1. <rp id="zsypk"></rp>

      2. 高中數(shù)學(xué)教案

        時(shí)間:2023-11-01 14:36:41 數(shù)學(xué)教案 我要投稿

        高中數(shù)學(xué)教案

          作為一位兢兢業(yè)業(yè)的人民教師,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。那么應(yīng)當(dāng)如何寫教案呢?以下是小編為大家整理的高中數(shù)學(xué)教案,歡迎閱讀,希望大家能夠喜歡。

        高中數(shù)學(xué)教案

        高中數(shù)學(xué)教案1

          [學(xué)習(xí)目標(biāo)]

         。1)會(huì)用坐標(biāo)法及距離公式證明Cα+β;

          (2)會(huì)用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由Cα+β推導(dǎo)Cα—β、Sα±β、Tα±β,切實(shí)理解上述公式間的關(guān)系與相互轉(zhuǎn)化;

          (3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡(jiǎn)單的三角變換,解決求值、化簡(jiǎn)三角式、證明三角恒等式等問(wèn)題。

          [學(xué)習(xí)重點(diǎn)]

          兩角和與差的正弦、余弦、正切公式

          [學(xué)習(xí)難點(diǎn)]

          余弦和角公式的推導(dǎo)

          [知識(shí)結(jié)構(gòu)]

          1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標(biāo)法,利用三角函數(shù)定義及平面內(nèi)兩點(diǎn)間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過(guò)程見(jiàn)課本)

          2、通過(guò)下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

          3、當(dāng)α、β中有一個(gè)是的整數(shù)倍時(shí),應(yīng)首選誘導(dǎo)公式進(jìn)行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的'基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。

          4、關(guān)于公式的正用、逆用及變用

        高中數(shù)學(xué)教案2

          一、向量的概念

          1、既有又有的量叫做向量。用有向線段表示向量時(shí),有向線段的長(zhǎng)度表示向量的,有向線段的箭頭所指的方向表示向量的

          2、叫做單位向量

          3、的向量叫做平行向量,因?yàn)槿我唤M平行向量都可以平移到同一條直線上,所以平行向量也叫做。零向量與任一向量平行

          4、且的向量叫做相等向量

          5、叫做相反向量

          二、向量的表示方法:

          幾何表示法、字母表示法、坐標(biāo)表示法

          三、向量的加減法及其坐標(biāo)運(yùn)算

          四、實(shí)數(shù)與向量的乘積

          定義:實(shí)數(shù) λ 與向量 的.積是一個(gè)向量,記作λ

          五、平面向量基本定理

          如果e1、e2是同一個(gè)平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底

          六、向量共線/平行的充要條件

          七、非零向量垂直的充要條件

          八、線段的定比分點(diǎn)

          設(shè)是上的 兩點(diǎn),p是上x(chóng)x的任意一點(diǎn),則存在實(shí)數(shù),使xxx,則為點(diǎn)p分有向線段所成的比,同時(shí),稱p為有向線段的定比分點(diǎn)

          定比分點(diǎn)坐標(biāo)公式及向量式

          九、平面向量的數(shù)量積

          (1)設(shè)兩個(gè)非零向量a和b,作oa=a,ob=b,則∠aob=θ叫a與b的夾角,其范圍是[0,π],|b|cosθ叫b在a上的投影

         。2)|a||b|cosθ叫a與b的數(shù)量積,記作a·b,即 a·b=|a||b|cosθ

         。3)平面向量的數(shù)量積的坐標(biāo)表示

          十、平移

          典例解讀

          1、給出下列命題:①若|a|=|b|,則a=b;②若a,b,c,d是不共線的四點(diǎn),則ab= dc是四邊形abcd為平行四邊形的充要條件;③若a=b,b=c,則a=c;④a=b的充要條件是|a|=|b|且a∥b;⑤若a∥b,b∥c,則a∥c

          其中,正確命題的序號(hào)是xx

          2、已知a,b方向相同,且|a|=3,|b|=7,則|2a-b|=xxxx

          3、若將向量a=(2,1)繞原點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn) 得到向量b,則向量b的坐標(biāo)為xx

          4、下列算式中不正確的是( )

          (a) ab+bc+ca=0 (b) ab-ac=bc

          (c) 0·ab=0 (d)λ(μa)=(λμ)a

          5、若向量a=(1,1),b=(1,-1),c=(-1,2),則c=( )

          ?函數(shù)y=x2的圖象按向量a=(2,1)平移后得到的圖象的函數(shù)表達(dá)式為( )

          (a)y=(x-2)2-1 (b)y=(x+2)2-1 (c)y=(x-2)2+1 (d)y=(x+2)2+1

          7、平面直角坐標(biāo)系中,o為坐標(biāo)原點(diǎn),已知兩點(diǎn)a(3,1),b(-1,3),若點(diǎn)c滿足oc=αoa+βob,其中a、β∈r,且α+β=1,則點(diǎn)c的軌跡方程為( )

          (a)3x+2y-11=0 (b)(x-1)2+(y-2)2=5

          (c)2x-y=0 (d)x+2y-5=0

          8、設(shè)p、q是四邊形abcd對(duì)角線ac、bd中點(diǎn),bc=a,da=b,則 pq=xx

          9、已知a(5,-1) b(-1,7) c(1,2),求△abc中∠a平分線長(zhǎng)

          10、若向量a、b的坐標(biāo)滿足a+b=(-2,-1),a-b=(4,-3),則a·b等于( )

          (a)-5 (b)5 (c)7 (d)-1

          11、若a、b、c是非零的平面向量,其中任意兩個(gè)向量都不共線,則( )

          (a)(a)2·(b)2=(a·b)2 (b)|a+b|>|a-b|

          (c)(a·b)·c-(b·c)·a與b垂直 (d)(a·b)·c-(b·c)·a=0

          12、設(shè)a=(1,0),b=(1,1),且(a+λb)⊥b,則實(shí)數(shù)λ的值是( )

          (a)2 (b)0 (c)1 (d)2

          16、利用向量證明:△abc中,m為bc的中點(diǎn),則 ab2+ac2=2(am2+mb2)

          17、在三角形abc中, =(2,3), =(1,k),且三角形abc的一個(gè)內(nèi)角為直角,求實(shí)數(shù)k的值

          18、已知△abc中,a(2,-1),b(3,2),c(-3,-1),bc邊上的高為ad,求點(diǎn)d和向量

        高中數(shù)學(xué)教案3

          1.教學(xué)目標(biāo)

          (1)知識(shí)目標(biāo): 1.在平面直角坐標(biāo)系中,探索并掌握?qǐng)A的標(biāo)準(zhǔn)方程;

          2.會(huì)由圓的方程寫出圓的半徑和圓心,能根據(jù)條件寫出圓的方程.

          (2)能力目標(biāo): 1.進(jìn)一步培養(yǎng)學(xué)生用解析法研究幾何問(wèn)題的能力;

          2.使學(xué)生加深對(duì)數(shù)形結(jié)合思想和待定系數(shù)法的理解;

          3.增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí).

          (3)情感目標(biāo):培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí),在體驗(yàn)數(shù)學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習(xí)興趣.

          2.教學(xué)重點(diǎn).難點(diǎn)

          (1)教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.

          (2)教學(xué)難點(diǎn):會(huì)根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程以及選擇恰

          當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問(wèn)題.

          3.教學(xué)過(guò)程

          (一)創(chuàng)設(shè)情境(啟迪思維)

          問(wèn)題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?

          [引導(dǎo)] 畫圖建系

          [學(xué)生活動(dòng)]:嘗試寫出曲線的方程(對(duì)求曲線的方程的步驟及圓的定義進(jìn)行提示性復(fù)習(xí))

          解:以某一截面半圓的圓心為坐標(biāo)原點(diǎn),半圓的直徑ab所在直線為x軸,建立直角坐標(biāo)系,則半圓的方程為x2 y2=16(y≥0)

          將x=2.7代入,得 .

          即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個(gè)隧道。

          (二)深入探究(獲得新知)

          問(wèn)題二:1.根據(jù)問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為 的圓的方程?

          答:x2 y2=r2

          2.如果圓心在 ,半徑為 時(shí)又如何呢?

          [學(xué)生活動(dòng)] 探究圓的方程。

          [教師預(yù)設(shè)] 方法一:坐標(biāo)法

          如圖,設(shè)m(x,y)是圓上任意一點(diǎn),根據(jù)定義點(diǎn)m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}

          由兩點(diǎn)間的距離公式,點(diǎn)m適合的條件可表示為 ①

          把①式兩邊平方,得(x―a)2 (y―b)2=r2

          方法二:圖形變換法

          方法三:向量平移法

          (三)應(yīng)用舉例(鞏固提高)

          i.直接應(yīng)用(內(nèi)化新知)

          問(wèn)題三:1.寫出下列各圓的方程(課本p77練習(xí)1)

          (1)圓心在原點(diǎn),半徑為3;

          (2)圓心在 ,半徑為 ;

          (3)經(jīng)過(guò)點(diǎn) ,圓心在點(diǎn) .

          2.根據(jù)圓的.方程寫出圓心和半徑

          (1) ; (2) .

          ii.靈活應(yīng)用(提升能力)

          問(wèn)題四:1.求以 為圓心,并且和直線 相切的圓的方程.

          [教師引導(dǎo)]由問(wèn)題三知:圓心與半徑可以確定圓.

          2.已知圓的方程為 ,求過(guò)圓上一點(diǎn) 的切線方程.

          [學(xué)生活動(dòng)]探究方法

          [教師預(yù)設(shè)]

          方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)

          方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)

          方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]

          方法四:軌跡法(利用向量垂直列關(guān)系式)

          3.你能歸納出具有一般性的結(jié)論嗎?

          已知圓的方程是 ,經(jīng)過(guò)圓上一點(diǎn) 的切線的方程是: .

          iii.實(shí)際應(yīng)用(回歸自然)

          問(wèn)題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱 的長(zhǎng)度(精確到0.01m).

          [多媒體課件演示創(chuàng)設(shè)實(shí)際問(wèn)題情境]

          (四)反饋訓(xùn)練(形成方法)

          問(wèn)題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.

          2.已知點(diǎn)a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.

          3.求圓x2 y2=13過(guò)點(diǎn)(-2,3)的切線方程.

          4.已知圓的方程為 ,求過(guò)點(diǎn) 的切線方程.

        高中數(shù)學(xué)教案4

          整體設(shè)計(jì)

          教學(xué)分析

          我們?cè)诔踔械膶W(xué)習(xí)過(guò)程中,已了解了整數(shù)指數(shù)冪的概念和運(yùn)算性質(zhì)。從本節(jié)開(kāi)始我們將在回顧平方根和立方根的基礎(chǔ)上,類比出正數(shù)的n次方根的定義,從而把指數(shù)推廣到分?jǐn)?shù)指數(shù)。進(jìn)而推廣到有理數(shù)指數(shù),再推廣到實(shí)數(shù)指數(shù),并將冪的運(yùn)算性質(zhì)由整數(shù)指數(shù)冪推廣到實(shí)數(shù)指數(shù)冪。

          教材為了讓學(xué)生在學(xué)習(xí)之外就感受到指數(shù)函數(shù)的實(shí)際背景,先給出兩個(gè)具體例子:GDP的增長(zhǎng)問(wèn)題和碳14的衰減問(wèn)題。前一個(gè)問(wèn)題,既讓學(xué)生回顧了初中學(xué)過(guò)的整數(shù)指數(shù)冪,也讓學(xué)生感受到其中的函數(shù)模型,并且還有思想教育價(jià)值。后一個(gè)問(wèn)題讓學(xué)生體會(huì)其中的函數(shù)模型的同時(shí),激發(fā)學(xué)生探究分?jǐn)?shù)指數(shù)冪、無(wú)理數(shù)指數(shù)冪的興趣與欲望,為新知識(shí)的學(xué)習(xí)作了鋪墊。

          本節(jié)安排的內(nèi)容蘊(yùn)涵了許多重要的數(shù)學(xué)思想方法,如推廣的思想(指數(shù)冪運(yùn)算律的推廣)、類比的思想、逼近的思想(有理數(shù)指數(shù)冪逼近無(wú)理數(shù)指數(shù)冪)、數(shù)形結(jié)合的思想(用指數(shù)函數(shù)的圖象研究指數(shù)函數(shù)的性質(zhì))等,同時(shí),充分關(guān)注與實(shí)際問(wèn)題的結(jié)合,體現(xiàn)數(shù)學(xué)的應(yīng)用價(jià)值。

          根據(jù)本節(jié)內(nèi)容的特點(diǎn),教學(xué)中要注意發(fā)揮信息技術(shù)的力量,盡量利用計(jì)算器和計(jì)算機(jī)創(chuàng)設(shè)教學(xué)情境,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持。

