識(shí)目標(biāo)——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

          能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

          情感目標(biāo)——?jiǎng)?chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識(shí)及主體作用。

          三、重難點(diǎn)分析

          一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。

          要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識(shí)方程的解,不等式的解集與函數(shù)圖象上對(duì)應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。

          四、教法與學(xué)法分析

          (一)學(xué)法指導(dǎo)

          教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動(dòng)手畫、動(dòng)眼看、動(dòng)腦想、動(dòng)口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會(huì),教給了學(xué)生獲取知識(shí)的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì)逐步感受到數(shù)學(xué)的美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

         。ǘ┙谭ǚ治

          本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。

          建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動(dòng)的建構(gòu)活動(dòng),學(xué)生應(yīng)與一定的知識(shí)背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但便于保持,而且易于遷移到陌生的問題情景中。

          本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的`解法。

          五、課堂設(shè)計(jì)

          本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會(huì)走向會(huì)學(xué),由被動(dòng)答題走向主動(dòng)探究。

         。ㄒ唬﹦(chuàng)設(shè)情景,引出“三個(gè)一次”的關(guān)系

          本節(jié)課開始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。

          為此,我設(shè)計(jì)了以下幾個(gè)問題:

          1、請同學(xué)們解以下方程和不等式:

         、2x-7=0;②2x-70;③2x-70

          學(xué)生回答,我板書。

          2、我指出:2x-70和2x-70的解實(shí)際上只需利用不等式基本性質(zhì)就容易得到。

          3、接著我提出:我們能否利用不等式的基本性質(zhì)來解一元二次不等式呢?學(xué)生可能感到很困惑。

          4、為此,我引入一次函數(shù)y=2x-7,借助動(dòng)畫從圖象上直觀認(rèn)識(shí)方程和不等式的解,得出以下三組重要關(guān)系:

         、2x-7=0的解恰是函數(shù)y=2x-7的圖象與x軸

          交點(diǎn)的橫坐標(biāo)。

         、2x-70的解集正是函數(shù)y=2x-7的圖象

          在x軸的上方的點(diǎn)的橫坐標(biāo)的集合。

          ③2x-70的解集正是函數(shù)y=2x-7的圖象

          在x軸的下方的點(diǎn)的橫坐標(biāo)的集合。

          三組關(guān)系的得出,實(shí)際上讓學(xué)生找到了利用“一次函數(shù)的圖象”來解一元一次方程和一元一次不等式的方法。讓學(xué)生看到了解決一元二次不等式的希望,大大激發(fā)了學(xué)生解決新問題的興趣。此時(shí),學(xué)生很自然聯(lián)想到利用函數(shù)y=x2-x-6的圖象來求不等式x2-x-60的解集。

         。ǘ┍扰f悟新,引出“三個(gè)二次”的關(guān)系

          為此我引導(dǎo)學(xué)生作出函數(shù)y=x2-x-6的圖象,按照“看一看 說一說 問一問”的思路進(jìn)行探究。

          看函數(shù)y=x2-x-6的圖象并說出:

         、俜匠蘹2-x-6=0的解是

          x=-2或x=3 ;

          ②不等式x2-x-60的解集是

          {x|x-2,或x3};

         、鄄坏仁絰2-x-60的解集是

          {x|-23}。

          此時(shí),學(xué)生已經(jīng)沖出了困惑,找到了利用二次函數(shù)的圖象來解一元二次不等式的方法。

          學(xué)生沉浸在成功的喜悅中,不妨趁熱打鐵問一問:如果把函數(shù)y=x2-x-6變?yōu)閥=ax2+bx+c(a0),那么圖象與x軸的位置關(guān)系又怎樣呢?(學(xué)生回答:△0時(shí),圖象與x軸有兩個(gè)交點(diǎn);△=0時(shí),圖象與x軸只有一個(gè)交點(diǎn);△0時(shí),圖象與x輛沒有交點(diǎn)。)請同學(xué)們討論:ax2+bx+c0與ax2+bx+c0的解集與函數(shù)y=ax2+bx+c的圖象有怎樣的關(guān)系?

         。ㄈw納提煉,得出“三個(gè)二次”的關(guān)系

          1、引導(dǎo)學(xué)生根據(jù)圖象與x軸的相對(duì)位置關(guān)系,寫出相關(guān)不等式的解集。

          2、此時(shí)提出:若a0時(shí),怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經(jīng)討論之后,有的學(xué)生得出:將二次項(xiàng)系數(shù)由負(fù)化正,轉(zhuǎn)化為上述模式求解,教師應(yīng)予以強(qiáng)調(diào);也有的學(xué)生提出畫出相應(yīng)的二次函數(shù)圖象,根據(jù)圖象寫出解集,教師應(yīng)給予肯定。)

          (四)應(yīng)用新知,熟練掌握一元二次不等式的解集

          借助二次函數(shù)的圖象,得到一元二次不等式的解集,學(xué)生形成了感性認(rèn)識(shí),為鞏固所學(xué)知識(shí),我們一起來完成以下例題:

          例1、解不等式2x2-3x-20

          解:因?yàn)棣?,方程2x2-3x-2=0的解是

          x1= ,x2=2

          所以,不等式的解集是

          { x| x ,或x2}

          例1的解決達(dá)到了兩個(gè)目的:一是鞏固了一元二次不等式解集的應(yīng)用;二是規(guī)范了一元二次不等式的解題格式。

          下面我們接著學(xué)習(xí)課本例2。

          例2 解不等式-3x2+6x2

          課本例2的出現(xiàn)恰當(dāng)好處,一方面突出了“對(duì)于二次項(xiàng)系數(shù)是負(fù)數(shù)(即a0)的一元二次不等式,可以先把二次項(xiàng)系數(shù)化為正數(shù),再求解”;另一方面,學(xué)生對(duì)此例的解答極易出現(xiàn)寫錯(cuò)解集(如出現(xiàn)“或”與“且”的錯(cuò)誤)。

          通過例1、例2的解決,學(xué)生與我一起總結(jié)了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫解集。

          例3 解不等式4x2-4x+10

          例4 解不等式-x2+2x-30

          分別突出了“△=0”、“△0”對(duì)不等式解集的影響。這兩例由學(xué)生練習(xí),教師巡視、指導(dǎo),講評(píng)學(xué)生完成情況,尋找學(xué)生中的閃光點(diǎn),給予熱情表揚(yáng)。

          4道例題,具有典型性、層次性和學(xué)生的可接受性。為了避免學(xué)生學(xué)后“一團(tuán)亂麻”、“一盤散沙”的局面,我和學(xué)生一起總結(jié)。

         。ㄎ澹┛偨Y(jié)

          解一元二次不等式的“四部曲”:

          (1)把二次項(xiàng)的系數(shù)化為正數(shù)

          (2)計(jì)算判別式Δ

          (3)解對(duì)應(yīng)的一元二次方程

          (4)根據(jù)一元二次方程的根,結(jié)合圖像(或口訣),寫出不等式的解集。概括為:一化正→二算Δ→三求根→四寫解集

         。┳鳂I(yè)布置

          為了使所有學(xué)生鞏固所學(xué)知識(shí),我布置了“必做題”;又為學(xué)有余力者留有自由發(fā)展的空間,我布置了“探究題”。

         。1)必做題:習(xí)題1.5的1、3題

         。2)探究題:①若a、b不同時(shí)為零,記ax2+bx+c=0的解集為P,ax2+bx+c0的解集為M,ax2+bx+c0的解集為N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求實(shí)數(shù)k的取值范圍。

         。ㄆ撸┌鍟O(shè)計(jì)

          一元二次不等式解法(1)

          五、教學(xué)效果評(píng)價(jià)

          本節(jié)課立足課本,著力挖掘,設(shè)計(jì)合理,層次分明。以“三個(gè)一次關(guān)系→三個(gè)二次關(guān)系→一元二次不等式解法”為主線,以“從形到數(shù),從具體到抽象,從特殊到一般”為靈魂,以“畫、看、說、用”為特色,把握重點(diǎn),突破難點(diǎn)。在教學(xué)思想上既注重知識(shí)形成過程的教學(xué),還特別突出學(xué)生學(xué)習(xí)方法的指導(dǎo),探究能力的訓(xùn)練,創(chuàng)新精神的培養(yǎng),引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)的美,體驗(yàn)求知的樂趣。

        高中數(shù)學(xué)教案5

          教學(xué)目標(biāo)

          1.理解的概念,掌握的通項(xiàng)公式,并能運(yùn)用公式解決簡單的問題.

         。1)正確理解的定義,了解公比的概念,明確一個(gè)數(shù)列是的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是,了解等比中項(xiàng)的概念;

         。2)正確認(rèn)識(shí)使用的表示法,能靈活運(yùn)用通項(xiàng)公式求的首項(xiàng)、公比、項(xiàng)數(shù)及指定的項(xiàng);

         。3)通過通項(xiàng)公式認(rèn)識(shí)的性質(zhì),能解決某些實(shí)際問題.

          2.通過對(duì)的研究,逐步培養(yǎng)學(xué)生觀察、類比、歸納、猜想等思維品質(zhì).

          3.通過對(duì)概念的歸納,進(jìn)一步培養(yǎng)學(xué)生嚴(yán)密的思維習(xí)慣,以及實(shí)事求是的科學(xué)態(tài)度.

          教學(xué)建議

          教材分析

         。1)知識(shí)結(jié)構(gòu)

          是另一個(gè)簡單常見的數(shù)列,研究內(nèi)容可與等差數(shù)列類比,首先歸納出的定義,導(dǎo)出通項(xiàng)公式,進(jìn)而研究圖像,又給出等比中項(xiàng)的概念,最后是通項(xiàng)公式的應(yīng)用.