          三維目標(biāo)

          1、通過(guò)與初中所學(xué)的知識(shí)進(jìn)行類比,理解分?jǐn)?shù)指數(shù)冪的概念,進(jìn)而學(xué)習(xí)指數(shù)冪的性質(zhì)。掌握分?jǐn)?shù)指數(shù)冪和根式之間的互化,掌握分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì)。培養(yǎng)學(xué)生觀察分析、抽象類比的能力。

          2、掌握根式與分?jǐn)?shù)指數(shù)冪的互化,滲透“轉(zhuǎn)化”的數(shù)學(xué)思想。通過(guò)運(yùn)算訓(xùn)練,養(yǎng)成學(xué)生嚴(yán)謹(jǐn)治學(xué),一絲不茍的學(xué)習(xí)習(xí)慣,讓學(xué)生了解數(shù)學(xué)來(lái)自生活,數(shù)學(xué)又服務(wù)于生活的哲理。

          3、能熟練地運(yùn)用有理指數(shù)冪運(yùn)算性質(zhì)進(jìn)行化簡(jiǎn)、求值,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S和科學(xué)正確的計(jì)算能力。

          4、通過(guò)訓(xùn)練及點(diǎn)評(píng),讓學(xué)生更能熟練掌握指數(shù)冪的運(yùn)算性質(zhì)。展示函數(shù)圖象,讓學(xué)生通過(guò)觀察,進(jìn)而研究指數(shù)函數(shù)的性質(zhì),讓學(xué)生體驗(yàn)數(shù)學(xué)的簡(jiǎn)潔美和統(tǒng)一美。

          重點(diǎn)難點(diǎn)

          教學(xué)重點(diǎn)

         。1)分?jǐn)?shù)指數(shù)冪和根式概念的理解。

          (2)掌握并運(yùn)用分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì)。

         。3)運(yùn)用有理指數(shù)冪的性質(zhì)進(jìn)行化簡(jiǎn)、求值。

          教學(xué)難點(diǎn)

          (1)分?jǐn)?shù)指數(shù)冪及根式概念的理解。

          (2)有理指數(shù)冪性質(zhì)的靈活應(yīng)用。

          課時(shí)安排

          3課時(shí)

          教學(xué)過(guò)程

          第1課時(shí)

          作者:路致芳

          導(dǎo)入新課

          思路1.同學(xué)們?cè)陬A(yù)習(xí)的過(guò)程中能否知道考古學(xué)家如何判斷生物的發(fā)展與進(jìn)化,又怎樣判斷它們所處的年代?(考古學(xué)家是通過(guò)對(duì)生物化石的研究來(lái)判斷生物的發(fā)展與進(jìn)化的,第二個(gè)問(wèn)題我們不太清楚)考古學(xué)家是按照這樣一條規(guī)律推測(cè)生物所處的年代的。教師板書本節(jié)課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運(yùn)算。

          思路2.同學(xué)們,我們?cè)诔踔袑W(xué)習(xí)了平方根、立方根,那么有沒(méi)有四次方根、五次方根…n次方根呢?答案是肯定的,這就是我們本堂課研究的課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運(yùn)算。

          推進(jìn)新課

          新知探究

          提出問(wèn)題

         。1)什么是平方根?什么是立方根?一個(gè)數(shù)的平方根有幾個(gè),立方根呢?

         。2)如x4=a,x5=a,x6=a,根據(jù)上面的結(jié)論我們又能得到什么呢?

         。3)根據(jù)上面的結(jié)論我們能得到一般性的結(jié)論嗎?

         。4)可否用一個(gè)式子表達(dá)呢?

          活動(dòng):教師提示,引導(dǎo)學(xué)生回憶初中的時(shí)候已經(jīng)學(xué)過(guò)的平方根、立方根是如何定義的,對(duì)照類比平方根、立方根的定義解釋上面的式子,對(duì)問(wèn)題(2)的結(jié)論進(jìn)行引申、推廣,相互交流討論后回答,教師及時(shí)啟發(fā)學(xué)生,具體問(wèn)題一般化,歸納類比出n次方根的概念,評(píng)價(jià)學(xué)生的思維。

          討論結(jié)果:(1)若x2=a,則x叫做a的平方根,正實(shí)數(shù)的平方根有兩個(gè),它們互為相反數(shù),如:4的平方根為±2,負(fù)數(shù)沒(méi)有平方根,同理,若x3=a,則x叫做a的立方根,一個(gè)數(shù)的立方根只有一個(gè),如:-8的立方根為-2.

          (2)類比平方根、立方根的定義,一個(gè)數(shù)的四次方等于a,則這個(gè)數(shù)叫a的四次方根。一個(gè)數(shù)的五次方等于a,則這個(gè)數(shù)叫a的五次方根。一個(gè)數(shù)的六次方等于a,則這個(gè)數(shù)叫a的六次方根。

         。3)類比(2)得到一個(gè)數(shù)的n次方等于a,則這個(gè)數(shù)叫a的n次方根。

          (4)用一個(gè)式子表達(dá)是,若xn=a,則x叫a的n次方根。

          教師板書n次方根的意義:

          一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整數(shù)集。

          可以看出數(shù)的平方根、立方根的概念是n次方根的概念的特例。

          提出問(wèn)題

          (1)你能根據(jù)n次方根的意義求出下列數(shù)的n次方根嗎?(多媒體顯示以下題目)。

         、4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根。

         。2)平方根,立方根,4次方根,5次方根,7次方根,分別對(duì)應(yīng)的方根的指數(shù)是什么數(shù),有什么特點(diǎn)?4,±8,16,-32,32,0,a6分別對(duì)應(yīng)什么性質(zhì)的數(shù),有什么特點(diǎn)?

         。3)問(wèn)題(2)中,既然方根有奇次的也有偶次的,數(shù)a有正有負(fù),還有零,結(jié)論有一個(gè)的,也有兩個(gè)的,你能否總結(jié)一般規(guī)律呢?

         。4)任何一個(gè)數(shù)a的偶次方根是否存在呢?

          活動(dòng):教師提示學(xué)生切實(shí)緊扣n次方根的概念,求一個(gè)數(shù)a的n次方根,就是求出的那個(gè)數(shù)的n次方等于a,及時(shí)點(diǎn)撥學(xué)生,從數(shù)的分類考慮,可以把具體的數(shù)寫出來(lái),觀察數(shù)的特點(diǎn),對(duì)問(wèn)題(2)中的結(jié)論,類比推廣引申,考慮要全面,對(duì)回答正確的學(xué)生及時(shí)表?yè)P(yáng),對(duì)回答不準(zhǔn)確的學(xué)生提示引導(dǎo)考慮問(wèn)題的思路。

          討論結(jié)果:(1)因?yàn)椤?的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分別是±2,±2,±2,2,-2,0,a2.

         。2)方根的指數(shù)是2,3,4,5,7…特點(diǎn)是有奇數(shù)和偶數(shù)。總的來(lái)看,這些數(shù)包括正數(shù),負(fù)數(shù)和零。

         。3)一個(gè)數(shù)a的奇次方根只有一個(gè),一個(gè)正數(shù)a的偶次方根有兩個(gè),是互為相反數(shù)。0的任何次方根都是0.

         。4)任何一個(gè)數(shù)a的偶次方根不一定存在,如負(fù)數(shù)的偶次方根就不存在,因?yàn)闆](méi)有一個(gè)數(shù)的偶次方是一個(gè)負(fù)數(shù)。

          類比前面的平方根、立方根,結(jié)合剛才的討論,歸納出一般情形,得到n次方根的性質(zhì):

         、佼(dāng)n為偶數(shù)時(shí),正數(shù)a的n次方根有兩個(gè),是互為相反數(shù),正的n次方根用na表示,如果是負(fù)數(shù),負(fù)的n次方根用-na表示,正的n次方根與負(fù)的n次方根合并寫成±na(a>0)。

         、趎為奇數(shù)時(shí),正數(shù)的n次方根是一個(gè)正數(shù),負(fù)數(shù)的n次方根是一個(gè)負(fù)數(shù),這時(shí)a的n次方根用符號(hào)na表示。

         、圬(fù)數(shù)沒(méi)有偶次方根;0的任何次方根都是零。

          上面的文字語(yǔ)言可用下面的式子表示:

          a為正數(shù):n為奇數(shù),a的n次方根有一個(gè)為na,n為偶數(shù),a的n次方根有兩個(gè)為±na.

          a為負(fù)數(shù):n為奇數(shù),a的n次方根只有一個(gè)為na,n為偶數(shù),a的n次方根不存在。

          零的n次方根為零,記為n0=0.

          可以看出數(shù)的平方根、立方根的性質(zhì)是n次方根的性質(zhì)的特例。

          思考

          根據(jù)n次方根的性質(zhì)能否舉例說(shuō)明上述幾種情況?

          活動(dòng):教師提示學(xué)生對(duì)方根的性質(zhì)要分類掌握,即正數(shù)的奇偶次方根,負(fù)數(shù)的奇次方根,零的任何次方根,這樣才不重不漏,同時(shí)巡視學(xué)生,隨機(jī)給出一個(gè)數(shù),我們寫出它的平方根,立方根,四次方根等,看是否有意義,注意觀察方根的形式,及時(shí)糾正學(xué)生在舉例過(guò)程中的問(wèn)題。

          解:答案不,比如,64的立方根是4,16的四次方根為±2,-27的5次方根為5-27,而-27的4次方根不存在等。其中5-27也表示方根,它類似于na的形式,現(xiàn)在我們給式子na一個(gè)名稱——根式。

          根式的概念:

          式子na叫做根式,其中a叫做被開(kāi)方數(shù),n叫做根指數(shù)。

          如3-27中,3叫根指數(shù),-27叫被開(kāi)方數(shù)。

          思考

          nan表示an的n次方根,式子nan=a一定成立嗎?如果不一定成立,那么nan等于什么?

          活動(dòng):教師讓學(xué)生注意討論n為奇偶數(shù)和a的符號(hào),充分讓學(xué)生多舉實(shí)例,分組討論。教師點(diǎn)撥,注意歸納整理。

          〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕。

          解答:根據(jù)n次方根的意義,可得:(na)n=a.

          通過(guò)探究得到:n為奇數(shù),nan=a.

          n為偶數(shù),nan=|a|=a,-a,a≥0,a<0.

          因此我們得到n次方根的運(yùn)算性質(zhì):

          ①(na)n=a.先開(kāi)方,再乘方(同次),結(jié)果為被開(kāi)方數(shù)。

         、趎為奇數(shù),nan=a.先奇次乘方,再開(kāi)方(同次),結(jié)果為被開(kāi)方數(shù)。

          n為偶數(shù),nan=|a|=a,-a,a≥0,a<0.先偶次乘方,再開(kāi)方(同次),結(jié)果為被開(kāi)方數(shù)的絕對(duì)值。

          應(yīng)用示例

          思路1

          例求下列各式的值:

         。1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b)。

          活動(dòng):求某些式子的值,首先考慮的應(yīng)是什么,明確題目的要求是什么,都用到哪些知識(shí),關(guān)鍵是啥,搞清這些之后,再針對(duì)每一個(gè)題目仔細(xì)分析。觀察學(xué)生的解題情況,讓學(xué)生展示結(jié)果,抓住學(xué)生在解題過(guò)程中出現(xiàn)的問(wèn)題并對(duì)癥下藥。求下列各式的值實(shí)際上是求數(shù)的方根,可按方根的運(yùn)算性質(zhì)來(lái)解,首先要搞清楚運(yùn)算順序,目的是把被開(kāi)方數(shù)的符號(hào)定準(zhǔn),然后看根指數(shù)是奇數(shù)還是偶數(shù),如果是奇數(shù),無(wú)需考慮符號(hào),如果是偶數(shù),開(kāi)方的結(jié)果必須是非負(fù)數(shù)。

          解:(1)3(-8)3=-8;

         。2)(-10)2=10;

          (3)4(3-π)4=π-3;

         。4)(a-b)2=a-b(a>b)。

          點(diǎn)評(píng):不注意n的奇偶性對(duì)式子nan的值的影響,是導(dǎo)致問(wèn)題出現(xiàn)的一個(gè)重要原因,要在理解的基礎(chǔ)上,記準(zhǔn),記熟,會(huì)用,活用。

          變式訓(xùn)練

          求出下列各式的值:

          (1)7(-2)7;

          (2)3(3a-3)3(a≤1);

          (3)4(3a-3)4.