         。2)重點(diǎn)、難點(diǎn)分析

          教學(xué)重點(diǎn)是的定義和對(duì)通項(xiàng)公式的認(rèn)識(shí)與應(yīng)用,教學(xué)難點(diǎn)在于通項(xiàng)公式的推導(dǎo)和運(yùn)用.

          ①與等差數(shù)列一樣,也是特殊的數(shù)列,二者有許多相同的性質(zhì),但也有明顯的區(qū)別,可根據(jù)定義與通項(xiàng)公式得出的特性,這些是教學(xué)的重點(diǎn).

         、陔m然在等差數(shù)列的學(xué)習(xí)中曾接觸過不完全歸納法,但對(duì)學(xué)生來說仍然不熟悉;在推導(dǎo)過程中,需要學(xué)生有一定的觀察分析猜想能力;第一項(xiàng)是否成立又須補(bǔ)充說明,所以通項(xiàng)公式的推導(dǎo)是難點(diǎn).

          ③對(duì)等差數(shù)列、的綜合研究離不開通項(xiàng)公式,因而通項(xiàng)公式的靈活運(yùn)用既是重點(diǎn)又是難點(diǎn).

          教學(xué)建議

         。1)建議本節(jié)課分兩課時(shí),一節(jié)課為的概念,一節(jié)課為通項(xiàng)公式的應(yīng)用.

         。2)概念的引入,可給出幾個(gè)具體的例子,由學(xué)生概括這些數(shù)列的相同特征,從而得到的定義.也可將幾個(gè)等差數(shù)列和幾個(gè)混在一起給出,由學(xué)生將這些數(shù)列進(jìn)行分類,有一種是按等差、等比來分的`,由此對(duì)比地概括的定義.

          (3)根據(jù)定義讓學(xué)生分析的公比不為0,以及每一項(xiàng)均不為0的特性,加深對(duì)概念的理解.

         。4)對(duì)比等差數(shù)列的表示法,由學(xué)生歸納的各種表示法.啟發(fā)學(xué)生用函數(shù)觀點(diǎn)認(rèn)識(shí)通項(xiàng)公式,由通項(xiàng)公式的結(jié)構(gòu)特征畫數(shù)列的圖象.

         。5)由于有了等差數(shù)列的研究經(jīng)驗(yàn),的研究完全可以放手讓學(xué)生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn).

         。6)可讓學(xué)生相互出題,解題,講題,充分發(fā)揮學(xué)生的主體作用.

          教學(xué)設(shè)計(jì)示例

          課題:的概念

          教學(xué)目標(biāo)

          1.通過教學(xué)使學(xué)生理解的概念,推導(dǎo)并掌握通項(xiàng)公式.

          2.使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力.

          3.培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度.

          教學(xué)重點(diǎn),難點(diǎn)

          重點(diǎn)、難點(diǎn)是的定義的歸納及通項(xiàng)公式的推導(dǎo).

          教學(xué)用具

          投影儀,多媒體軟件,電腦.

          教學(xué)方法

          討論、談話法.

          教學(xué)過程

          一、提出問題

          給出以下幾組數(shù)列,將它們分類,說出分類標(biāo)準(zhǔn).(幻燈片)

         、伲2,1,4,7,10,13,16,19,…

          ②8,16,32,64,128,256,…

          ③1,1,1,1,1,1,1,…

          ④243,81,27,9,3,1,,,…

         、31,29,27,25,23,21,19,…

          ⑥1,-1,1,-1,1,-1,1,-1,…

         、1,-10,100,-1000,10000,-100000,…

         、0,0,0,0,0,0,0,…

          由學(xué)生發(fā)表意見(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無妨,得出定義后再考察③是否為).

          二、講解新課

          請學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲分裂問題.假設(shè)每經(jīng)過一個(gè)單位時(shí)間每個(gè)變形蟲都分裂為兩個(gè)變形蟲,再假設(shè)開始有一個(gè)變形蟲,經(jīng)過一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲,經(jīng)過兩個(gè)單位時(shí)間就有了四個(gè)變形蟲,…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲個(gè)數(shù)得到了一列數(shù)這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——.(這里播放變形蟲分裂的多媒體軟件的第一步)

         。ò鍟

          1.的定義(板書)

          根據(jù)與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給下定義.學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來的教師寫出的定義,標(biāo)注出重點(diǎn)詞語.

          請學(xué)生指出②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是.學(xué)生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學(xué)生再舉兩例.而后請學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說形如的數(shù)列都滿足既是等差又是,讓學(xué)生討論后得出結(jié)論:當(dāng)時(shí),數(shù)列既是等差又是,當(dāng)時(shí),它只是等差數(shù)列,而不是.教師追問理由,引出對(duì)的認(rèn)識(shí):

          2.對(duì)定義的認(rèn)識(shí)(板書)

         。1)的首項(xiàng)不為0;

         。2)的每一項(xiàng)都不為0,即;

          問題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為的什么條件?

         。3)公比不為0.

          用數(shù)學(xué)式子表示的定義.

          是①.在這個(gè)式子的寫法上可能會(huì)有一些爭議,如寫成,可讓學(xué)生研究行不行,好不好;接下來再問,能否改寫為是?為什么不能?

          式子給出了數(shù)列第項(xiàng)與第項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)?(不能)確定一個(gè)需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式.

          3.的通項(xiàng)公式(板書)

          問題:用和表示第項(xiàng).

         、俨煌耆珰w納法

          .

          ②疊乘法

          ,…,,這個(gè)式子相乘得,所以.

         。ò鍟1)的通項(xiàng)公式

          得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式.

         。ò鍟2)對(duì)公式的認(rèn)識(shí)

          由學(xué)生來說,最后歸結(jié):

         、俸瘮(shù)觀點(diǎn);

         、诜匠趟枷耄ㄒ蛟诘炔顢(shù)列中已有認(rèn)識(shí),此處再復(fù)習(xí)鞏固而已).

          這里強(qiáng)調(diào)方程思想解決問題.方程中有四個(gè)量,知三求一,這是公式最簡單的應(yīng)用,請學(xué)生舉例(應(yīng)能編出四類問題).解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)

          如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究.同學(xué)可以試著編幾道題.

          三、小結(jié)

          1.本節(jié)課研究了的概念,得到了通項(xiàng)公式;

          2.注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;

          3.用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用.

          四、作業(yè)(略)

          五、板書設(shè)計(jì)

          1.等比數(shù)列的定義

          2.對(duì)定義的認(rèn)識(shí)

          3.等比數(shù)列的通項(xiàng)公式

         。1)公式

         。2)對(duì)公式的認(rèn)識(shí)

          探究活動(dòng)

          將一張很大的薄紙對(duì)折,對(duì)折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米.

          參考答案:

          30次后,厚度為,這個(gè)厚度超過了世界最高的山峰——珠穆朗瑪峰的高度.如果紙?jiān)俦∫恍,比如紙?.001毫米,對(duì)折34次就超過珠穆朗瑪峰的高度了.還記得國王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是粒,用計(jì)算器算一下吧(用對(duì)數(shù)算也行).

        高中數(shù)學(xué)教案6

          教學(xué)目標(biāo):

          1.理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu)

          2.能識(shí)別和理解簡單的框圖的功能

          3.能運(yùn)用三種基本邏輯結(jié)構(gòu)設(shè)計(jì)流程圖以解決簡單的問題

          教學(xué)方法:

          1.通過模仿、操作、探索,經(jīng)歷設(shè)計(jì)流程圖表達(dá)求解問題的過程,加深對(duì)流程圖的感知

          2.在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結(jié)構(gòu)

          教學(xué)過程:

          一、問題情境

          1.情境:

          某鐵路客運(yùn)部門規(guī)定甲、乙兩地之間旅客托運(yùn)行李的費(fèi)用為

          其中(單位:xx)為行李的重量.

          2.試給出計(jì)算費(fèi)用(單位:xx元)的一個(gè)算法,并畫出流程圖

          二、學(xué)生活動(dòng)

          學(xué)生討論,教師引導(dǎo)學(xué)生進(jìn)行表達(dá)

          三、建構(gòu)數(shù)學(xué)

          1.選擇結(jié)構(gòu)的概念:

          先根據(jù)條件作出判斷,再?zèng)Q定執(zhí)行哪一種操作的結(jié)構(gòu)稱為選擇結(jié)構(gòu)

          虛線框內(nèi)是一個(gè)選擇結(jié)構(gòu),它包含一個(gè)判斷框,當(dāng)條件成立(或稱條件為“真”)時(shí)執(zhí)行,否則執(zhí)行

          2.說明:

          (1)有些問題需要按給定的條件進(jìn)行分析、比較和判斷,并按判斷的不同情況進(jìn)行不同的操作,這類問題的實(shí)現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計(jì);

          (2)選擇結(jié)構(gòu)也稱為分支結(jié)構(gòu)或選取結(jié)構(gòu),它要先根據(jù)指定的`條件進(jìn)行判斷,再由判斷的結(jié)果決定執(zhí)行兩條分支路徑中的某一條;

          (3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)行,但或兩個(gè)框中可以有一個(gè)是空的,即不執(zhí)行任何操作;

          (4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個(gè)進(jìn)入點(diǎn)和兩個(gè)退出點(diǎn)。

          3.思考:教材第7頁圖所示的算法中,哪一步進(jìn)行了判斷?