          解:(1)7(-2)7=-2,

          (2)3(3a-3)3(a≤1)=3a-3,

          (3)4(3a-3)4=

          點(diǎn)評(píng):本題易錯(cuò)的是第(3)題,往往忽視a與1大小的討論,造成錯(cuò)解。

          思路2

          例1下列各式中正確的是()

          A.4a4=a

          B.6(-2)2=3-2

          C.a0=1

          D.10(2-1)5=2-1

          活動(dòng):教師提示,這是一道選擇題,本題考查n次方根的運(yùn)算性質(zhì),應(yīng)首先考慮根據(jù)方根的意義和運(yùn)算性質(zhì)來(lái)解,既要考慮被開(kāi)方數(shù),又要考慮根指數(shù),嚴(yán)格按求方根的步驟,體會(huì)方根運(yùn)算的實(shí)質(zhì),學(xué)生先思考哪些地方容易出錯(cuò),再回答。

          解析:(1)4a4=a,考查n次方根的運(yùn)算性質(zhì),當(dāng)n為偶數(shù)時(shí),應(yīng)先寫nan=|a|,故A項(xiàng)錯(cuò)。

          (2)6(-2)2=3-2,本質(zhì)上與上題相同,是一個(gè)正數(shù)的偶次方根,根據(jù)運(yùn)算順序也應(yīng)如此,結(jié)論為6(-2)2=32,故B項(xiàng)錯(cuò)。

          (3)a0=1是有條件的,即a≠0,故C項(xiàng)也錯(cuò)。

          (4)D項(xiàng)是一個(gè)正數(shù)的偶次方根,根據(jù)運(yùn)算順序也應(yīng)如此,故D項(xiàng)正確。所以答案選D.

          答案:D

          點(diǎn)評(píng):本題由于考查n次方根的運(yùn)算性質(zhì)與運(yùn)算順序,有時(shí)極易選錯(cuò),選四個(gè)答案的情況都會(huì)有,因此解題時(shí)千萬(wàn)要細(xì)心。

          例2 3+22+3-22=__________.

          活動(dòng):讓同學(xué)們積極思考,交流討論,本題乍一看內(nèi)容與本節(jié)無(wú)關(guān),但仔細(xì)一想,我們學(xué)習(xí)的內(nèi)容是方根,這里是帶有雙重根號(hào)的式子,去掉一層根號(hào),根據(jù)方根的運(yùn)算求出結(jié)果是解題的關(guān)鍵,因此將根號(hào)下面的式子化成一個(gè)完全平方式就更為關(guān)鍵了,從何處入手?需利用和的平方公式與差的平方公式化為完全平方式。正確分析題意是關(guān)鍵,教師提示,引導(dǎo)學(xué)生解題的思路。

          解析:因?yàn)?+22=1+22+(2)2=(1+2)2=2+1,

          3-22=(2)2-22+1=(2-1)2=2-1,

          所以3+22+3-22=22.

          答案:22

          點(diǎn)評(píng):不難看出3-22與3+22形式上有些特點(diǎn),即是對(duì)稱根式,是A±2B形式的式子,我們總能找到辦法把其化成一個(gè)完全平方式。

          思考

          上面的例2還有別的解法嗎?

          活動(dòng):教師引導(dǎo),去根號(hào)常常利用完全平方公式,有時(shí)平方差公式也可,同學(xué)們觀察兩個(gè)式子的特點(diǎn),具有對(duì)稱性,再考慮并交流討論,一個(gè)是“+”,一個(gè)是“-”,去掉一層根號(hào)后,相加正好抵消。同時(shí)借助平方差,又可去掉根號(hào),因此把兩個(gè)式子的和看成一個(gè)整體,兩邊平方即可,探討得另一種解法。

          另解:利用整體思想,x=3+22+3-22,

          兩邊平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.

          點(diǎn)評(píng):對(duì)雙重二次根式,特別是A±2B形式的式子,我們總能找到辦法將根號(hào)下面的式子化成一個(gè)完全平方式,問(wèn)題迎刃而解,另外對(duì)A+2B±A-2B的式子,我們可以把它們看成一個(gè)整體利用完全平方公式和平方差公式去解。

          變式訓(xùn)練

          若a2-2a+1=a-1,求a的取值范圍。

          解:因?yàn)閍2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,

          即a-1≥0,

          所以a≥1.

          點(diǎn)評(píng):利用方根的運(yùn)算性質(zhì)轉(zhuǎn)化為去絕對(duì)值符號(hào),是解題的關(guān)鍵。

          知能訓(xùn)練

         。ń處熡枚嗝襟w顯示在屏幕上)

          1、以下說(shuō)法正確的是()

          A.正數(shù)的n次方根是一個(gè)正數(shù)

          B.負(fù)數(shù)的n次方根是一個(gè)負(fù)數(shù)

          C.0的n次方根是零

          D.a的n次方根用na表示(以上n>1且n∈正整數(shù)集)

          答案:C

          2、化簡(jiǎn)下列各式:

          (1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.

          答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|。

          3、計(jì)算7+40+7-40=__________.

          解析:7+40+7-40

          =(5)2+25?2+(2)2+(5)2-25?2+(2)2

          =(5+2)2+(5-2)2

          =5+2+5-2

          =25.

          答案:25

          拓展提升

          問(wèn)題:nan=a與(na)n=a(n>1,n∈N)哪一個(gè)是恒等式,為什么?請(qǐng)舉例說(shuō)明。

          活動(dòng):組織學(xué)生結(jié)合前面的例題及其解答,進(jìn)行分析討論,解決這一問(wèn)題要緊扣n次方根的定義。

          通過(guò)歸納,得出問(wèn)題結(jié)果,對(duì)a是正數(shù)和零,n為偶數(shù)時(shí),n為奇數(shù)時(shí)討論一下。再對(duì)a是負(fù)數(shù),n為偶數(shù)時(shí),n為奇數(shù)時(shí)討論一下,就可得到相應(yīng)的`結(jié)論。

          解:(1)(na)n=a(n>1,n∈N)。

          如果xn=a(n>1,且n∈N)有意義,則無(wú)論n是奇數(shù)或偶數(shù),x=na一定是它的一個(gè)n次方根,所以(na)n=a恒成立。

          例如:(43)4=3,(3-5)3=-5.

          (2)nan=a,|a|,當(dāng)n為奇數(shù),當(dāng)n為偶數(shù)。

          當(dāng)n為奇數(shù)時(shí),a∈R,nan=a恒成立。

          例如:525=2,5(-2)5=-2.

          當(dāng)n為偶數(shù)時(shí),a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a<0,那么nan=|a|=-a,如(-3)2=32=3,

          即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有條件的。

          點(diǎn)評(píng):實(shí)質(zhì)上是對(duì)n次方根的概念、性質(zhì)以及運(yùn)算性質(zhì)的深刻理解。

          課堂小結(jié)

          學(xué)生仔細(xì)交流討論后,在筆記上寫出本節(jié)課的學(xué)習(xí)收獲,教師用多媒體顯示在屏幕上。

          1、如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整數(shù)集。用式子na表示,式子na叫根式,其中a叫被開(kāi)方數(shù),n叫根指數(shù)。

         。1)當(dāng)n為偶數(shù)時(shí),a的n次方根有兩個(gè),是互為相反數(shù),正的n次方根用na表示,如果是負(fù)數(shù),負(fù)的n次方根用-na表示,正的n次方根與負(fù)的n次方根合并寫成±na(a>0)。

          (2)n為奇數(shù)時(shí),正數(shù)的n次方根是一個(gè)正數(shù),負(fù)數(shù)的n次方根是一個(gè)負(fù)數(shù),這時(shí)a的n次方根用符號(hào)na表示。

         。3)負(fù)數(shù)沒(méi)有偶次方根。0的任何次方根都是零。

          2、掌握兩個(gè)公式:n為奇數(shù)時(shí),(na)n=a,n為偶數(shù)時(shí),nan=|a|=a,-a,a≥0,a<0.

          作業(yè)

          課本習(xí)題2.1A組1.

          補(bǔ)充作業(yè):

          1、化簡(jiǎn)下列各式:

          (1)681;(2)15-32;(3)6a2b4.

          解:(1)681=634=332=39;

          (2)15-32=-1525=-32;

          (3)6a2b4=6(|a|?b2)2=3|a|?b2.

          2、若5

          解析:因?yàn)?

          答案:2a-13

          3.5+26+5-26=__________.

          解析:對(duì)雙重二次根式,我們覺(jué)得難以下筆,我們考慮只有在開(kāi)方的前提下才可能解出,由此提示我們想辦法去掉一層根式,

          不難看出5+26=(3+2)2=3+2.

          同理5-26=(3-2)2=3-2.

          所以5+26+5-26=23.

          答案:23

          設(shè)計(jì)感想

          學(xué)生已經(jīng)學(xué)習(xí)了數(shù)的平方根和立方根,根式的內(nèi)容是這些內(nèi)容的推廣,本節(jié)課由于方根和根式的概念和性質(zhì)難以理解,在引入根式的概念時(shí),要結(jié)合已學(xué)內(nèi)容,列舉具體實(shí)例,根式na的講解要分n是奇數(shù)和偶數(shù)兩種情況來(lái)進(jìn)行,每種情況又分a>0,a<0,a=0三種情況,并結(jié)合具體例子講解,因此設(shè)計(jì)了大量的類比和練習(xí)題目,要靈活處理這些題目,幫助學(xué)生加以理解,所以需要用多媒體信息技術(shù)服務(wù)教學(xué)。

          第2課時(shí)

          作者:郝云靜

          導(dǎo)入新課

          思路1.碳14測(cè)年法。原來(lái)宇宙射線在大氣層中能夠產(chǎn)生放射性碳14,并與氧結(jié)合成二氧化碳后進(jìn)入所有活組織,先為植物吸收,再為動(dòng)物吸收,只要植物和動(dòng)物生存著,它們就會(huì)不斷地吸收碳14在機(jī)體內(nèi)保持一定的水平。而當(dāng)有機(jī)體死亡后,即會(huì)停止吸收碳14,其組織內(nèi)的碳14便以約5 730年的半衰期開(kāi)始衰變并消失。對(duì)于任何含碳物質(zhì)只要測(cè)定剩下的放射性碳14的含量,便可推斷其年代(半衰期:經(jīng)過(guò)一定的時(shí)間,變?yōu)樵瓉?lái)的一半)。引出本節(jié)課題:指數(shù)與指數(shù)冪的運(yùn)算之分?jǐn)?shù)指數(shù)冪。

          思路2.同學(xué)們,我們?cè)诔踔袑W(xué)習(xí)了整數(shù)指數(shù)冪及其運(yùn)算性質(zhì),那么整數(shù)指數(shù)冪是否可以推廣呢?答案是肯定的。這就是本節(jié)的主講內(nèi)容,教師板書本節(jié)課題——指數(shù)與指數(shù)冪的運(yùn)算之分?jǐn)?shù)指數(shù)冪。

          推進(jìn)新課

          新知探究

          提出問(wèn)題

         。1)整數(shù)指數(shù)冪的運(yùn)算性質(zhì)是什么?

          (2)觀察以下式子,并總結(jié)出規(guī)律:a>0,

         、;

          ②a8=(a4)2=a4=,;

         、4a12=4(a3)4=a3=;

         、2a10=2(a5)2=a5= 。

         。3)利用(2)的規(guī)律,你能表示下列式子嗎?

          ,,,(x>0,m,n∈正整數(shù)集,且n>1)。

         。4)你能用方根的意義來(lái)解釋(3)的式子嗎?

         。5)你能推廣到一般的情形嗎?

          活動(dòng):學(xué)生回顧初中學(xué)習(xí)的整數(shù)指數(shù)冪及運(yùn)算性質(zhì),仔細(xì)觀察,特別是每題的開(kāi)始和最后兩步的指數(shù)之間的關(guān)系,教師引導(dǎo)學(xué)生體會(huì)方根的意義,用方根的意義加以解釋,指點(diǎn)啟發(fā)學(xué)生類比(2)的規(guī)律表示,借鑒(2)(3),我們把具體推廣到一般,對(duì)寫正確的同學(xué)及時(shí)表?yè)P(yáng),其他學(xué)生鼓勵(lì)提示。

          討論結(jié)果:(1)整數(shù)指數(shù)冪的運(yùn)算性質(zhì):an=a?a?a?…?a,a0=1(a≠0);00無(wú)意義;

          a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.