        高中數(shù)學(xué)教案7

          一、向量的概念

          1、既有又有的量叫做向量。用有向線段表示向量時(shí),有向線段的長度表示向量的,有向線段的箭頭所指的方向表示向量的

          2、叫做單位向量

          3、的向量叫做平行向量,因?yàn)槿我唤M平行向量都可以平移到同一條直線上,所以平行向量也叫做。零向量與任一向量平行

          4、且的向量叫做相等向量

          5、叫做相反向量

          二、向量的表示方法:

          幾何表示法、字母表示法、坐標(biāo)表示法

          三、向量的加減法及其坐標(biāo)運(yùn)算

          四、實(shí)數(shù)與向量的乘積

          定義:實(shí)數(shù) λ 與向量 的積是一個(gè)向量,記作λ

          五、平面向量基本定理

          如果e1、e2是同一個(gè)平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底

          六、向量共線/平行的充要條件

          七、非零向量垂直的充要條件

          八、線段的定比分點(diǎn)

          設(shè)是上的 兩點(diǎn),p是上xx的任意一點(diǎn),則存在實(shí)數(shù),使xxx,則為點(diǎn)p分有向線段所成的比,同時(shí),稱p為有向線段的定比分點(diǎn)

          定比分點(diǎn)坐標(biāo)公式及向量式

          九、平面向量的數(shù)量積

         。1)設(shè)兩個(gè)非零向量a和b,作oa=a,ob=b,則∠aob=θ叫a與b的夾角,其范圍是[0,π],|b|cosθ叫b在a上的投影

         。2)|a||b|cosθ叫a與b的數(shù)量積,記作a·b,即 a·b=|a||b|cosθ

         。3)平面向量的數(shù)量積的坐標(biāo)表示

          十、平移

          典例解讀

          1、給出下列命題:①若|a|=|b|,則a=b;②若a,b,c,d是不共線的四點(diǎn),則ab= dc是四邊形abcd為平行四邊形的充要條件;③若a=b,b=c,則a=c;④a=b的充要條件是|a|=|b|且a∥b;⑤若a∥b,b∥c,則a∥c

          其中,正確命題的序號(hào)是xx

          2、已知a,b方向相同,且|a|=3,|b|=7,則|2a-b|=xxxx

          3、若將向量a=(2,1)繞原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn) 得到向量b,則向量b的坐標(biāo)為xx

          4、下列算式中不正確的是( )

          (a) ab+bc+ca=0 (b) ab-ac=bc

          (c) 0·ab=0 (d)λ(μa)=(λμ)a

          5、若向量a=(1,1),b=(1,-1),c=(-1,2),則c=( )

          ?函數(shù)y=x2的圖象按向量a=(2,1)平移后得到的'圖象的函數(shù)表達(dá)式為( )

          (a)y=(x-2)2-1 (b)y=(x+2)2-1 (c)y=(x-2)2+1 (d)y=(x+2)2+1

          7、平面直角坐標(biāo)系中,o為坐標(biāo)原點(diǎn),已知兩點(diǎn)a(3,1),b(-1,3),若點(diǎn)c滿足oc=αoa+βob,其中a、β∈r,且α+β=1,則點(diǎn)c的軌跡方程為( )

          (a)3x+2y-11=0 (b)(x-1)2+(y-2)2=5

          (c)2x-y=0 (d)x+2y-5=0

          8、設(shè)p、q是四邊形abcd對(duì)角線ac、bd中點(diǎn),bc=a,da=b,則 pq=xx

          9、已知a(5,-1) b(-1,7) c(1,2),求△abc中∠a平分線長

          10、若向量a、b的坐標(biāo)滿足a+b=(-2,-1),a-b=(4,-3),則a·b等于( )

          (a)-5 (b)5 (c)7 (d)-1

          11、若a、b、c是非零的平面向量,其中任意兩個(gè)向量都不共線,則( )

          (a)(a)2·(b)2=(a·b)2 (b)|a+b|>|a-b|

          (c)(a·b)·c-(b·c)·a與b垂直 (d)(a·b)·c-(b·c)·a=0

          12、設(shè)a=(1,0),b=(1,1),且(a+λb)⊥b,則實(shí)數(shù)λ的值是( )

          (a)2 (b)0 (c)1 (d)2

          16、利用向量證明:△abc中,m為bc的中點(diǎn),則 ab2+ac2=2(am2+mb2)

          17、在三角形abc中, =(2,3), =(1,k),且三角形abc的一個(gè)內(nèi)角為直角,求實(shí)數(shù)k的值

          18、已知△abc中,a(2,-1),b(3,2),c(-3,-1),bc邊上的高為ad,求點(diǎn)d和向量

        高中數(shù)學(xué)教案8

          1.課題

          填寫課題名稱(高中代數(shù)類課題)

          2.教學(xué)目標(biāo)

          (1)知識(shí)與技能:

          通過本節(jié)課的學(xué)習(xí),掌握......知識(shí),提高學(xué)生解決實(shí)際問題的能力;

          (2)過程與方法:

          通過......(討論、發(fā)現(xiàn)、探究),提高......(分析、歸納、比較和概括)的能力;

          (3)情感態(tài)度與價(jià)值觀:

          通過本節(jié)課的學(xué)習(xí),增強(qiáng)學(xué)生的學(xué)習(xí)興趣,將數(shù)學(xué)應(yīng)用到實(shí)際生活中,增加學(xué)生數(shù)學(xué)學(xué)習(xí)的樂趣。

          3.教學(xué)重難點(diǎn)

          (1)教學(xué)重點(diǎn):本節(jié)課的知識(shí)重點(diǎn)

          (2)教學(xué)難點(diǎn):易錯(cuò)點(diǎn)、難以理解的知識(shí)點(diǎn)

          4.教學(xué)方法(一般從中選擇3個(gè)就可以了)

          (1)討論法

          (2)情景教學(xué)法

          (3)問答法

          (4)發(fā)現(xiàn)法

          (5)講授法

          5.教學(xué)過程

          (1)導(dǎo)入

          簡單敘述導(dǎo)入課題的方式和方法(例:復(fù)習(xí)、類比、情境導(dǎo)出本節(jié)課的課題)

          (2)新授課程(一般分為三個(gè)小步驟)

         、俸唵沃v解本節(jié)課基礎(chǔ)知識(shí)點(diǎn)(例:奇函數(shù)的定義)。

         、跉w納總結(jié)該課題中的重點(diǎn)知識(shí)內(nèi)容,尤其對(duì)該注意的一些情況設(shè)置易錯(cuò)點(diǎn),進(jìn)行強(qiáng)調(diào)?梢栽O(shè)計(jì)分組討論環(huán)節(jié)(分組判斷幾組函數(shù)圖像是否為奇函數(shù),并歸納奇函數(shù)圖像的特點(diǎn)。設(shè)置定義域不關(guān)于原點(diǎn)對(duì)稱的函數(shù)是否為奇函數(shù)的易錯(cuò)點(diǎn))。

         、弁卣寡由,將所學(xué)知識(shí)拓展延伸到實(shí)際題目中,去解決實(shí)際生活中的問題。

         。ㄔ谛率谡n里面一定要表下出講課的大體流程,但是不必太過詳細(xì)。)

          (3)課堂小結(jié)

          教師提問,學(xué)生回答本節(jié)課的收獲。

          (4)作業(yè)提高

          布置作業(yè)(盡量與實(shí)際生活相聯(lián)系,有所創(chuàng)新)。

          6.教學(xué)板書

          2.高中數(shù)學(xué)教案格式

          一.課題(說明本課名稱)

          二.教學(xué)目的(或稱教學(xué)要求,或稱教學(xué)目標(biāo),說明本課所要完成的教學(xué)任務(wù))

          三.課型(說明屬新授課,還是復(fù)習(xí)課)

          四.課時(shí)(說明屬第幾課時(shí))

          五.教學(xué)重點(diǎn)(說明本課所必須解決的關(guān)鍵性問題)

          六.教學(xué)難點(diǎn)(說明本課的學(xué)習(xí)時(shí)易產(chǎn)生困難和障礙的知識(shí)傳授與能力培養(yǎng)點(diǎn))

          七.教學(xué)方法要根據(jù)學(xué)生實(shí)際,注重引導(dǎo)自學(xué),注重啟發(fā)思維

          八.教學(xué)過程(或稱課堂結(jié)構(gòu),說明教學(xué)進(jìn)行的內(nèi)容、方法步驟)

          九.作業(yè)處理(說明如何布置書面或口頭作業(yè))

          十.板書設(shè)計(jì)(說明上課時(shí)準(zhǔn)備寫在黑板上的內(nèi)容)

          十一.教具(或稱教具準(zhǔn)備,說明輔助教學(xué)手段使用的工具)

          十二.教學(xué)反思:(教者對(duì)該堂課教后的感受及學(xué)生的收獲、改進(jìn)方法)

          3.高中數(shù)學(xué)教案范文

          【教學(xué)目標(biāo)】

          1.知識(shí)與技能

          (1)理解等差數(shù)列的定義,會(huì)應(yīng)用定義判斷一個(gè)數(shù)列是否是等差數(shù)列:

          (2)賬務(wù)等差數(shù)列的.通項(xiàng)公式及其推導(dǎo)過程:

          (3)會(huì)應(yīng)用等差數(shù)列通項(xiàng)公式解決簡單問題。

          2.過程與方法

          在定義的理解和通項(xiàng)公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗(yàn)從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。

          3.情感、態(tài)度與價(jià)值觀

          通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動(dòng),培養(yǎng)學(xué)生主動(dòng)探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。

          【教學(xué)重點(diǎn)】

         、俚炔顢(shù)列的概念;

         、诘炔顢(shù)列的通項(xiàng)公式

          【教學(xué)難點(diǎn)】

          ①理解等差數(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義;

         、诘炔顢(shù)列的通項(xiàng)公式的推導(dǎo)過程.

          【學(xué)情分析】

          我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時(shí)注重從具體的生活實(shí)例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。

          【設(shè)計(jì)思路】

          1、教法

          ①啟發(fā)引導(dǎo)法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性.

          ②分組討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問題,解決問題,調(diào)動(dòng)學(xué)生的積極性.

          ③講練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn).

          2、學(xué)法

          引導(dǎo)學(xué)生首先從三個(gè)現(xiàn)實(shí)問題(數(shù)數(shù)問題、水庫水位問題、儲(chǔ)蓄問題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法.

          【教學(xué)過程】

          一、創(chuàng)設(shè)情境,引入新課

          1、從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?

          2、水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個(gè)水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫每天的水位(單位:m)組成一個(gè)什么數(shù)列?

          3、我國現(xiàn)行儲(chǔ)蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計(jì)算下一期的利息.按照單利計(jì)算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個(gè)什么數(shù)列?

          教師:以上三個(gè)問題中的數(shù)蘊(yùn)涵著三列數(shù).

          學(xué)生:

         、0,5,10,15,20,25,….

         、18,15.5,13,10.5,8,5.5.

         、10072,10144,10216,10288,10360.

          (設(shè)置意圖:從實(shí)例引入,實(shí)質(zhì)是給出了等差數(shù)列的現(xiàn)實(shí)背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實(shí)生活中大量存在的數(shù)學(xué)模型.通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識(shí)的自主性,培養(yǎng)學(xué)生的歸納能力.

          二、觀察歸納,形成定義

         、0,5,10,15,20,25,….

         、18,15.5,13,10.5,8,5.5.

         、10072,10144,10216,10288,10360.

          思考1上述數(shù)列有什么共同特點(diǎn)?

          思考2根據(jù)上數(shù)列的共同特點(diǎn),你能給出等差數(shù)列的一般定義嗎?

          思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學(xué)符號(hào)語言嗎?

          教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.

          學(xué)生:分組討論,可能會(huì)有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.

          教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號(hào)角度理解等差數(shù)列的定義.

          (設(shè)計(jì)意圖:通過對(duì)一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會(huì)到等差數(shù)列的規(guī)律和共同特點(diǎn);一開始抓。骸皬牡诙(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差為同一常數(shù)”,落實(shí)對(duì)等差數(shù)列概念的準(zhǔn)確表達(dá).)

          三、舉一反三,鞏固定義

          1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.

          (1)1,1,1,1,1;

          (2)1,0,1,0,1;

          (3)2,1,0,-1,-2;

          (4)4,7,10,13,16.

          教師出示題目,學(xué)生思考回答.教師訂正并強(qiáng)調(diào)求公差應(yīng)注意的問題.

          注意:公差d是每一項(xiàng)(第2項(xiàng)起)與它的前一項(xiàng)的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0.

          (設(shè)計(jì)意圖:強(qiáng)化學(xué)生對(duì)等差數(shù)列“等差”特征的理解和應(yīng)用).

          2、思考4:設(shè)數(shù)列{an}的通項(xiàng)公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?

          (設(shè)計(jì)意圖:強(qiáng)化等差數(shù)列的證明定義法)

          四、利用定義,導(dǎo)出通項(xiàng)

          1、已知等差數(shù)列:8,5,2,…,求第200項(xiàng)?

          2、已知一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,如何求出它的任意項(xiàng)an呢?

          教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進(jìn)行具體評(píng)價(jià)、引導(dǎo),總結(jié)推導(dǎo)方法,體會(huì)歸納思想以及累加求通項(xiàng)的方法;讓學(xué)生初步嘗試處理數(shù)列問題的常用方法.

          (設(shè)計(jì)意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過程中,可能會(huì)找到多種不同的解決辦法,教師要逐一點(diǎn)評(píng),并及時(shí)肯定、贊揚(yáng)學(xué)生善于動(dòng)腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識(shí).鼓勵(lì)學(xué)生自主解答,培養(yǎng)學(xué)生運(yùn)算能力)

          五、應(yīng)用通項(xiàng),解決問題

          1、判斷100是不是等差數(shù)列2,9,16,…的項(xiàng)?如果是,是第幾項(xiàng)?

          2、在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.

          3、求等差數(shù)列3,7,11,…的第4項(xiàng)和第10項(xiàng)

          教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.

          學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補(bǔ)充:已知等差數(shù)列的首項(xiàng)和公差就可以求出其通項(xiàng)公式

          (設(shè)計(jì)意圖:主要是熟悉公式,使學(xué)生從中體會(huì)公式與方程之間的聯(lián)系.初步認(rèn)識(shí)“基本量法”求解等差數(shù)列問題.)

          六、反饋練習(xí):教材13頁練習(xí)1

          七、歸納總結(jié):

          1、一個(gè)定義:

          等差數(shù)列的定義及定義表達(dá)式

          2、一個(gè)公式:

          等差數(shù)列的通項(xiàng)公式

          3、二個(gè)應(yīng)用:

          定義和通項(xiàng)公式的應(yīng)用

          教師:讓學(xué)生思考整理,找?guī)讉(gè)代表發(fā)言,最后教師給出補(bǔ)充

          (設(shè)計(jì)意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個(gè)方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識(shí)和掌握基本概念,并靈活運(yùn)用基本概念.)

          【設(shè)計(jì)反思】

          本設(shè)計(jì)從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項(xiàng)公式,強(qiáng)化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補(bǔ)充展開教學(xué),總結(jié)科學(xué)合理的知識(shí)體系,形成師生之間的良性互動(dòng),提高課堂教學(xué)效率.

        高中數(shù)學(xué)教案9

          教學(xué)目標(biāo)

          1.了解映射的概念,象與原象的概念,和一一映射的概念.

         。1)明確映射是特殊的對(duì)應(yīng)即由集合 ,集合 和對(duì)應(yīng)法則f三者構(gòu)成的一個(gè)整體,知道映射的特殊之處在于必須是多對(duì)一和一對(duì)一的對(duì)應(yīng);

         。2)能準(zhǔn)確使用數(shù)學(xué)符號(hào)表示映射, 把握映射與一一映射的區(qū)別;

         。3)會(huì)求給定映射的指定元素的象與原象,了解求象與原象的方法.

          2.在概念形成過程中,培養(yǎng)學(xué)生的觀察,比較和歸納的能力.

          3.通過映射概念的學(xué)習(xí),逐步提高學(xué)生對(duì)知識(shí)的探究能力.

          教學(xué)建議

          教材分析

         。1)知識(shí)結(jié)構(gòu)

          映射是一種特殊的對(duì)應(yīng),一一映射又是一種特殊的映射,而且函數(shù)也是特殊的映射,它們之間的關(guān)系可以通過下圖表示出來,如圖:

          由此我們可從集合的包含關(guān)系中幫助我們把握相關(guān)概念間的區(qū)別與聯(lián)系.

         。2)重點(diǎn),難點(diǎn)分析

          本節(jié)的教學(xué)重點(diǎn)和難點(diǎn)是映射和一一映射概念的形成與認(rèn)識(shí).

         、儆成涞母拍钍潜容^抽象的概念,它是在初中所學(xué)對(duì)應(yīng)的基礎(chǔ)上發(fā)展而來.教學(xué)中應(yīng)特別強(qiáng)調(diào)對(duì)應(yīng)集合 B中的唯一這點(diǎn)要求的理解;

          映射是學(xué)生在初中所學(xué)的對(duì)應(yīng)的基礎(chǔ)上學(xué)習(xí)的,對(duì)應(yīng)本身就是由三部分構(gòu)成的整體,包括集 合A和集合B及對(duì)應(yīng)法則f,由于法則的不同,對(duì)應(yīng)可分為一對(duì)一,多對(duì)一,一對(duì)多和多對(duì)多. 其中只有一對(duì)一和多對(duì)一的能構(gòu)成映射,由此可以看到映射必是“對(duì)B中之唯一”,而只要是對(duì)應(yīng)就必須保證讓A中之任一與B中元素相對(duì)應(yīng),所以滿足一對(duì)一和多對(duì)一的對(duì)應(yīng)就能體現(xiàn)出“任一對(duì)唯一”.

         、诙灰挥成溆衷谟成涞幕A(chǔ)上增加新的要求,決定了它在學(xué)習(xí)中是比較困難的.

          教法建議

         。1)在映射概念引入時(shí),可先從學(xué)生熟悉的對(duì)應(yīng)入手, 選擇一些具體的生活例子,然后再舉一些數(shù)學(xué)例子,分為一對(duì)多、多對(duì)一、多對(duì)一、一對(duì)一四種情況,讓學(xué)生認(rèn)真觀察,比較,再引導(dǎo)學(xué)生發(fā)現(xiàn)其中一對(duì)一和多對(duì)一的對(duì)應(yīng)是映射,逐步歸納概括出映射的基本特征,讓學(xué)生的認(rèn)識(shí)從感性認(rèn)識(shí)到理性認(rèn)識(shí).

         。2)在剛開始學(xué)習(xí)映射時(shí),為了能讓學(xué)生看清映射的構(gòu)成,可以選擇用圖形表示映射,在集合的'選擇上可選擇能用列舉法表示的有限集,法則盡量用語言描述,這樣的表示方法讓學(xué)生可以比較直觀的認(rèn)識(shí)映射,而后再選擇用抽象的數(shù)學(xué)符號(hào)表示映射,比如:

         。3)對(duì)于學(xué)生層次較高的學(xué)?梢栽诮o出定義后讓學(xué)生根據(jù)自己的理解舉出映射的例子,教師也給出一些映射的例子,讓學(xué)生從中發(fā)現(xiàn)映射的特點(diǎn),并用自己的語言描述出來,最后教師加以概括,再從中引出一一映射概念;對(duì)于學(xué)生層次較低的學(xué)校,則可以由教師給出一些例子讓學(xué)生觀察,教師引導(dǎo)學(xué)生發(fā)現(xiàn)映射的特點(diǎn),一起概括.最后再讓學(xué)生舉例,并逐步增加要求向一一映射靠攏,引出一一映射概念.

          (4)關(guān)于求象和原象的問題,應(yīng)在計(jì)算的過程中總結(jié)方法,特別是求原象的方法是解方程或方程組,還可以通過方程組解的不同情況(有唯一解,無解或有無數(shù)解)加深對(duì)映射的認(rèn)識(shí).