         。2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根。實(shí)質(zhì)上①5a10=,②a8=,③4a12=,④2a10=結(jié)果的a的指數(shù)是2,4,3,5分別寫成了105,82,124,105,形式上變了,本質(zhì)沒(méi)變。

          根據(jù)4個(gè)式子的最后結(jié)果可以總結(jié):當(dāng)根式的被開(kāi)方數(shù)的指數(shù)能被根指數(shù)整除時(shí),根式可以寫成分?jǐn)?shù)作為指數(shù)的形式(分?jǐn)?shù)指數(shù)冪形式)。

         。3)利用(2)的規(guī)律,453=,375=,5a7=,nxm= 。

          (4)53的四次方根是,75的三次方根是,a7的五次方根是,xm的n次方根是。

          結(jié)果表明方根的結(jié)果和分?jǐn)?shù)指數(shù)冪是相通的。

         。5)如果a>0,那么am的n次方根可表示為nam=,即=nam(a>0,m,n∈正整數(shù)集,n>1)。

          綜上所述,我們得到正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義,教師板書:

          規(guī)定:正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1)。

          提出問(wèn)題

         。1)負(fù)整數(shù)指數(shù)冪的意義是怎樣規(guī)定的?

          (2)你能得出負(fù)分?jǐn)?shù)指數(shù)冪的意義嗎?

         。3)你認(rèn)為應(yīng)怎樣規(guī)定零的分?jǐn)?shù)指數(shù)冪的意義?

         。4)綜合上述,如何規(guī)定分?jǐn)?shù)指數(shù)冪的意義?

          (5)分?jǐn)?shù)指數(shù)冪的意義中,為什么規(guī)定a>0,去掉這個(gè)規(guī)定會(huì)產(chǎn)生什么樣的后果?

          (6)既然指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)是否也適用于有理數(shù)指數(shù)冪呢?

          活動(dòng):學(xué)生回想初中學(xué)習(xí)的情形,結(jié)合自己的學(xué)習(xí)體會(huì)回答,根據(jù)零的整數(shù)指數(shù)冪的意義和負(fù)整數(shù)指數(shù)冪的意義來(lái)類比,把正分?jǐn)?shù)指數(shù)冪的意義與負(fù)分?jǐn)?shù)指數(shù)冪的意義融合起來(lái),與整數(shù)指數(shù)冪的運(yùn)算性質(zhì)類比可得有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),教師在黑板上板書,學(xué)生合作交流,以具體的實(shí)例說(shuō)明a>0的必要性,教師及時(shí)作出評(píng)價(jià)。

          討論結(jié)果:(1)負(fù)整數(shù)指數(shù)冪的意義是:a-n=1an(a≠0),n∈N+。

         。2)既然負(fù)整數(shù)指數(shù)冪的意義是這樣規(guī)定的,類比正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義可得正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義。

          規(guī)定:正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是= =1nam(a>0,m,n∈=N+,n>1)。

         。3)規(guī)定:零的分?jǐn)?shù)指數(shù)冪的意義是:零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義。

         。4)教師板書分?jǐn)?shù)指數(shù)冪的意義。分?jǐn)?shù)指數(shù)冪的意義就是:

          正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1),正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是= =1nam(a>0,m,n∈正整數(shù)集,n>1),零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義。

         。5)若沒(méi)有a>0這個(gè)條件會(huì)怎樣呢?

          如=3-1=-1,=6(-1)2=1具有同樣意義的兩個(gè)式子出現(xiàn)了截然不同的結(jié)果,這只說(shuō)明分?jǐn)?shù)指數(shù)冪在底數(shù)小于零時(shí)是無(wú)意義的。因此在把根式化成分?jǐn)?shù)指數(shù)時(shí),切記要使底數(shù)大于零,如無(wú)a>0的條件,比如式子3a2=,同時(shí)負(fù)數(shù)開(kāi)奇次方是有意義的,負(fù)數(shù)開(kāi)奇次方時(shí),應(yīng)把負(fù)號(hào)移到根式的外邊,然后再按規(guī)定化成分?jǐn)?shù)指數(shù)冪,也就是說(shuō),負(fù)分?jǐn)?shù)指數(shù)冪在有意義的情況下總表示正數(shù),而不是負(fù)數(shù),負(fù)數(shù)只是出現(xiàn)在指數(shù)上。

         。6)規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù)。

          有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):對(duì)任意的有理數(shù)r,s,均有下面的運(yùn)算性質(zhì):

         、賏r?as=ar+s(a>0,r,s∈Q),

         、(ar)s=ars(a>0,r,s∈Q),

          ③(a?b)r=arbr(a>0,b>0,r∈Q)。

          我們利用分?jǐn)?shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)可以解決一些問(wèn)題,來(lái)看下面的例題。

          應(yīng)用示例

          例1求值:(1);(2);(3)12-5;(4) 。

          活動(dòng):教師引導(dǎo)學(xué)生考慮解題的方法,利用冪的運(yùn)算性質(zhì)計(jì)算出數(shù)值或化成最簡(jiǎn)根式,根據(jù)題目要求,把底數(shù)寫成冪的形式,8寫成23,25寫成52,12寫成2-1,1681寫成234,利用有理數(shù)冪的運(yùn)算性質(zhì)可以解答,完成后,把自己的答案用投影儀展示出來(lái)。

          解:(1) =22=4;

         。2)=5-1=15;

          (3)12-5=(2-1)-5=2-1×(-5)=32;

         。4)=23-3=278.

          點(diǎn)評(píng):本例主要考查冪值運(yùn)算,要按規(guī)定來(lái)解。在進(jìn)行冪值運(yùn)算時(shí),要首先考慮轉(zhuǎn)化為指數(shù)運(yùn)算,而不是首先轉(zhuǎn)化為熟悉的根式運(yùn)算,如=382=364=4.

          例2用分?jǐn)?shù)指數(shù)冪的形式表示下列各式。

          a3?a;a2?3a2;a3a(a>0)。

          活動(dòng):學(xué)生觀察、思考,根據(jù)解題的順序,把根式化為分?jǐn)?shù)指數(shù)冪,再由冪的運(yùn)算性質(zhì)來(lái)運(yùn)算,根式化為分?jǐn)?shù)指數(shù)冪時(shí),要由里往外依次進(jìn)行,把握好運(yùn)算性質(zhì)和順序,學(xué)生討論交流自己的解題步驟,教師評(píng)價(jià)學(xué)生的解題情況,鼓勵(lì)學(xué)生注意總結(jié)。

          解:a3?a=a3? =;

          a2?3a2=a2? =;

          a3a= 。

          點(diǎn)評(píng):利用分?jǐn)?shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)進(jìn)行根式運(yùn)算時(shí),其順序是先把根式化為分?jǐn)?shù)指數(shù)冪,再由冪的運(yùn)算性質(zhì)來(lái)運(yùn)算。對(duì)于計(jì)算的結(jié)果,不強(qiáng)求統(tǒng)一用什么形式來(lái)表示,沒(méi)有特別要求,就用分?jǐn)?shù)指數(shù)冪的形式來(lái)表示,但結(jié)果不能既有分?jǐn)?shù)指數(shù)又有根式,也不能既有分母又有負(fù)指數(shù)。

          例3計(jì)算下列各式(式中字母都是正數(shù))。

         。1);

         。2)。

          活動(dòng):先由學(xué)生觀察以上兩個(gè)式子的特征,然后分析,四則運(yùn)算的順序是先算乘方,再算乘除,最后算加減,有括號(hào)的先算括號(hào)內(nèi)的,整數(shù)冪的運(yùn)算性質(zhì)及運(yùn)算規(guī)律擴(kuò)充到分?jǐn)?shù)指數(shù)冪后,其運(yùn)算順序仍符合我們以前的四則運(yùn)算順序,再解答,把自己的答案用投影儀展示出來(lái),相互交流,其中要注意到(1)小題是單項(xiàng)式的乘除運(yùn)算,可以用單項(xiàng)式的乘除法運(yùn)算順序進(jìn)行,要注意符號(hào),第(2)小題是乘方運(yùn)算,可先按積的乘方計(jì)算,再按冪的乘方進(jìn)行計(jì)算,熟悉后可以簡(jiǎn)化步驟。

          解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;

         。2)=m2n-3=m2n3.

          點(diǎn)評(píng):分?jǐn)?shù)指數(shù)冪不表示相同因式的積,而是根式的另一種寫法。有了分?jǐn)?shù)指數(shù)冪,就可把根式轉(zhuǎn)化成分?jǐn)?shù)指數(shù)冪的形式,用分?jǐn)?shù)指數(shù)冪的運(yùn)算法則進(jìn)行運(yùn)算了。

          本例主要是指數(shù)冪的運(yùn)算法則的綜合考查和應(yīng)用。

          變式訓(xùn)練

          求值:(1)33?33?63;

          (2)627m3125n64.

          解:(1)33?33?63= =32=9;

          (2)627m3125n64= =9m225n4=925m2n-4.

          例4計(jì)算下列各式:

          (1)(325-125)÷425;

          (2)a2a?3a2(a>0)。

          活動(dòng):先由學(xué)生觀察以上兩個(gè)式子的特征,然后分析,化為同底。利用分?jǐn)?shù)指數(shù)冪計(jì)算,在第(1)小題中,只含有根式,且不是同次根式,比較難計(jì)算,但把根式先化為分?jǐn)?shù)指數(shù)冪再計(jì)算,這樣就簡(jiǎn)便多了,第(2)小題也是先把根式轉(zhuǎn)化為分?jǐn)?shù)指數(shù)冪后再由運(yùn)算法則計(jì)算,最后寫出解答。

          解:(1)原式=

          = =65-5;

          (2)a2a?3a2= =6a5.

          知能訓(xùn)練

          課本本節(jié)練習(xí)1,2,3

          【補(bǔ)充練習(xí)】

          教師用實(shí)物投影儀把題目投射到屏幕上讓學(xué)生解答,教師巡視,啟發(fā),對(duì)做得好的同學(xué)給予表?yè)P(yáng)鼓勵(lì)。

          1、(1)下列運(yùn)算中,正確的是()

          A.a2?a3=a6 B.(-a2)3=(-a3)2

          C.(a-1)0=0 D.(-a2)3=-a6

         。2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意義的是()

          A.①② B.①③ C.①②③④ D.①③④

         。3)(34a6)2?(43a6)2等于()

          A.a B.a2 C.a3 D.a4

          (4)把根式-25(a-b)-2改寫成分?jǐn)?shù)指數(shù)冪的形式為()

          A. B.

          C. D.

         。5)化簡(jiǎn)的結(jié)果是()

          A.6a B.-a C.-9a D.9a

          2、計(jì)算:(1) --17-2+ -3-1+(2-1)0=__________.

         。2)設(shè)5x=4,5y=2,則52x-y=__________.

          3、已知x+y=12,xy=9且x

          答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8

          3、解:。

          因?yàn)閤+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27.

          又因?yàn)閤

          所以原式= =12-6-63=-33.

          拓展提升

          1、化簡(jiǎn):。

          活動(dòng):學(xué)生觀察式子特點(diǎn),考慮x的指數(shù)之間的關(guān)系可以得到解題思路,應(yīng)對(duì)原式進(jìn)行因式分解,根據(jù)本題的特點(diǎn),注意到:

          x-1= -13=;

          x+1= +13=;

          。

          構(gòu)建解題思路教師適時(shí)啟發(fā)提示。

          解:

          =

          =

          =

          = 。

          點(diǎn)撥:解這類題目,要注意運(yùn)用以下公式,

          =a-b,

          =a± +b,

          =a±b.

          2、已知,探究下列各式的值的求法。

          (1)a+a-1;(2)a2+a-2;(3) 。

          解:(1)將,兩邊平方,得a+a-1+2=9,即a+a-1=7;

         。2)將a+a-1=7兩邊平方,得a2+a-2+2=49,即a2+ a-2=47;

         。3)由于,

          所以有=a+a-1+1=8.

          點(diǎn)撥:對(duì)“條件求值”問(wèn)題,一定要弄清已知與未知的聯(lián)系,然后采取“整體代換”或“求值后代換”兩種方法求值。

          課堂小結(jié)

          活動(dòng):教師,本節(jié)課同學(xué)們有哪些收獲?請(qǐng)把你的學(xué)習(xí)收獲記錄在你的筆記本上,同學(xué)們之間相互交流。同時(shí)教師用投影儀顯示本堂課的知識(shí)要點(diǎn):

         。1)分?jǐn)?shù)指數(shù)冪的意義就是:正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1),正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是= =1nam(a>0,m,n∈正整數(shù)集,n>1),零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義。

         。2)規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù)。

         。3)有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):對(duì)任意的有理數(shù)r,s,均有下面的運(yùn)算性質(zhì):

         、賏r?as=ar+s(a>0,r,s∈Q),

         、(ar)s=ars(a>0,r,s∈Q),

          ③(a?b)r=arbr(a>0,b>0,r∈Q)。

         。4)說(shuō)明兩點(diǎn):

          ①分?jǐn)?shù)指數(shù)冪的意義是一種規(guī)定,我們前面所舉的例子只表明這種規(guī)定的合理性,其中沒(méi)有推出關(guān)系。

         、谡麛(shù)指數(shù)冪的運(yùn)算性質(zhì)對(duì)任意的有理數(shù)指數(shù)冪也同樣適用。因而分?jǐn)?shù)指數(shù)冪與根式可以互化,也可以利用=am來(lái)計(jì)算。

          作業(yè)

          課本習(xí)題2.1A組2,4.