         。5)在教學(xué)方法上可以采用啟發(fā),討論的形式,讓學(xué)生在實(shí)例中去觀察,比較,啟發(fā)學(xué)生尋找共性,共同討論映射的特點(diǎn),共同舉例,計(jì)算,最后進(jìn)行小結(jié),教師要起到點(diǎn)撥和深化的作用.

          教學(xué)設(shè)計(jì)方案

          2.1映射

          教學(xué)目標(biāo)(1)了解映射的概念,象與原象及一一映射的概念.

          (2)在概念形成過程中,培養(yǎng)學(xué)生的觀察,分析對(duì)比,歸納的能力.

          (3)通過映射概念的學(xué)習(xí),逐步提高學(xué)生的探究能力.

          教學(xué)重點(diǎn)難點(diǎn)::映射概念的形成與認(rèn)識(shí).

          教學(xué)用具:實(shí)物投影儀

          教學(xué)方法:啟發(fā)討論式

          教學(xué)過程:

          一、引入

          在初中,我們已經(jīng)初步探討了函數(shù)的定義并研究了幾類簡單的常見函數(shù).在高中,將利用前面集合有關(guān)知識(shí),利用映射的觀點(diǎn)給出函數(shù)的定義.那么映射是什么呢?這就是我們今天要詳細(xì)的概念.

          二、新課

          在前一章集合的初步知識(shí)中,我們學(xué)習(xí)了元素與集合及集合與集合之間的關(guān)系,而映射是重點(diǎn)研究兩個(gè)集合的元素與元素之間的對(duì)應(yīng)關(guān)系.這要先從我們熟悉的對(duì)應(yīng)說起(用投影儀打出一些對(duì)應(yīng)關(guān)系,共6個(gè))

          我們今天要研究的是一類特殊的對(duì)應(yīng),特殊在什么地方呢?

          提問1:在這些對(duì)應(yīng)中有哪些是讓A中元素就對(duì)應(yīng)B中唯一一個(gè)元素?

          讓學(xué)生仔細(xì)觀察后由學(xué)生回答,對(duì)有爭議的,或漏選,多選的可詳細(xì)說明理由進(jìn)行討論.最后得出(1),(2),(5),(6)是符合條件的(用投影儀將這幾個(gè)集中在一起)

          提問2:能用自己的語言描述一下這幾個(gè)對(duì)應(yīng)的共性嗎?

          經(jīng)過師生共同推敲,將映射的定義引出.(主體內(nèi)容由學(xué)生完成,教師做必要的補(bǔ)充)

        高中數(shù)學(xué)教案10

          教學(xué)目的:掌握圓的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問題

          教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程及有關(guān)運(yùn)用

          教學(xué)難點(diǎn):標(biāo)準(zhǔn)方程的.靈活運(yùn)用

          教學(xué)過程:

          一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程

          二、掌握知識(shí),鞏固練習(xí)

          練習(xí):⒈說出下列圓的方程

         、艌A心(3,-2)半徑為5⑵圓心(0,3)半徑為3

          ⒉指出下列圓的圓心和半徑

         、牛▁-2)2+(y+3)2=3

          ⑵x2+y2=2

         、莤2+y2-6x+4y+12=0

          ⒊判斷3x-4y-10=0和x2+y2=4的位置關(guān)系

         、磮A心為(1,3),并與3x-4y-7=0相切,求這個(gè)圓的方程

          三、引伸提高,講解例題

          例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)

          練習(xí):1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。

          2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。

          例2:某圓拱橋的跨度為20米,拱高為4米,在建造時(shí)每隔4米加一個(gè)支柱支撐,求A2P2的長度。

          例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)練思維)

          四、小結(jié)練習(xí)P771,2,3,4

          五、作業(yè)P811,2,3,4

        高中數(shù)學(xué)教案11

          教學(xué)目標(biāo)

          (1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;

          (2)使學(xué)生掌握組合數(shù)的計(jì)算公式;

          (3)通過學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問題和解決問題的能力;

          教學(xué)重點(diǎn)難點(diǎn)

          重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;

          難點(diǎn)是解組合的應(yīng)用題.

          教學(xué)過程設(shè)計(jì)

          (-)導(dǎo)入新課

          (教師活動(dòng))提出下列思考問題,打出字幕.

          [字幕]一條鐵路線上有6個(gè)火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價(jià)的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?

          (學(xué)生活動(dòng))討論并回答.

          答案提示:(1)排列;(2)組合.

          [評(píng)述]問題(1)是從6個(gè)火車站中任選兩個(gè),并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個(gè)火車站中任選兩個(gè)并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.

          設(shè)計(jì)意圖:組合與排列所研究的問題幾乎是平行的上面設(shè)計(jì)的問題目的是從排列知識(shí)中發(fā)現(xiàn)并提出新的問題.

          (二)新課講授

          [提出問題 創(chuàng)設(shè)情境]

          (教師活動(dòng))指導(dǎo)學(xué)生帶著問題閱讀課文.

          [字幕]1.排列的定義是什么?

          2.舉例說明一個(gè)組合是什么?

          3.一個(gè)組合與一個(gè)排列有何區(qū)別?

          (學(xué)生活動(dòng))閱讀回答.

          (教師活動(dòng))對(duì)照課文,逐一評(píng)析.

          設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過渡,并盡快適應(yīng)新的環(huán)境.

          【歸納概括 建立新知】

          (教師活動(dòng))承接上述問題的回答,展示下面知識(shí).

          [字幕]模型:從 個(gè)不同元素中取出 個(gè)元素并成一組,叫做從 個(gè)不同元素中取出 個(gè)元素的一個(gè)組合.如前面思考題:6個(gè)火車站中甲站→乙站和乙站→甲站是票價(jià)相同的車票,是從6個(gè)元素中取出2個(gè)元素的一個(gè)組合.

          組合數(shù):從 個(gè)不同元素中取出 個(gè)元素的所有組合的個(gè)數(shù),稱之,用符號(hào) 表示,如從6個(gè)元素中取出2個(gè)元素的組合數(shù)為 .

          [評(píng)述]區(qū)分一個(gè)排列與一個(gè)組合的關(guān)鍵是:該問題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.

          (學(xué)生活動(dòng))傾聽、思索、記錄.

          (教師活動(dòng))提出思考問題.

          [投影] 與 的關(guān)系如何?

          (師生活動(dòng))共同探討.求從 個(gè)不同元素中取出 個(gè)元素的排列數(shù) ,可分為以下兩步:

          第1步,先求出從這 個(gè)不同元素中取出 個(gè)元素的組合數(shù)為 ;

          第2步,求每一個(gè)組合中 個(gè)元素的全排列數(shù)為 .根據(jù)分步計(jì)數(shù)原理,得到

          [字幕]公式1:

          公式2:

          (學(xué)生活動(dòng))驗(yàn)算 ,即一條鐵路上6個(gè)火車站有15種不同的票價(jià)的普通客車票.

          設(shè)計(jì)意圖:本著以認(rèn)識(shí)概念為起點(diǎn),以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識(shí)的.形成過程,使學(xué)生思維層層被激活、逐漸深入到問題當(dāng)中去.

          【例題示范 探求方法】

          (教師活動(dòng))打出字幕,給出示范,指導(dǎo)訓(xùn)練.

          [字幕]例1 列舉從4個(gè)元素 中任取2個(gè)元素的所有組合.

          例2 計(jì)算:(1) ;(2) .

          (學(xué)生活動(dòng))板演、示范.

          (教師活動(dòng))講評(píng)并指出用兩種方法計(jì)算例2的第2小題.

          [字幕]例3 已知 ,求 的所有值.

          (學(xué)生活動(dòng))思考分析.

          解 首先,根據(jù)組合的定義,有

          ①

          其次,由原不等式轉(zhuǎn)化為

          即

          解得 ②

          綜合①、②,得 ,即

          [點(diǎn)評(píng)]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.

          設(shè)計(jì)意圖:例題教學(xué)循序漸進(jìn),讓學(xué)生鞏固知識(shí),強(qiáng)化公式的應(yīng)用,從而培養(yǎng)學(xué)生的綜合分析能力.

          【反饋練習(xí) 學(xué)會(huì)應(yīng)用】

          (教師活動(dòng))給出練習(xí),學(xué)生解答,教師點(diǎn)評(píng).

          [課堂練習(xí)]課本P99練習(xí)第2,5,6題.

          [補(bǔ)充練習(xí)]

          [字幕]1.計(jì)算:

          2.已知 ,求 .

          (學(xué)生活動(dòng))板演、解答.

          設(shè)計(jì)意圖:課堂教學(xué)體現(xiàn)以學(xué)生為本,讓全體學(xué)生參與訓(xùn)練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.

          (三)小結(jié)

          (師生活動(dòng))共同小結(jié).

          本節(jié)主要內(nèi)容有

          1.組合概念.

          2.組合數(shù)計(jì)算的兩個(gè)公式.

          (四)布置作業(yè)

          1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.

          2.思考題:某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?

          3.研究性題:

          在 的 邊上除頂點(diǎn) 外有 5個(gè)點(diǎn),在 邊上有 4個(gè)點(diǎn),由這些點(diǎn)(包括 )能組成多少個(gè)四邊形?能組成多少個(gè)三角形?

          (五)課后點(diǎn)評(píng)

          在學(xué)習(xí)了排列知識(shí)的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時(shí)調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問題、解決問題的能力.

        高中數(shù)學(xué)教案12

          教學(xué)目標(biāo):

          1、使學(xué)生了解角的形成,理解角的概念掌握角的各種表示法;

          2、通過觀察、操作培養(yǎng)學(xué)生的觀察能力和動(dòng)手操作能力。

          3、使學(xué)生掌握度、分、秒的進(jìn)位制,會(huì)作度、分、秒間的單位互化

          4、采用自學(xué)與小組合作學(xué)習(xí)相結(jié)合的方法,培養(yǎng)學(xué)生主動(dòng)參與、勇于探究的精神。

          教學(xué)重點(diǎn):

          理解角的概念,掌握角的三種表示方法

          教學(xué)難點(diǎn):

          掌握度、分、秒的進(jìn)位制, ,會(huì)作度、分、秒間的單位互化

          教學(xué)手段:

          教具:電腦課件、實(shí)物投影、量角器

          學(xué)具:量角器需測量的角

          教學(xué)過程:

          一、建立角的概念

         。ㄒ唬┮虢牵ɡ谜n件演示)

          1、從生活中引入

          提問:

          A、以前我們曾經(jīng)認(rèn)識(shí)過角,那你們能從這兩個(gè)圖形中指出哪些地方是角嗎?

          B、在我們的生活當(dāng)中存在著許許多多的角。一起看一看。誰能從這些常用的物品中找出角?

          2、從射線引入

          提問:

          A、昨天我們認(rèn)識(shí)了射線,想從一點(diǎn)可以引出多少條射線?

          B、如果從一點(diǎn)出發(fā)任意取兩條射線,那出現(xiàn)的是什么圖形?

          C、哪兩條射線可以組成一個(gè)角?誰來指一指。

         。ǘ┱J(rèn)識(shí)角,總結(jié)角的定義

          3、 過渡:角是怎么形成的呢?一起看

         。1)、演示:老師在這畫上一個(gè)點(diǎn),現(xiàn)在從這點(diǎn)出發(fā)引出一條射線,再從這點(diǎn)出發(fā)引出第二條射線。

          提問:觀察從這點(diǎn)引出了幾條射線?此時(shí)所組成的圖形是什么圖形?

         。2)、判斷下列哪些圖形是角。

         。ā蹋 (×) (√) (×) (√)

          為何第二幅和第四幅圖形不是角?(學(xué)生回答)

          誰能用自己的話來概括一下怎樣組成的.圖形叫做角?

          總結(jié):有公共端點(diǎn)的兩條射線所組成的圖形叫做角(angle)

          角的第二定義:角也可以看做由一條射線繞端點(diǎn)旋轉(zhuǎn)所形成的圖形.如下圖中的角,可以看做射線OA繞端點(diǎn)0按逆時(shí)針方向旋轉(zhuǎn)到OB所形成的我們把OA叫做角的始邊,OB叫做角的終邊.

          B

          0 A

          4、認(rèn)識(shí)角的各部分名稱,明確頂點(diǎn)、邊的作用

          (1)觀看角的圖形提問:這個(gè)點(diǎn)叫什么?這兩條射線叫什么?(學(xué)生邊說師邊標(biāo)名稱)

          (2)角可以畫在本上、黑板上,那角的位置是由誰決定的?

          (3)頂點(diǎn)可以確定角的位置,從頂點(diǎn)引出的兩條邊可以組成一個(gè)角。

          5、學(xué)會(huì)用符號(hào)表示角

          提問:那么,角的符號(hào)是什么?該怎么寫,怎么讀的呢?(電腦顯示)

         。1)可以標(biāo)上三個(gè)大寫字母,寫作:∠ABC或∠CBA,讀作:角ABC或角CBA.

         。2)觀察這兩種方法,有什么特點(diǎn)?(字母B都在中間)

          (3)所以,在只有一個(gè)角的時(shí)候,我們還可以寫作: ∠B,讀作:角B

         。4)為了方便,有時(shí)我們還可以標(biāo)上數(shù)字,寫作∠1,讀作:角1

          (5)注:區(qū)別 “∠”和“<”的不同。請同學(xué)們指著用學(xué)具折出的一個(gè)角,訓(xùn)練一下這三種讀法。

          6、強(qiáng)調(diào)角的大小與兩邊張開的程度有關(guān),與兩條邊的長短無關(guān)。

          二、 角的度量

          1、學(xué)習(xí)角的度量

          (1)教學(xué)生認(rèn)識(shí)量角器

          (2) 認(rèn)識(shí)了量角器,那怎樣使用它去測量角的度數(shù)呢?這部分知識(shí)請同學(xué)們合作學(xué)習(xí)。

          提出要求:小組合作邊學(xué)習(xí)測量方法邊嘗試測量

          第一個(gè)角,想想有幾種方法?

          1、要求合作學(xué)習(xí)探究、測量。

          2、反饋匯報(bào):學(xué)生邊演示邊復(fù)述過程

          3、教師利用課件演示正確的操作過程,糾正學(xué)生中存在的問題。

          4、歸納概括測量方法(兩重合一對(duì))

          (1)用量角器的中心點(diǎn)與角的頂點(diǎn)重合

         。2)零刻度線與角的一邊重合(可與內(nèi)零度刻度線重合;也可與外零度刻度線重合)

         。3)另一條邊所對(duì)的角的度數(shù),就是這個(gè)角的度數(shù)。

          5、小結(jié):同一個(gè)角無論是用內(nèi)刻度量角,還是用外刻度量角,結(jié)果都一樣。

          6、獨(dú)立練習(xí)測量角的度數(shù)(書做一做中第一題1,3與第二題)

         。1) 獨(dú)立測量,師注意查看學(xué)生中存在的問題。

          (2) 課件演示糾正問題

          三、度、分、秒的進(jìn)位制及這些單位間的互化

          為了更精細(xì)地度量角,我們引入更小的角度單位:分、秒.把1°的角等分成60份,每份叫做1分記作1′;把1′的角再等分成60份,每份叫做1秒的角,1秒記作1″.

          1°=60′,1′=60″;

          1′=( )°,1″=( )′.

          例1 將57.32°用度、分、秒表示.

          解:先把0.32°化為分,

          0.32°=60′×0.32=19.2′.

          再把0.2′化為秒,

          0.2′=60″×0.2=12″.

          所以 57.32″=57°19′12″.

          例2 把10°6′36″用度表示.

          解:先把36″化為分,

          36″=( )′×36=0.6′

          6′+0.6′=6.6′.

          再把6.6′化為度,

          6.6′=( )°×6.6=0.11°.

          所以 10°6′36″=10.11°.

          四、鞏固練習(xí)

          課本P122練習(xí)

          五、總結(jié):請大家回憶一下,今天都學(xué)了那些知識(shí),通過學(xué)習(xí)你想說些什么?

          六、作業(yè):課本P123 3、4.(1)(3)、5.(2)(4)

        高中數(shù)學(xué)教案13

          教學(xué)目標(biāo):

          1.理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu).

          2.能識(shí)別和理解簡單的框圖的功能.

          3. 能運(yùn)用三種基本邏輯結(jié)構(gòu)設(shè)計(jì)流程圖以解決簡單的問題.

          教學(xué)方法:

          1. 通過模仿、操作、探索,經(jīng)歷設(shè)計(jì)流程圖表達(dá)求解問題的過程,加深對(duì)流程圖的感知.

          2. 在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結(jié)構(gòu).

          教學(xué)過程:

          一、問題情境

          1.情境:

          某鐵路客運(yùn)部門規(guī)定甲、乙兩地之間旅客托運(yùn)行李的費(fèi)用為

          其中(單位:)為行李的重量.

          試給出計(jì)算費(fèi)用(單位:元)的一個(gè)算法,并畫出流程圖.

          二、學(xué)生活動(dòng)

          學(xué)生討論,教師引導(dǎo)學(xué)生進(jìn)行表達(dá).

          解 算法為:

          輸入行李的重量;

          如果,那么,

          否則;

          輸出行李的重量和運(yùn)費(fèi).

          上述算法可以用流程圖表示為:

          教師邊講解邊畫出第10頁圖1-2-6.

          在上述計(jì)費(fèi)過程中,第二步進(jìn)行了判斷.

          三、建構(gòu)數(shù)學(xué)

          1.選擇結(jié)構(gòu)的概念:

          先根據(jù)條件作出判斷,再?zèng)Q定執(zhí)行哪一種

          操作的結(jié)構(gòu)稱為選擇結(jié)構(gòu).

          如圖:虛線框內(nèi)是一個(gè)選擇結(jié)構(gòu),它包含一個(gè)判斷框,當(dāng)條件成立(或稱條件為“真”)時(shí)執(zhí)行,否則執(zhí)行.

          2.說明:(1)有些問題需要按給定的條件進(jìn)行分析、比較和判斷,并按判

          斷的不同情況進(jìn)行不同的'操作,這類問題的實(shí)現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計(jì);

         。2)選擇結(jié)構(gòu)也稱為分支結(jié)構(gòu)或選取結(jié)構(gòu),它要先根據(jù)指定的條件進(jìn)行判斷,再由判斷的結(jié)果決定執(zhí)行兩條分支路徑中的某一條;

         。3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)

          行,但或兩個(gè)框中可以有一個(gè)是空的,即不執(zhí)行任何操作;

         。4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個(gè)進(jìn)入點(diǎn)和

          兩個(gè)退出點(diǎn).

          3.思考:教材第7頁圖所示的算法中,哪一步進(jìn)行了判斷?