          設(shè)計(jì)感想

          本節(jié)課是分?jǐn)?shù)指數(shù)冪的意義的引出及應(yīng)用,分?jǐn)?shù)指數(shù)是指數(shù)概念的又一次擴(kuò)充,要讓學(xué)生反復(fù)理解分?jǐn)?shù)指數(shù)冪的意義,教學(xué)中可以通過(guò)根式與分?jǐn)?shù)指數(shù)冪的互化來(lái)鞏固加深對(duì)這一概念的理解,用觀察、歸納和類比的方法完成,由于是硬性的規(guī)定,沒(méi)有合理的解釋,因此多安排一些練習(xí),強(qiáng)化訓(xùn)練,鞏固知識(shí),要輔助以信息技術(shù)的手段來(lái)完成大容量的課堂教學(xué)任務(wù)。

          第3課時(shí)

          作者:鄭芳鳴

          導(dǎo)入新課

          思路1.同學(xué)們,既然我們把指數(shù)從正整數(shù)推廣到整數(shù),又從整數(shù)推廣到正分?jǐn)?shù)到負(fù)分?jǐn)?shù),這樣指數(shù)就推廣到有理數(shù),那么它是否也和數(shù)的推廣一樣,到底有沒(méi)有無(wú)理數(shù)指數(shù)冪呢?回顧數(shù)的擴(kuò)充過(guò)程,自然數(shù)到整數(shù),整數(shù)到分?jǐn)?shù)(有理數(shù)),有理數(shù)到實(shí)數(shù)。并且知道,在有理數(shù)到實(shí)數(shù)的擴(kuò)充過(guò)程中,增添的數(shù)是無(wú)理數(shù)。對(duì)無(wú)理數(shù)指數(shù)冪,也是這樣擴(kuò)充而來(lái)。既然如此,我們這節(jié)課的主要內(nèi)容是:教師板書本堂課的課題〔指數(shù)與指數(shù)冪的運(yùn)算(3)〕之無(wú)理數(shù)指數(shù)冪。

          思路2.同學(xué)們,在初中我們學(xué)習(xí)了函數(shù)的知識(shí),對(duì)函數(shù)有了一個(gè)初步的了解,到了高中,我們又對(duì)函數(shù)的概念進(jìn)行了進(jìn)一步的學(xué)習(xí),有了更深的理解,我們僅僅學(xué)了幾種簡(jiǎn)單的函數(shù),如一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)、三角函數(shù)等,這些遠(yuǎn)遠(yuǎn)不能滿足我們的需要,隨著科學(xué)的發(fā)展,社會(huì)的進(jìn)步,我們還要學(xué)習(xí)許多函數(shù),其中就有指數(shù)函數(shù),為了學(xué)習(xí)指數(shù)函數(shù)的知識(shí),我們必須學(xué)習(xí)實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì),為此,我們必須把指數(shù)冪從有理數(shù)指數(shù)冪擴(kuò)充到實(shí)數(shù)指數(shù)冪,因此我們本節(jié)課學(xué)習(xí):指數(shù)與指數(shù)冪的運(yùn)算(3)之無(wú)理數(shù)指數(shù)冪,教師板書本節(jié)課的課題。

          推進(jìn)新課

          新知探究

          提出問(wèn)題

         。1)我們知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值?

         。2)多媒體顯示以下圖表:同學(xué)們從上面的兩個(gè)表中,能發(fā)現(xiàn)什么樣的規(guī)律?

          2的過(guò)剩近似值

          的近似值

          1.5 11.180 339 89

          1.42 9.829 635 328

          1.415 9.750 851 808

          1.414 3 9.739 872 62

          1.414 22 9.738 618 643

          1.414 214 9.738 524 602

          1.414 213 6 9.738 518 332

          1.414 213 57 9.738 517 862

          1.414 213 563 9.738 517 752

          … …

          的近似值

          2的不足近似值

          9.518 269 694 1.4

          9.672 669 973 1.41

          9.735 171 039 1.414

          9.738 305 174 1.414 2

          9.738 461 907 1.414 21

          9.738 508 928 1.414 213

          9.738 516 765 1.414 213 5

          9.738 517 705 1.414 213 56

          9.738 517 736 1.414 213 562

          … …

          (3)你能給上述思想起個(gè)名字嗎?

         。4)一個(gè)正數(shù)的無(wú)理數(shù)次冪到底是一個(gè)什么性質(zhì)的數(shù)呢?如,根據(jù)你學(xué)過(guò)的知識(shí),能作出判斷并合理地解釋嗎?

         。5)借助上面的結(jié)論你能說(shuō)出一般性的結(jié)論嗎?

          活動(dòng):教師引導(dǎo),學(xué)生回憶,教師提問(wèn),學(xué)生回答,積極交流,及時(shí)評(píng)價(jià)學(xué)生,學(xué)生有困惑時(shí)加以解釋,可用多媒體顯示輔助內(nèi)容:

          問(wèn)題(1)從近似值的分類來(lái)考慮,一方面從大于2的方向,另一方面從小于2的方向。

          問(wèn)題(2)對(duì)圖表的觀察一方面從上往下看,再一方面從左向右看,注意其關(guān)聯(lián)。

          問(wèn)題(3)上述方法實(shí)際上是無(wú)限接近,最后是逼近。

          問(wèn)題(4)對(duì)問(wèn)題給予大膽猜測(cè),從數(shù)軸的觀點(diǎn)加以解釋。

          問(wèn)題(5)在(3)(4)的基礎(chǔ)上,推廣到一般的情形,即由特殊到一般。

          討論結(jié)果:(1)1.41,1.414,1.414 2,1.414 21,…這些數(shù)都小于2,稱2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,這些數(shù)都大于2,稱2的過(guò)剩近似值。

         。2)第一個(gè)表:從大于2的方向逼近2時(shí),就從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向逼近。

          第二個(gè)表:從小于2的方向逼近2時(shí),就從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向逼近。

          從另一角度來(lái)看這個(gè)問(wèn)題,在數(shù)軸上近似地表示這些點(diǎn),數(shù)軸上的數(shù)字表明一方面從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向接近,而另一方面從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向接近,可以說(shuō)從兩個(gè)方向無(wú)限地接近,即逼近,所以是一串有理數(shù)指數(shù)冪51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理數(shù)指數(shù)冪51.5,51.42,51.415,51.414 3,51.414 22,…,按上述變化規(guī)律變化的結(jié)果,事實(shí)上表示這些數(shù)的點(diǎn)從兩個(gè)方向向表示的點(diǎn)靠近,但這個(gè)點(diǎn)一定在數(shù)軸上,由此我們可得到的結(jié)論是一定是一個(gè)實(shí)數(shù),即51.4<51.41<51.414<51.414 2<51.414 21<…< <…<51.414 22<51.414 3<51.415<51.42<51.5.

          充分表明是一個(gè)實(shí)數(shù)。

         。3)逼近思想,事實(shí)上里面含有極限的思想,這是以后要學(xué)的知識(shí)。

          (4)根據(jù)(2)(3)我們可以推斷是一個(gè)實(shí)數(shù),猜測(cè)一個(gè)正數(shù)的無(wú)理數(shù)次冪是一個(gè)實(shí)數(shù)。

         。5)無(wú)理數(shù)指數(shù)冪的意義:

          一般地,無(wú)理數(shù)指數(shù)冪aα(a>0,α是無(wú)理數(shù))是一個(gè)確定的實(shí)數(shù)。

          也就是說(shuō)無(wú)理數(shù)可以作為指數(shù),并且它的結(jié)果是一個(gè)實(shí)數(shù),這樣指數(shù)概念又一次得到推廣,在數(shù)的擴(kuò)充過(guò)程中,我們知道有理數(shù)和無(wú)理數(shù)統(tǒng)稱為實(shí)數(shù)。我們規(guī)定了無(wú)理數(shù)指數(shù)冪的意義,知道它是一個(gè)確定的實(shí)數(shù),結(jié)合前面的有理數(shù)指數(shù)冪,那么,指數(shù)冪就從有理數(shù)指數(shù)冪擴(kuò)充到實(shí)數(shù)指數(shù)冪。

          提出問(wèn)題

          (1)為什么在規(guī)定無(wú)理數(shù)指數(shù)冪的意義時(shí),必須規(guī)定底數(shù)是正數(shù)?

          (2)無(wú)理數(shù)指數(shù)冪的運(yùn)算法則是怎樣的?是否與有理數(shù)指數(shù)冪的運(yùn)算法則相通呢?

         。3)你能給出實(shí)數(shù)指數(shù)冪的運(yùn)算法則嗎?

          活動(dòng):教師組織學(xué)生互助合作,交流探討,引導(dǎo)他們用反例說(shuō)明問(wèn)題,注意類比,歸納。

          對(duì)問(wèn)題(1)回顧我們學(xué)習(xí)分?jǐn)?shù)指數(shù)冪的意義時(shí)對(duì)底數(shù)的規(guī)定,舉例說(shuō)明。

          對(duì)問(wèn)題(2)結(jié)合有理數(shù)指數(shù)冪的運(yùn)算法則,既然無(wú)理數(shù)指數(shù)冪aα(a>0,α是無(wú)理數(shù))是一個(gè)確定的實(shí)數(shù),那么無(wú)理數(shù)指數(shù)冪的運(yùn)算法則應(yīng)當(dāng)與有理數(shù)指數(shù)冪的運(yùn)算法則類似,并且相通。

          對(duì)問(wèn)題(3)有了有理數(shù)指數(shù)冪的運(yùn)算法則和無(wú)理數(shù)指數(shù)冪的運(yùn)算法則,實(shí)數(shù)的運(yùn)算法則自然就得到了。

          討論結(jié)果:(1)底數(shù)大于零的必要性,若a=-1,那么aα是+1還是-1就無(wú)法確定了,這樣就造成混亂,規(guī)定了底數(shù)是正數(shù)后,無(wú)理數(shù)指數(shù)冪aα是一個(gè)確定的實(shí)數(shù),就不會(huì)再造成混亂。

         。2)因?yàn)闊o(wú)理數(shù)指數(shù)冪是一個(gè)確定的實(shí)數(shù),所以能進(jìn)行指數(shù)的運(yùn)算,也能進(jìn)行冪的運(yùn)算,有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),同樣也適用于無(wú)理數(shù)指數(shù)冪。類比有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)可以得到無(wú)理數(shù)指數(shù)冪的運(yùn)算法則:

         、賏r?as=ar+s(a>0,r,s都是無(wú)理數(shù))。

         、冢╝r)s=ars(a>0,r,s都是無(wú)理數(shù))。

          ③(a?b)r=arbr(a>0,b>0,r是無(wú)理數(shù))。

         。3)指數(shù)冪擴(kuò)充到實(shí)數(shù)后,指數(shù)冪的運(yùn)算性質(zhì)也就推廣到了實(shí)數(shù)指數(shù)冪。

          實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì):

          對(duì)任意的實(shí)數(shù)r,s,均有下面的運(yùn)算性質(zhì):

         、賏r?as=ar+s(a>0,r,s∈R)。

          ②(ar)s=ars(a>0,r,s∈R)。

         、(a?b)r=arbr(a>0,b>0,r∈R)。

          應(yīng)用示例

          例1利用函數(shù)計(jì)算器計(jì)算。(精確到0.001)

          (1)0.32.1;(2)3.14-3;(3);(4) 。

          活動(dòng):教師教會(huì)學(xué)生利用函數(shù)計(jì)算器計(jì)算,熟悉計(jì)算器的各鍵的功能,正確輸入各類數(shù),算出數(shù)值,對(duì)于(1),可先按底數(shù)0.3,再按xy鍵,再按冪指數(shù)2.1,最后按=,即可求得它的值;

          對(duì)于(2),先按底數(shù)3.14,再按xy鍵,再按負(fù)號(hào)-鍵,再按3,最后按=即可;

          對(duì)于(3),先按底數(shù)3.1,再按xy鍵,再按3÷4,最后按=即可;

          對(duì)于(4),這種無(wú)理指數(shù)冪,可先按底數(shù)3,其次按xy鍵,再按鍵,再按3,最后按=鍵。有時(shí)也可按2ndf或shift鍵,使用鍵上面的功能去運(yùn)算。

          學(xué)生可以相互交流,挖掘計(jì)算器的用途。

          解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3) ≈2.336;(4) ≈6.705.

          點(diǎn)評(píng):熟練掌握用計(jì)算器計(jì)算冪的值的方法與步驟,感受現(xiàn)代技術(shù)的威力,逐步把自己融入現(xiàn)代信息社會(huì);用四舍五入法求近似值,若保留小數(shù)點(diǎn)后n位,只需看第(n+1)位能否進(jìn)位即可。

          例2求值或化簡(jiǎn)。

          (1)a-4b23ab2(a>0,b>0);

         。2)(a>0,b>0);

          (3)5-26+7-43-6-42.

          活動(dòng):學(xué)生觀察,思考,所謂化簡(jiǎn),即若能化為常數(shù)則化為常數(shù),若不能化為常數(shù)則應(yīng)使所化式子達(dá)到最簡(jiǎn),對(duì)既有分?jǐn)?shù)指數(shù)冪又有根式的式子,應(yīng)該把根式統(tǒng)一化為分?jǐn)?shù)指數(shù)冪的形式,便于運(yùn)算,教師有針對(duì)性地提示引導(dǎo),對(duì)(1)由里向外把根式化成分?jǐn)?shù)指數(shù)冪,要緊扣分?jǐn)?shù)指數(shù)冪的意義和運(yùn)算性質(zhì),對(duì)(2)既有分?jǐn)?shù)指數(shù)冪又有根式,應(yīng)當(dāng)統(tǒng)一起來(lái),化為分?jǐn)?shù)指數(shù)冪,對(duì)(3)有多重根號(hào)的式子,應(yīng)先去根號(hào),這里是二次根式,被開(kāi)方數(shù)應(yīng)湊完全平方,這樣,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并對(duì)學(xué)生作及時(shí)的評(píng)價(jià),注意總結(jié)解題的方法和規(guī)律。

          解:(1)a-4b23ab2= =3b46a11 。

          點(diǎn)評(píng):根式的運(yùn)算常常化成冪的運(yùn)算進(jìn)行,計(jì)算結(jié)果如沒(méi)有特殊要求,就用根式的形式來(lái)表示。

        高中數(shù)學(xué)教案5

          一、教學(xué)目標(biāo)

          (1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;

          (2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;

          (3)能用邏輯聯(lián)結(jié)詞和簡(jiǎn)單命題構(gòu)成不同形式的復(fù)合命題;

          (4)能識(shí)別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡(jiǎn)單命題;

          (5)會(huì)用真值表判斷相應(yīng)的復(fù)合命題的真假;

          (6)在知識(shí)學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡(jiǎn)單推理的技能.

          二、教學(xué)重點(diǎn)難點(diǎn):

          重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對(duì)“或”的含義的理解.

          三、教學(xué)過(guò)程

          1.新課導(dǎo)入

          在當(dāng)今社會(huì)中,人們從事任何工作、學(xué)習(xí),都離不開(kāi)邏輯.具有一定邏輯知識(shí)是構(gòu)成一個(gè)公民的文化素質(zhì)的重要方面.數(shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識(shí),將會(huì)在我們學(xué)習(xí)的過(guò)程中不知不覺(jué)地經(jīng)常犯邏輯性的錯(cuò)誤.其實(shí),同學(xué)們?cè)诔踔幸呀?jīng)開(kāi)始接觸一些簡(jiǎn)易邏輯的知識(shí).

          初一平面幾何中曾學(xué)過(guò)命題,請(qǐng)同學(xué)們舉一個(gè)命題的例子.(板書:命題.)

          (從初中接觸過(guò)的“命題”入手,提出問(wèn)題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識(shí).)

          學(xué)生舉例:平行四邊形的對(duì)角線互相平. ……(1)

          兩直線平行,同位角相等.…………(2)

          教師提問(wèn):“……相等的角是對(duì)頂角”是不是命題?……(3)

          (同學(xué)議論結(jié)果,答案是肯定的)

          教師提問(wèn):什么是命題?

          (學(xué)生進(jìn)行回憶、思考.)

          概念總結(jié):對(duì)一件事情作出了判斷的語(yǔ)句叫做命題.

          (教師肯定了同學(xué)的回答,并作板書.)

          由于判斷有正確與錯(cuò)誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.

          (教師利用投影片,和學(xué)生討論以下問(wèn)題.)

          例1 判斷以下各語(yǔ)句是不是命題,若是,判斷其真假:

          命題一定要對(duì)一件事情作出判斷,(3)、(4)沒(méi)有對(duì)一件事情作出判斷,所以它們不是命題.

          初中所學(xué)的命題概念涉及邏輯知識(shí),我們今天開(kāi)始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡(jiǎn)易邏輯的知識(shí).

          2.講授新課

          大家看課本(人教版,試驗(yàn)修訂本,第一冊(cè)(上))從第25頁(yè)至26頁(yè)例1前,并歸納一下這段內(nèi)容主要講了哪些問(wèn)題?

          (片刻后請(qǐng)同學(xué)舉手回答,一共講了四個(gè)問(wèn)題.師生一道歸納如下.)

          (1)什么叫做命題?

          可以判斷真假的語(yǔ)句叫做命題.

          判斷一個(gè)語(yǔ)句是不是命題,關(guān)鍵看這語(yǔ)句有沒(méi)有對(duì)一件事情作出了判斷,疑問(wèn)句、祈使句都不是命題.有些語(yǔ)句中含有變量,如 中含有變量 ,在不給定變量的值之前,我們無(wú)法確定這語(yǔ)句的真假(這種含有變量的語(yǔ)句叫做“開(kāi)語(yǔ)句”).

          (2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.

          “或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.

          對(duì)“或”的理解,可聯(lián)想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一個(gè)是成立的,即 且 ;也可以 且 ;也可以 且 .這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.

          對(duì)“且”的理解,可聯(lián)想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 這兩個(gè)條件都要滿足的意思.

          對(duì)“非”的理解,可聯(lián)想到集合中的'“補(bǔ)集”概念,若命題 對(duì)應(yīng)于集合 ,則命題非 就對(duì)應(yīng)著集合 在全集 中的補(bǔ)集 .

          命題可分為簡(jiǎn)單命題和復(fù)合命題.

          不含邏輯聯(lián)結(jié)詞的命題叫做簡(jiǎn)單命題.簡(jiǎn)單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.

          由簡(jiǎn)單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡(jiǎn)單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.

          (4)命題的表示:用 , , , ,……來(lái)表示.

          (教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對(duì)復(fù)合命題的概念作出分析和展開(kāi).)

          我們接觸的復(fù)合命題一般有“ 或 ”、“ 且 ”、“非 ”、“若 則 ”等形式.

          給出一個(gè)含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說(shuō)出構(gòu)成它的簡(jiǎn)單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個(gè)簡(jiǎn)單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.

          對(duì)于給出“若 則 ”形式的復(fù)合命題,應(yīng)能找到條件 和結(jié)論 .

          在判斷一個(gè)命題是簡(jiǎn)單命題還是復(fù)合命題時(shí),不能只從字面上來(lái)看有沒(méi)有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無(wú)“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無(wú)“或”,但它們都是復(fù)合命題.

          3.鞏固新課

          例2 判斷下列命題,哪些是簡(jiǎn)單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡(jiǎn)單命題.

          (1) ;

          (2)0.5非整數(shù);

          (3)內(nèi)錯(cuò)角相等,兩直線平行;

          (4)菱形的對(duì)角線互相垂直且平分;

          (5)平行線不相交;

          (6)若 ,則 .

          (讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對(duì)“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)

          例3 寫出下表中各給定語(yǔ)的否定語(yǔ)(用課件打出來(lái)).

          若給定語(yǔ)為

          等于

          大于

          是

          都是

          至多有一個(gè)

          至少有一個(gè)

          至多有個(gè)

          其否定語(yǔ)分別為

          分析:“等于”的否定語(yǔ)是“不等于”;

          “大于”的否定語(yǔ)是“小于或者等于”;

          “是”的否定語(yǔ)是“不是”;

          “都是”的否定語(yǔ)是“不都是”;

          “至多有一個(gè)”的否定語(yǔ)是“至少有兩個(gè)”;

          “至少有一個(gè)”的否定語(yǔ)是“一個(gè)都沒(méi)有”;

          “至多有 個(gè)”的否定語(yǔ)是“至少有 個(gè)”.

          (如果時(shí)間寬裕,可讓學(xué)生討論后得出結(jié)論.)

          置疑:“或”、“且”的否定是什么?(視學(xué)生的情況、課堂時(shí)間作適當(dāng)?shù)谋嫖雠c展開(kāi).)

          4.課堂練習(xí):第26頁(yè)練習(xí)1

          5.課外作業(yè):第29頁(yè)習(xí)題1.6

        高中數(shù)學(xué)教案6

          教學(xué)目標(biāo):

          (1)理解子集、真子集、補(bǔ)集、兩個(gè)集合相等概念;

          (2)了解全集、空集的意義。

          (3)掌握有關(guān)子集、全集、補(bǔ)集的符號(hào)及表示方法,會(huì)用它們正確表示一些簡(jiǎn)單的集合,培養(yǎng)學(xué)生的符號(hào)表示的能力;

          (4)會(huì)求已知集合的子集、真子集,會(huì)求全集中子集在全集中的補(bǔ)集;

          (5)能判斷兩集合間的包含、相等關(guān)系,并會(huì)用符號(hào)及圖形(文氏圖)準(zhǔn)確地表示出來(lái),培養(yǎng)學(xué)生的數(shù)學(xué)結(jié)合的數(shù)學(xué)思想;

          (6)培養(yǎng)學(xué)生用集合的觀點(diǎn)分析問(wèn)題、解決問(wèn)題的能力。

          教學(xué)重點(diǎn):

          子集、補(bǔ)集的概念

          教學(xué)難點(diǎn):

          弄清元素與子集、屬于與包含之間的區(qū)別

          教學(xué)用具:

          幻燈機(jī)

          教學(xué)過(guò)程設(shè)計(jì)

          (一)導(dǎo)入新課

          上節(jié)課我們學(xué)習(xí)了集合、元素、集合中元素的三性、元素與集合的關(guān)系等知識(shí)。

          【提出問(wèn)題】(投影打出)

          已知xx,xx,xx,問(wèn):

          1、哪些集合表示方法是列舉法。

          2、哪些集合表示方法是描述法。

          3、將集M、集從集P用圖示法表示。

          4、分別說(shuō)出各集合中的元素。

          5、將每個(gè)集合中的元素與該集合的關(guān)系用符號(hào)表示出來(lái)、將集N中元素3與集M的關(guān)系用符號(hào)表示出來(lái)。

          6、集M中元素與集N有何關(guān)系、集M中元素與集P有何關(guān)系。

          【找學(xué)生回答】

          1、集合M和集合N;(口答)

          2、集合P;(口答)

          3、(筆練結(jié)合板演)

          4、集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1、(口答)

          5、xx,xx,xx,xx,xx,xx,xx,xx(筆練結(jié)合板演)

          6、集M中任何元素都是集N的元素、集M中任何元素都是集P的元素、(口答)

          【引入】在上面見(jiàn)到的集M與集N;集M與集P通過(guò)元素建立了某種關(guān)系,而具有這種關(guān)系的兩個(gè)集合在今后學(xué)習(xí)中會(huì)經(jīng)常出現(xiàn),本節(jié)將研究有關(guān)兩個(gè)集合間關(guān)系的問(wèn)題、

          (二)新授知識(shí)

          1、子集

          (1)子集定義:一般地,對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,我們就說(shuō)集合A包含于集合B,或集合B包含集合A。

          記作:xx讀作:A包含于B或B包含A

          當(dāng)集合A不包含于集合B,或集合B不包含集合A時(shí),則記作:AxxB或BxxA、

          性質(zhì):①xx(任何一個(gè)集合是它本身的子集)

         、趚x(空集是任何集合的子集)

          【置疑】能否把子集說(shuō)成是由原來(lái)集合中的部分元素組成的集合?

          【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合。

          因?yàn)锽的子集也包括它本身,而這個(gè)子集是由B的全體元素組成的空集也是B的子集,而這個(gè)集合中并不含有B中的元素、由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的。

          (2)集合相等:一般地,對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí)集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,記作A=B。

          例:xx,可見(jiàn),集合x(chóng)x,是指A、B的所有元素完全相同。

          (3)真子集:對(duì)于兩個(gè)集合A與B,如果xx,并且xx,我們就說(shuō)集合A是集合B的真子集,記作:xx(或xx),讀作A真包含于B或B真包含A。

          【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個(gè)元素不屬于A,那么集合A叫做集合B的真子集!