        高中數(shù)學(xué)教案14

          教學(xué)目標(biāo)

          知識(shí)與技能目標(biāo):

          本節(jié)的中心任務(wù)是研究導(dǎo)數(shù)的幾何意義及其應(yīng)用,概念的形成分為三個(gè)層次:

          (1)通過復(fù)習(xí)舊知“求導(dǎo)數(shù)的兩個(gè)步驟”以及“平均變化率與割線斜率的關(guān)系”,解決了平均變化率的幾何意義后,明確探究導(dǎo)數(shù)的幾何意義可以依據(jù)導(dǎo)數(shù)概念的形成尋求解決問題的途徑。

          (2)從圓中割線和切線的變化聯(lián)系,推廣到一般曲線中用割線逼近的方法直觀定義切線。

          (3)依據(jù)割線與切線的變化聯(lián)系,數(shù)形結(jié)合探究函數(shù)導(dǎo)數(shù)的幾何意義教案在導(dǎo)數(shù)的幾何意義教案處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案的幾何意義,使學(xué)生認(rèn)識(shí)到導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案就是函數(shù)導(dǎo)數(shù)的幾何意義教案的圖象在導(dǎo)數(shù)的幾何意義教案處的切線的斜率。即:

          導(dǎo)數(shù)的幾何意義教案=曲線在導(dǎo)數(shù)的幾何意義教案處切線的斜率k

          在此基礎(chǔ)上,通過例題和練習(xí)使學(xué)生學(xué)會(huì)利用導(dǎo)數(shù)的幾何意義解釋實(shí)際生活問題,加深對(duì)導(dǎo)數(shù)內(nèi)涵的理解。在學(xué)習(xí)過程中感受逼近的思想方法,了解“以直代曲”的數(shù)學(xué)思想方法。

          過程與方法目標(biāo):

          (1)學(xué)生通過觀察感知、動(dòng)手探究,培養(yǎng)學(xué)生的動(dòng)手和感知發(fā)現(xiàn)的能力。

          (2)學(xué)生通過對(duì)圓的切線和割線聯(lián)系的認(rèn)識(shí),再類比探索一般曲線的情況,完善對(duì)切線的認(rèn)知,感受逼近的思想,體會(huì)相切是種局部性質(zhì)的本質(zhì),有助于數(shù)學(xué)思維能力的提高。

          (3)結(jié)合分層的探究問題和分層練習(xí),期望各種層次的學(xué)生都可以憑借自己的能力盡力走在教師的前面,獨(dú)立解決問題和發(fā)現(xiàn)新知、應(yīng)用新知。

          情感、態(tài)度、價(jià)值觀:

          (1)通過在探究過程中滲透逼近和以直代曲思想,使學(xué)生了解近似與精確間的辨證關(guān)系;通過有限來認(rèn)識(shí)無限,體驗(yàn)數(shù)學(xué)中轉(zhuǎn)化思想的意義和價(jià)值;

          (2)在教學(xué)中向他們提供充分的從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),如:探究活動(dòng),讓學(xué)生自主探究新知,例題則采用練在講之前,講在關(guān)鍵處。在活動(dòng)中激發(fā)學(xué)生的學(xué)習(xí)潛能,促進(jìn)他們真正理解和掌握基本的數(shù)學(xué)知識(shí)技能、數(shù)學(xué)思想方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),提高綜合能力,學(xué)會(huì)學(xué)習(xí),進(jìn)一步在意志力、自信心、理性精神等情感與態(tài)度方面得到良好的'發(fā)展。

          教學(xué)重點(diǎn)與難點(diǎn)

          重點(diǎn):理解和掌握切線的新定義、導(dǎo)數(shù)的幾何意義及應(yīng)用于解決實(shí)際問題,體會(huì)數(shù)形結(jié)合、以直代曲的思想方法。

          難點(diǎn):發(fā)現(xiàn)、理解及應(yīng)用導(dǎo)數(shù)的幾何意義。

          教學(xué)過程

          一、復(fù)習(xí)提問

          1.導(dǎo)數(shù)的定義是什么?求導(dǎo)數(shù)的三個(gè)步驟是什么?求函數(shù)y=x2在x=2處的導(dǎo)數(shù).

          定義:函數(shù)在導(dǎo)數(shù)的幾何意義教案處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案就是函數(shù)在該點(diǎn)處的瞬時(shí)變化率。

          求導(dǎo)數(shù)的步驟:

          第一步:求平均變化率導(dǎo)數(shù)的幾何意義教案;

          第二步:求瞬時(shí)變化率導(dǎo)數(shù)的幾何意義教案.

          (即導(dǎo)數(shù)的幾何意義教案,平均變化率趨近于的確定常數(shù)就是該點(diǎn)導(dǎo)數(shù))

          2.觀察函數(shù)導(dǎo)數(shù)的幾何意義教案的圖象,平均變化率導(dǎo)數(shù)的幾何意義教案在圖形中表示什么?

          生:平均變化率表示的是割線PQ的斜率.導(dǎo)數(shù)的幾何意義教案

          師:這就是平均變化率(導(dǎo)數(shù)的幾何意義教案)的幾何意義,

          3.瞬時(shí)變化率(導(dǎo)數(shù)的幾何意義教案)在圖中又表示什么呢?

          如圖2-1,設(shè)曲線C是函數(shù)y=f(x)的圖象,點(diǎn)P(x0,y0)是曲線C上一點(diǎn).點(diǎn)Q(x0+Δx,y0+Δy)是曲線C上與點(diǎn)P鄰近的任一點(diǎn),作割線PQ,當(dāng)點(diǎn)Q沿著曲線C無限地趨近于點(diǎn)P,割線PQ便無限地趨近于某一極限位置PT,我們就把極限位置上的直線PT,叫做曲線C在點(diǎn)P處的切線.

          導(dǎo)數(shù)的幾何意義教案

          追問:怎樣確定曲線C在點(diǎn)P的切線呢?因?yàn)镻是給定的,根據(jù)平面解析幾何中直線的點(diǎn)斜式方程的知識(shí),只要求出切線的斜率就夠了.設(shè)割線PQ的傾斜角為導(dǎo)數(shù)的幾何意義教案,切線PT的傾斜角為導(dǎo)數(shù)的幾何意義教案,易知割線PQ的斜率為導(dǎo)數(shù)的幾何意義教案。既然割線PQ的極限位置上的直線PT是切線,所以割線PQ斜率的極限就是切線PT的斜率導(dǎo)數(shù)的幾何意義教案,即導(dǎo)數(shù)的幾何意義教案。

          由導(dǎo)數(shù)的定義知導(dǎo)數(shù)的幾何意義教案導(dǎo)數(shù)的幾何意義教案。

          導(dǎo)數(shù)的幾何意義教案

          由上式可知:曲線f(x)在點(diǎn)(x0,f(x0))處的切線的斜率就是y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f'(x0).今天我們就來探究導(dǎo)數(shù)的幾何意義。

          C類學(xué)生回答第1題,A,B類學(xué)生回答第2題在學(xué)生回答基礎(chǔ)上教師重點(diǎn)講評(píng)第3題,然后逐步引入導(dǎo)數(shù)的幾何意義.

          二、新課

          1、導(dǎo)數(shù)的幾何意義:

          函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f'(x0)的幾何意義,就是曲線y=f(x)在點(diǎn)(x0,f(x0))處切線的斜率.

          即:導(dǎo)數(shù)的幾何意義教案

          口答練習(xí):

          (1)如果函數(shù)y=f(x)在已知點(diǎn)x0處的導(dǎo)數(shù)分別為下列情況f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.試求函數(shù)圖像在對(duì)應(yīng)點(diǎn)的切線的傾斜角,并說明切線各有什么特征。

          (C層學(xué)生做)

          (2)已知函數(shù)y=f(x)的圖象(如圖2-2),分別為以下三種情況的直線,通過觀察確定函數(shù)在各點(diǎn)的導(dǎo)數(shù).(A、B層學(xué)生做)

          導(dǎo)數(shù)的幾何意義教案

          2、如何用導(dǎo)數(shù)研究函數(shù)的增減?

          小結(jié):附近:瞬時(shí),增減:變化率,即研究函數(shù)在該點(diǎn)處的瞬時(shí)變化率,也就是導(dǎo)數(shù)。導(dǎo)數(shù)的正負(fù)即對(duì)應(yīng)函數(shù)的增減。作出該點(diǎn)處的切線,可由切線的升降趨勢,得切線斜率的正負(fù)即導(dǎo)數(shù)的正負(fù),就可以判斷函數(shù)的增減性,體會(huì)導(dǎo)數(shù)是研究函數(shù)增減、變化快慢的有效工具。

          同時(shí),結(jié)合以直代曲的思想,在某點(diǎn)附近的切線的變化情況與曲線的變化情況一樣,也可以判斷函數(shù)的增減性。都反應(yīng)了導(dǎo)數(shù)是研究函數(shù)增減、變化快慢的有效工具。

          例1函數(shù)導(dǎo)數(shù)的幾何意義教案上有一點(diǎn)導(dǎo)數(shù)的幾何意義教案,求該點(diǎn)處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案,并由此解釋函數(shù)的增減情況。

          導(dǎo)數(shù)的幾何意義教案

          函數(shù)在定義域上任意點(diǎn)處的瞬時(shí)變化率都是3,函數(shù)在定義域內(nèi)單調(diào)遞增。(此時(shí)任意點(diǎn)處的切線就是直線本身,斜率就是變化率)

          3、利用導(dǎo)數(shù)求曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程.

          例2求曲線y=x2在點(diǎn)M(2,4)處的切線方程.

          解:導(dǎo)數(shù)的幾何意義教案

          ∴y'|x=2=2×2=4.

          ∴點(diǎn)M(2,4)處的切線方程為y-4=4(x-2),即4x-y-4=0.

          由上例可歸納出求切線方程的兩個(gè)步驟:

          (1)先求出函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f'(x0).

          (2)根據(jù)直線方程的點(diǎn)斜式,得切線方程為y-y0=f'(x0)(x-x0).

          提問:若在點(diǎn)(x0,f(x0))處切線PT的傾斜角為導(dǎo)數(shù)的幾何意義教案導(dǎo)數(shù)的幾何意義教案,求切線方程。(因?yàn)檫@時(shí)切線平行于y軸,而導(dǎo)數(shù)不存在,不能用上面方法求切線方程。根據(jù)切線定義可直接得切線方程導(dǎo)數(shù)的幾何意義教案)

          (先由C類學(xué)生來回答,再由A,B補(bǔ)充.)

          例3已知曲線導(dǎo)數(shù)的幾何意義教案上一點(diǎn)導(dǎo)數(shù)的幾何意義教案,求:(1)過P點(diǎn)的切線的斜率;

          (2)過P點(diǎn)的切線的方程。

          解:(1)導(dǎo)數(shù)的幾何意義教案,

          導(dǎo)數(shù)的幾何意義教案

          y'|x=2=22=4. ∴在點(diǎn)P處的切線的斜率等于4.