          集合B同它的真子集A之間的關(guān)系,可用文氏圖表示,其中兩個(gè)圓的內(nèi)部分別表示集合A,B。

          【提問(wèn)】

          (1)xx寫出數(shù)集N,Z,Q,R的包含關(guān)系,并用文氏圖表示。

          (2)xx判斷下列寫法是否正確

         、賦xAxx②xxAxx③xx④AxxA

          性質(zhì):

          (1)空集是任何非空集合的真子集。若xxAxx,且A≠xx,則xxA;

          (2)如果xx,xx,則xx。

          例1xx寫出集合x(chóng)x的所有子集,并指出其中哪些是它的真子集、

          解:集合x(chóng)x的所有的子集是xx,xx,xx,xx,其中xx,xx,xx是xx的真子集。

          【注意】(1)子集與真子集符號(hào)的方向。

          (2)易混符號(hào)

         、佟皒x”與“xx”:元素與集合之間是屬于關(guān)系;集合與集合之間是包含關(guān)系。如xxR,{1}xx{1,2,3}

         、趝0}與xx:{0}是含有一個(gè)元素0的集合,xx是不含任何元素的集合。

          如:xx{0}。不能寫成xx={0},xx∈{0}

          例2xx見(jiàn)教材P8(解略)

          例3xx判斷下列說(shuō)法是否正確,如果不正確,請(qǐng)加以改正、

          (1)xx表示空集;

          (2)空集是任何集合的真子集;

          (3)xx不是xx;

          (4)xx的所有子集是xx;

          (5)如果xx且xx,那么B必是A的真子集;

          (6)xx與xx不能同時(shí)成立、

          解:(1)xx不表示空集,它表示以空集為元素的`集合,所以(1)不正確;

          (2)不正確、空集是任何非空集合的真子集;

          (3)不正確、xx與xx表示同一集合;

          (4)不正確、xx的所有子集是xx;

          (5)正確

          (6)不正確、當(dāng)xx時(shí),xx與xx能同時(shí)成立、

          例4xx用適當(dāng)?shù)姆?hào)(xx,xx)填空:

          (1)xx;xx;xx;

          (2)xx;xx;

          (3)xx;

          (4)設(shè)xx,xx,xx,則AxxBxxC、

          解:(1)0xx0xx;

          (2)xx=xx,xx;

          (3)xx,xx∴xx;

          (4)A,B,C均表示所有奇數(shù)組成的集合,∴A=B=C、

          【練習(xí)】教材P9

          用適當(dāng)?shù)姆?hào)(xx,xx)填空:

          (1)xx;xx(5)xx;

          (2)xx;xx(6)xx;

          (3)xx;xx(7)xx;

          (4)xx;xx(8)xx、

          解:(1)xx;(2)xx;(3)xx;(4)xx;(5)=;(6)xx;(7)xx;(8)xx、

          提問(wèn):見(jiàn)教材P9例子

          (二)xx全集與補(bǔ)集

          1、補(bǔ)集:一般地,設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即xx),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集),記作xx,即

          、

          A在S中的補(bǔ)集xx可用右圖中陰影部分表示、

          性質(zhì):xxS(xxSA)=A

          如:(1)若S={1,2,3,4,5,6},A={1,3,5},則xxSA={2,4,6};

          (2)若A={0},則xxNA=N;

          (3)xxRQ是無(wú)理數(shù)集。

          2、全集:

          如果集合S中含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集,全集通常用xx表示。

          注:xx是對(duì)于給定的全集xx而言的,當(dāng)全集不同時(shí),補(bǔ)集也會(huì)不同。

          例如:若xx,當(dāng)xx時(shí),xx;當(dāng)xx時(shí),則xx。

          例5xx設(shè)全集xx,xx,xx,判斷xx與xx之間的關(guān)系。

          解:

          練習(xí):見(jiàn)教材P10練習(xí)

          1、填空:

          xx,xx,那么xx,xx。

          解:xx,

          2、填空:

          (1)如果全集xx,那么N的補(bǔ)集xx;

          (2)如果全集,xx,那么xx的補(bǔ)集xx(xx)=xx、

          解:(1)xx;(2)xx。

          (三)小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

          1、五個(gè)概念(子集、集合相等、真子集、補(bǔ)集、全集,其中子集、補(bǔ)集為重點(diǎn))

          2、五條性質(zhì)

          (1)空集是任何集合的子集。ΦxxA

          (2)空集是任何非空集合的真子集。ΦxxAxx(A≠Φ)

          (3)任何一個(gè)集合是它本身的子集。

          (4)如果xx,xx,則xx、

          (5)xxS(xxSA)=A

          3、兩組易混符號(hào):(1)“xx”與“xx”:(2){0}與

          (四)課后作業(yè):見(jiàn)教材P10習(xí)題1、2

        高中數(shù)學(xué)教案7

          猴子搬香蕉

          一個(gè)小猴子邊上有100根香蕉,它要走過(guò)50米才能到家,每次它最多搬50根香蕉,(多了就被壓死了),它每走1米就要吃掉一根,請(qǐng)問(wèn)它最多能把多少根香蕉搬到家里?

          解答:

          100只香蕉分兩次,一次運(yùn)50只,走1米,再回去搬另外50只,這樣走了1米的時(shí)候,前50只吃掉了兩只,后50只吃掉了1只,剩下48+49只;兩米的時(shí)候剩下46+48只;...到16米的時(shí)候剩下(50-2×16)+(50-16)=18+34只;17米的時(shí)候剩下16+33只,共49只;然后把剩下的這49只一次運(yùn)回去,要走剩下的33米,每米吃一個(gè),到家還有16個(gè)香蕉。

          河岸的距離

          兩艘輪船在同一時(shí)刻駛離河的兩岸,一艘從A駛往B,另一艘從B開(kāi)往A,其中一艘開(kāi)得比另一艘快些,因此它們?cè)诰嚯x較近的岸500公里處相遇。到達(dá)預(yù)定地點(diǎn)后,每艘船要停留15分鐘,以便讓乘客上下船,然后它們又返航。這兩艘渡輪在距另一岸100公里處重新相遇。試問(wèn)河有多寬?

          解答:

          當(dāng)兩艘渡輪在x點(diǎn)相遇時(shí),它們距A岸500公里,此時(shí)它們走過(guò)的距離總和等于河的寬度。當(dāng)它們雙方抵達(dá)對(duì)岸時(shí),走過(guò)的總長(zhǎng)度

          等于河寬的兩倍。在返航中,它們?cè)趜點(diǎn)相遇,這時(shí)兩船走過(guò)的距離之和等于河寬的三倍,所以每一艘渡輪現(xiàn)在所走的距離應(yīng)該等于它們第一次相遇時(shí)所走的距離的三倍。在兩船第一次相遇時(shí),有一艘渡輪走了500公里,所以當(dāng)它到達(dá)z點(diǎn)時(shí),已經(jīng)走了三倍的距離,即1500公里,這個(gè)距離比河的寬度多100公里。所以,河的寬度為1400公里。每艘渡輪的上、下客時(shí)間對(duì)答案毫無(wú)影響。

          變量交換

          不使用任何其他變量,交換a,b變量的值?

          分析與解答

          a = a+b

          b = a-b

          a= a-b

          步行時(shí)間

          某公司的辦公大樓在市中心,而公司總裁溫斯頓的家在郊區(qū)一個(gè)小鎮(zhèn)的附近。他每次下班以后都是乘同一次市郊火車回小鎮(zhèn)。小鎮(zhèn)車站離家還有一段距離,他的私人司機(jī)總是在同一時(shí)刻從家里開(kāi)出轎車,去小鎮(zhèn)車站接總裁回家。由于火車與轎車都十分準(zhǔn)時(shí),因此,火車與轎車每次都是在同一時(shí)刻到站。

          有一次,司機(jī)比以往遲了半個(gè)小時(shí)出發(fā)。溫斯頓到站后,找不到

          他的車子,又怕回去晚了遭老婆罵,便急匆匆沿著公路步行往家里走,途中遇到他的轎車正風(fēng)馳電掣而來(lái),立即招手示意停車,跳上車子后也顧不上罵司機(jī),命其馬上掉頭往回開(kāi)。回到家中,果不出所料,他老婆大發(fā)雷霆:“又到哪兒鬼混去啦!你比以往足足晚回了22分鐘??”。溫斯頓步行了多長(zhǎng)時(shí)間?

          解答:

          假如溫斯頓一直在車站等候,那么由于司機(jī)比以往晚了半小時(shí)出發(fā),因此,也將晚半小時(shí)到達(dá)車站。也就是說(shuō),溫斯頓將在車站空等半小時(shí),等他的轎車到達(dá)后坐車回家,從而他將比以往晚半小時(shí)到家。而現(xiàn)在溫斯頓只比平常晚22分鐘到家,這縮短下來(lái)的8分鐘是如果總裁在火車站死等的話,司機(jī)本來(lái)要花在從現(xiàn)在遇到溫斯頓總裁的地點(diǎn)到火車站再回到這個(gè)地點(diǎn)上的時(shí)間。這意味著,如果司機(jī)開(kāi)車從現(xiàn)在遇到總裁的地點(diǎn)趕到火車站,單程所花的時(shí)間將為4分鐘。因此,如果溫斯頓等在火車站,再過(guò)4分鐘,他的轎車也到了。也就是說(shuō),他如果等在火車站,那么他也已經(jīng)等了30-4=26分鐘了。但是懼內(nèi)的溫斯頓總裁畢竟沒(méi)有等,他心急火燎地趕路,把這26分鐘全都花在步行上了。

          因此,溫斯頓步行了26分鐘。

          付清欠款

          有四個(gè)人借錢的數(shù)目分別是這樣的:阿伊庫(kù)向貝爾借了10美元;

          貝爾向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊庫(kù)借了40美元。碰巧四個(gè)人都在場(chǎng),決定結(jié)個(gè)賬,請(qǐng)問(wèn)最少只需要?jiǎng)佑枚嗌倜澜鹁涂梢詫⑺星房钜淮胃肚澹?/p>

          解答:

          貝爾、查理、迪克各自拿出10美元給阿伊庫(kù)就可解決問(wèn)題了。這樣的話只動(dòng)用了30美元。最笨的辦法就是用100美元來(lái)一一付清。

          貝爾必須拿出10美元的欠額,查理和迪克也一樣;而阿伊庫(kù)則要收回借出的30美元。再?gòu)?fù)雜的問(wèn)題只要有條理地分析就會(huì)很簡(jiǎn)單。養(yǎng)成經(jīng)常性地歸納整理、摸索實(shí)質(zhì)的好習(xí)慣。

          一美元紙幣

          注:美國(guó)貨幣中的'硬幣有1美分、5美分、10美分、25美分、50美分和1美元這幾種面值。

          一家小店剛開(kāi)始營(yíng)業(yè),店堂中只有三位男顧客和一位女店主。當(dāng)這三位男士同時(shí)站起來(lái)付帳的時(shí)候,出現(xiàn)了以下的情況:

         。1)這四個(gè)人每人都至少有一枚硬幣,但都不是面值為1美分或1美元的硬幣。

          (2)這四人中沒(méi)有一人能夠兌開(kāi)任何一枚硬幣。

         。3)一個(gè)叫盧的男士要付的賬單款額最大,一位叫莫的男士要

          付的帳單款額其次,一個(gè)叫內(nèi)德的男士要付的賬單款額最小。

         。4)每個(gè)男士無(wú)論怎樣用手中所持的硬幣付賬,女店主都無(wú)法找清零錢。

          (5)如果這三位男士相互之間等值調(diào)換一下手中的硬幣,則每個(gè)人都可以付清自己的賬單而無(wú)需找零。

         。6)當(dāng)這三位男士進(jìn)行了兩次等值調(diào)換以后,他們發(fā)現(xiàn)手中的硬幣與各人自己原先所持的硬幣沒(méi)有一枚面值相同。

         。7)隨著事情的進(jìn)一步發(fā)展,又出現(xiàn)如下的情況:

         。8)在付清了賬單而且有兩位男士離開(kāi)以后,留下的男士又買了一些糖果。這位男士本來(lái)可以用他手中剩下的硬幣付款,可是女店主卻無(wú)法用她現(xiàn)在所持的硬幣找清零錢。于是,這位男士用1美元的紙幣付了糖果錢,但是現(xiàn)在女店主不得不把她的全部硬幣都找給了他。

          現(xiàn)在,請(qǐng)你不要管那天女店主怎么會(huì)在找零上屢屢遇到麻煩,這三位男士中誰(shuí)用1美元的紙幣付了糖果錢?