          (2)在點(diǎn)P處的切線方程為導(dǎo)數(shù)的幾何意義教案即12x-3y-16=0.

          練習(xí):求拋物線y=x2+2在點(diǎn)M(2,6)處的切線方程.

          (答案:y'=2x,y'|x=2=4切線方程為4x-y-2=0).

          B類學(xué)生做題,A類學(xué)生糾錯(cuò)。

          三、小結(jié)

          1.導(dǎo)數(shù)的幾何意義.(C組學(xué)生回答)

          2.利用導(dǎo)數(shù)求曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程的步驟.

          (B組學(xué)生回答)

          四、布置作業(yè)

          1.求拋物線導(dǎo)數(shù)的幾何意義教案在點(diǎn)(1,1)處的切線方程。

          2.求拋物線y=4x-x2在點(diǎn)A(4,0)和點(diǎn)B(2,4)處的切線的斜率,切線的方程.

          3.求曲線y=2x-x3在點(diǎn)(-1,-1)處的切線的傾斜角

          4.已知拋物線y=x2-4及直線y=x+2,求:(1)直線與拋物線交點(diǎn)的坐標(biāo); (2)拋物線在交點(diǎn)處的切線方程;

          (C組學(xué)生完成1,2題;B組學(xué)生完成1,2,3題;A組學(xué)生完成2,3,4題)

          教學(xué)反思:

          本節(jié)內(nèi)容是在學(xué)習(xí)了“變化率問題、導(dǎo)數(shù)的概念”等知識(shí)的基礎(chǔ)上,研究導(dǎo)數(shù)的幾何意義,由于新教材未設(shè)計(jì)極限,于是我盡量采用形象直觀的方式,讓學(xué)生通過動(dòng)手作圖,自我感受整個(gè)逼近的過程,讓學(xué)生更加深刻地體會(huì)導(dǎo)數(shù)的幾何意義及“以直代曲”的思想。

          本節(jié)課主要圍繞著“利用函數(shù)圖象直觀理解導(dǎo)數(shù)的幾何意義”和“利用導(dǎo)數(shù)的幾何意義解釋實(shí)際問題”兩個(gè)教學(xué)重心展開。先回憶導(dǎo)數(shù)的實(shí)際意義、數(shù)值意義,由數(shù)到形,自然引出從圖形的角度研究導(dǎo)數(shù)的幾何意義;然后,類比“平均變化率——瞬時(shí)變化率”的研究思路,運(yùn)用逼近的思想定義了曲線上某點(diǎn)的切線,再引導(dǎo)學(xué)生從數(shù)形結(jié)合的角度思考,獲得導(dǎo)數(shù)的幾何意義——“導(dǎo)數(shù)是曲線上某點(diǎn)處切線的斜率”。

          完成本節(jié)課第一階段的內(nèi)容學(xué)習(xí)后,教師點(diǎn)明,利用導(dǎo)數(shù)的幾何意義,在研究實(shí)際問題時(shí),某點(diǎn)附近的曲線可以用過此點(diǎn)的切線近似代替,即“以直代曲”,從而達(dá)到“以簡單的對(duì)象刻畫復(fù)雜對(duì)象”的目的,并通過兩個(gè)例題的研究,讓學(xué)生從不同的角度完整地體驗(yàn)導(dǎo)數(shù)與切線斜率的關(guān)系,并感受導(dǎo)數(shù)應(yīng)用的廣泛性。本節(jié)課注重以學(xué)生為主體,每一個(gè)知識(shí)、每一個(gè)發(fā)現(xiàn),總設(shè)法由學(xué)生自己得出,課堂上給予學(xué)生充足的思考時(shí)間和空間,讓學(xué)生在動(dòng)手操作、動(dòng)筆演算等活動(dòng)后,再組織討論,本教師只是在關(guān)鍵處加以引導(dǎo)。從學(xué)生的作業(yè)看來,效果較好。

        高中數(shù)學(xué)教案15

          教學(xué)目標(biāo):

          1.了解復(fù)數(shù)的幾何意義,會(huì)用復(fù)平面內(nèi)的點(diǎn)和向量來表示復(fù)數(shù);了解復(fù)數(shù)代數(shù)形式的加、減運(yùn)算的幾何意義.

          2.通過建立復(fù)平面上的點(diǎn)與復(fù)數(shù)的一一對(duì)應(yīng)關(guān)系,自主探索復(fù)數(shù)加減法的幾何意義.

          教學(xué)重點(diǎn):

          復(fù)數(shù)的幾何意義,復(fù)數(shù)加減法的幾何意義.

          教學(xué)難點(diǎn):

          復(fù)數(shù)加減法的幾何意義.

          教學(xué)過程:

          一 、問題情境

          我們知道,實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的,實(shí)數(shù)可以用數(shù)軸上的點(diǎn)來表示.那么,復(fù)數(shù)是否也能用點(diǎn)來表示呢?

          二、學(xué)生活動(dòng)

          問題1 任何一個(gè)復(fù)數(shù)a+bi都可以由一個(gè)有序?qū)崝?shù)對(duì)(a,b)惟一確定,而有序?qū)崝?shù)對(duì)(a,b)與平面直角坐標(biāo)系中的點(diǎn)是一一對(duì)應(yīng)的,那么我們怎樣用平面上的點(diǎn)來表示復(fù)數(shù)呢?

          問題2 平面直角坐標(biāo)系中的點(diǎn)A與以原點(diǎn)O為起點(diǎn),A為終點(diǎn)的向量是一一對(duì)應(yīng)的,那么復(fù)數(shù)能用平面向量表示嗎?

          問題3 任何一個(gè)實(shí)數(shù)都有絕對(duì)值,它表示數(shù)軸上與這個(gè)實(shí)數(shù)對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離.任何一個(gè)向量都有模,它表示向量的長度,那么相應(yīng)的,我們可以給出復(fù)數(shù)的模(絕對(duì)值)的概念嗎?它又有什么幾何意義呢?

          問題4 復(fù)數(shù)可以用復(fù)平面的向量來表示,那么,復(fù)數(shù)的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎?兩個(gè)復(fù)數(shù)差的模有什么幾何意義?

          三、建構(gòu)數(shù)學(xué)

          1.復(fù)數(shù)的幾何意義:在平面直角坐標(biāo)系中,以復(fù)數(shù)a+bi的實(shí)部a為橫坐標(biāo),虛部b為縱坐標(biāo)就確定了點(diǎn)Z(a,b),我們可以用點(diǎn)Z(a,b)來表示復(fù)數(shù)a+bi,這就是復(fù)數(shù)的幾何意義.

          2.復(fù)平面:建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面.其中x軸為實(shí)軸,y軸為虛軸.實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù).

          3.因?yàn)閺?fù)平面上的點(diǎn)Z(a,b)與以原點(diǎn)O為起點(diǎn)、Z為終點(diǎn)的向量一一對(duì)應(yīng),所以我們也可以用向量來表示復(fù)數(shù)z=a+bi,這也是復(fù)數(shù)的幾何意義.

          6.復(fù)數(shù)加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個(gè)復(fù)數(shù)差的`模就是復(fù)平面內(nèi)與這兩個(gè)復(fù)數(shù)對(duì)應(yīng)的兩點(diǎn)間的距離.同時(shí),復(fù)數(shù)加減法的法則與平面向量加減法的坐標(biāo)形式也是完全一致的.

          四、數(shù)學(xué)應(yīng)用

          例1 在復(fù)平面內(nèi),分別用點(diǎn)和向量表示下列復(fù)數(shù)4,2+i,-i,-1+3i,3-2i.

          練習(xí) 課本P123練習(xí)第3,4題(口答).

          思考

          1.復(fù)平面內(nèi),表示一對(duì)共軛虛數(shù)的兩個(gè)點(diǎn)具有怎樣的位置關(guān)系?

          2.如果復(fù)平面內(nèi)表示兩個(gè)虛數(shù)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱,那么它們的實(shí)部和虛部分別滿足什么關(guān)系?

          3.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)是純虛數(shù)”的__________條件.

          4.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)所對(duì)應(yīng)的點(diǎn)在虛軸上”的_____條件.

          例2 已知復(fù)數(shù)z=(m2+m-6)+(m2+m-2)i在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于第二象限,求實(shí)數(shù)m允許的取值范圍.

          例3 已知復(fù)數(shù)z1=3+4i,z2=-1+5i,試比較它們模的大小.

          思考 任意兩個(gè)復(fù)數(shù)都可以比較大小嗎?

          例4 設(shè)z∈C,滿足下列條件的點(diǎn)Z的集合是什么圖形?

         。1)│z│=2;(2)2<│z│<3.

          變式:課本P124習(xí)題3.3第6題.

          五、要點(diǎn)歸納與方法小結(jié)

          本節(jié)課學(xué)習(xí)了以下內(nèi)容:

          1.復(fù)數(shù)的幾何意義.

          2.復(fù)數(shù)加減法的幾何意義.

          3.?dāng)?shù)形結(jié)合的思想方法.

        【高中數(shù)學(xué)教案】相關(guān)文章:

        高中數(shù)學(xué)教案11-01

        高中數(shù)學(xué)教案12-29

        優(yōu)秀高中數(shù)學(xué)教案03-20

        高中數(shù)學(xué)教案【薦】01-30

        【熱】高中數(shù)學(xué)教案12-29

        【薦】高中數(shù)學(xué)教案12-29

        高中數(shù)學(xué)教案【推薦】12-29

        高中數(shù)學(xué)教案【熱】12-29

        【推薦】高中數(shù)學(xué)教案01-06

        【熱】高中數(shù)學(xué)教案01-29

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>