          解答:

          對(duì)題意的以下兩點(diǎn)這樣理解:

         。2)中不能換開(kāi)任何一個(gè)硬幣,指的是如果任何一個(gè)人不能有2個(gè)5分,否則他能換1個(gè)10分硬幣。

         。6)中指如果A,B換過(guò),并且A,C換過(guò),這就是兩次交換。

        高中數(shù)學(xué)教案8

          教學(xué)目標(biāo)

         。1)了解線性規(guī)劃的意義以及線性約束條件、線性目標(biāo)函數(shù)、線性規(guī)化問(wèn)題、可行解、可行域以及最優(yōu)解等基本概念;

          (2)了解線性規(guī)劃問(wèn)題的圖解法,并能應(yīng)用它解決一些簡(jiǎn)單的實(shí)際問(wèn)題;

         。3)培養(yǎng)學(xué)生觀察、聯(lián)想以及作圖的'能力,滲透集合、化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生“建模”和解決實(shí)際問(wèn)題的能力;

          (4)結(jié)合教學(xué)內(nèi)容,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和“用數(shù)學(xué)”的意識(shí),激勵(lì)學(xué)生勇于創(chuàng)新.

          重點(diǎn)難點(diǎn)

          理解二元一次不等式表示平面區(qū)域是教學(xué)重點(diǎn)。

          如何擾實(shí)際問(wèn)題轉(zhuǎn)化為線性規(guī)劃問(wèn)題,并給出解答是教學(xué)難點(diǎn)。

          教學(xué)步驟

          (一)引入新課

          我們已研究過(guò)以二元一次不等式組為約束條件的二元線性目標(biāo)函數(shù)的線性規(guī)劃問(wèn)題。那么是否有多個(gè)兩個(gè)變量的線性規(guī)劃問(wèn)題呢?又什么樣的問(wèn)題不用線性規(guī)劃知識(shí)來(lái)解決呢?

        高中數(shù)學(xué)教案9

          一、預(yù)習(xí)目標(biāo)

          預(yù)習(xí)《平面向量應(yīng)用舉例》,體會(huì)向量是一種處理幾何問(wèn)題、物理問(wèn)題等的工具,建立實(shí)際問(wèn)題與向量的聯(lián)系。

          二、預(yù)習(xí)內(nèi)容

          閱讀課本內(nèi)容,整理例題,結(jié)合向量的運(yùn)算,解決實(shí)際的幾何問(wèn)題、物理問(wèn)題。另外,在思考一下幾個(gè)問(wèn)題:

          1、例1如果不用向量的方法,還有其他證明方法嗎?

          2、利用向量方法解決平面幾何問(wèn)題的“三步曲”是什么?

          3、例3中,

          ⑴為何值時(shí),|F1|最小,最小值是多少?

         、苵F1|能等于|G|嗎?為什么?

          三、提出疑惑

          同學(xué)們,通過(guò)你的自主學(xué)習(xí),你還有哪些疑惑,請(qǐng)把它填在下面的表格中疑惑點(diǎn)疑惑內(nèi)容。

          課內(nèi)探究學(xué)案

          一、學(xué)習(xí)內(nèi)容

          1、運(yùn)用向量的有關(guān)知識(shí)(向量加減法與向量數(shù)量積的運(yùn)算法則等)解決平面幾何和解析幾何中直線或線段的平行、垂直、相等、夾角和距離等問(wèn)題。

          2、運(yùn)用向量的有關(guān)知識(shí)解決簡(jiǎn)單的物理問(wèn)題。

          二、學(xué)習(xí)過(guò)程

          探究一:

         。1)向量運(yùn)算與幾何中的結(jié)論"若,則,且所在直線平行或重合"相類比,你有什么體會(huì)?

          (2)舉出幾個(gè)具有線性運(yùn)算的幾何實(shí)例。

          例1、證明:平行四邊形兩條對(duì)角線的平方和等于四條邊的平方和。

          已知:平行四邊形ABCD。

          求證:

          試用幾何方法解決這個(gè)問(wèn)題,利用向量的方法解決平面幾何問(wèn)題的“三步曲”?

          (1)建立平面幾何與向量的聯(lián)系,

          (2)通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān)系,

         。3)把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系。

          例2,如圖,平行四邊形ABCD中,點(diǎn)E、F分別是AD、DC邊的中點(diǎn),BE、BF分別與AC交于R、T兩點(diǎn),你能發(fā)現(xiàn)AR、RT、TC之間的.關(guān)系嗎?

          探究二:兩個(gè)人提一個(gè)旅行包,夾角越大越費(fèi)力。在單杠上做引體向上運(yùn)動(dòng),兩臂夾角越小越省力。這些力的問(wèn)題是怎么回事?

          例3,在日常生活中,你是否有這樣的經(jīng)驗(yàn):兩個(gè)人共提一個(gè)旅行包,夾角越大越費(fèi)力;在單杠上作引體向上運(yùn)動(dòng),兩臂的夾角越小越省力。你能從數(shù)學(xué)的角度解釋這種現(xiàn)象嗎?

          請(qǐng)同學(xué)們結(jié)合剛才這個(gè)問(wèn)題,思考下面的問(wèn)題:

         、艦楹沃禃r(shí),|F1|最小,最小值是多少?

         、苵F1|能等于|G|嗎?為什么?

          例4如圖,一條河的兩岸平行,河的寬度m,一艘船從A處出發(fā)到河對(duì)岸。已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,問(wèn)行駛航程最短時(shí),所用的時(shí)間是多少(精確到0。1min)?

          變式訓(xùn)練:兩個(gè)粒子A、B從同一源發(fā)射出來(lái),在某一時(shí)刻,它們的位移分別為,(1)寫出此時(shí)粒子B相對(duì)粒子A的位移s;(2)計(jì)算s在方向上的投影。

          三、反思總結(jié)

          結(jié)合圖形特點(diǎn),選定正交基底,用坐標(biāo)表示向量進(jìn)行運(yùn)算解決幾何問(wèn)題,體現(xiàn)幾何問(wèn)題。

          代數(shù)化的特點(diǎn),數(shù)形結(jié)合的數(shù)學(xué)思想體現(xiàn)的淋漓盡致。向量作為橋梁工具使得運(yùn)算簡(jiǎn)練標(biāo)致,又體現(xiàn)了數(shù)學(xué)的美。有關(guān)長(zhǎng)方形、正方形、直角三角形等平行、垂直等問(wèn)題常用此法。

          本節(jié)主要研究了用向量知識(shí)解決平面幾何問(wèn)題和物理問(wèn)題;掌握向量法和坐標(biāo)法,以及用向量解決實(shí)際問(wèn)題的步驟。

        高中數(shù)學(xué)教案10

          教學(xué)目標(biāo):

          1、理解并掌握曲線在某一點(diǎn)處的切線的概念;

          2、理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法;

          3、理解切線概念實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力和培養(yǎng)學(xué)生轉(zhuǎn)化

          問(wèn)題的能力及數(shù)形結(jié)合思想。

          教學(xué)重點(diǎn):

          理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法。

          教學(xué)難點(diǎn):

          用“無(wú)限逼近”、“局部以直代曲”的思想理解某一點(diǎn)處切線的斜率。

          教學(xué)過(guò)程:

          一、問(wèn)題情境

          1、問(wèn)題情境。

          如何精確地刻畫曲線上某一點(diǎn)處的變化趨勢(shì)呢?

          如果將點(diǎn)P附近的曲線放大,那么就會(huì)發(fā)現(xiàn),曲線在點(diǎn)P附近看上去有點(diǎn)像是直線。

          如果將點(diǎn)P附近的曲線再放大,那么就會(huì)發(fā)現(xiàn),曲線在點(diǎn)P附近看上去幾乎成了直線。事實(shí)上,如果繼續(xù)放大,那么曲線在點(diǎn)P附近將逼近一條確定的直線,該直線是經(jīng)過(guò)點(diǎn)P的所有直線中最逼近曲線的一條直線。

          因此,在點(diǎn)P附近我們可以用這條直線來(lái)代替曲線,也就是說(shuō),點(diǎn)P附近,曲線可以看出直線(即在很小的范圍內(nèi)以直代曲)。

          2、探究活動(dòng)。

          如圖所示,直線l1,l2為經(jīng)過(guò)曲線上一點(diǎn)P的兩條直線,

         。1)試判斷哪一條直線在點(diǎn)P附近更加逼近曲線;

         。2)在點(diǎn)P附近能作出一條比l1,l2更加逼近曲線的直線l3嗎?

         。3)在點(diǎn)P附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?

          二、建構(gòu)數(shù)學(xué)

          切線定義: 如圖,設(shè)Q為曲線C上不同于P的一點(diǎn),直線PQ稱為曲線的割線。 隨著點(diǎn)Q沿曲線C向點(diǎn)P運(yùn)動(dòng),割線PQ在點(diǎn)P附近逼近曲線C,當(dāng)點(diǎn)Q無(wú)限逼近點(diǎn)P時(shí),直線PQ最終就成為經(jīng)過(guò)點(diǎn)P處最逼近曲線的直線l,這條直線l也稱為曲線在點(diǎn)P處的切線。這種方法叫割線逼近切線。

          思考:如上圖,P為已知曲線C上的`一點(diǎn),如何求出點(diǎn)P處的切線方程?

          三、數(shù)學(xué)運(yùn)用

          例1 試求在點(diǎn)(2,4)處的切線斜率。

          解法一 分析:設(shè)P(2,4),Q(xQ,f(xQ)),

          則割線PQ的斜率為:

          當(dāng)Q沿曲線逼近點(diǎn)P時(shí),割線PQ逼近點(diǎn)P處的切線,從而割線斜率逼近切線斜率;

          當(dāng)Q點(diǎn)橫坐標(biāo)無(wú)限趨近于P點(diǎn)橫坐標(biāo)時(shí),即xQ無(wú)限趨近于2時(shí),kPQ無(wú)限趨近于常數(shù)4。

          從而曲線f(x)=x2在點(diǎn)(2,4)處的切線斜率為4。

          解法二 設(shè)P(2,4),Q(xQ,xQ2),則割線PQ的斜率為:

          當(dāng)?x無(wú)限趨近于0時(shí),kPQ無(wú)限趨近于常數(shù)4,從而曲線f(x)=x2,在點(diǎn)(2,4)處的切線斜率為4。

          練習(xí) 試求在x=1處的切線斜率。

          解:設(shè)P(1,2),Q(1+Δx,(1+Δx)2+1),則割線PQ的斜率為:

          當(dāng)?x無(wú)限趨近于0時(shí),kPQ無(wú)限趨近于常數(shù)2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。

          小結(jié) 求曲線上一點(diǎn)處的切線斜率的一般步驟:

         。1)找到定點(diǎn)P的坐標(biāo),設(shè)出動(dòng)點(diǎn)Q的坐標(biāo);

          (2)求出割線PQ的斜率;

         。3)當(dāng)時(shí),割線逼近切線,那么割線斜率逼近切線斜率。

          思考 如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?

          解 設(shè)

          所以,當(dāng)無(wú)限趨近于0時(shí),無(wú)限趨近于點(diǎn)處的切線的斜率。

          變式訓(xùn)練

          1。已知,求曲線在處的切線斜率和切線方程;

          2。已知,求曲線在處的切線斜率和切線方程;

          3。已知,求曲線在處的切線斜率和切線方程。

          課堂練習(xí)

          已知,求曲線在處的切線斜率和切線方程。

          四、回顧小結(jié)

          1、曲線上一點(diǎn)P處的切線是過(guò)點(diǎn)P的所有直線中最接近P點(diǎn)附近曲線的直線,則P點(diǎn)處的變化趨勢(shì)可以由該點(diǎn)處的切線反映(局部以直代曲)。

          2、根據(jù)定義,利用割線逼近切線的方法, 可以求出曲線在一點(diǎn)處的切線斜率和方程。

          五、課外作業(yè)

        高中數(shù)學(xué)教案11

          教學(xué)目標(biāo):

          1、結(jié)合實(shí)際問(wèn)題情景,理解分層抽樣的必要性和重要性;

          2、學(xué)會(huì)用分層抽樣的方法從總體中抽取樣本;

          3、并對(duì)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系。

          教學(xué)重點(diǎn):

          通過(guò)實(shí)例理解分層抽樣的方法。

          教學(xué)難點(diǎn):

          分層抽樣的步驟。

          教學(xué)過(guò)程:

          一、問(wèn)題情境

          1、復(fù)習(xí)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍。

          2、實(shí)例:某校高一、高二和高三年級(jí)分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

          二、學(xué)生活動(dòng)

          能否用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣,為什么?

          指出由于不同年級(jí)的學(xué)生視力狀況有一定的差異,用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣不能準(zhǔn)確反映客觀實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機(jī)會(huì)相等,還要注意總體中個(gè)體的層次性。

          由于樣本的容量與總體的個(gè)體數(shù)的比為100∶2500=1∶25,所以在各年級(jí)抽取的個(gè)體數(shù)依次是。即40,32,28。

          三、建構(gòu)數(shù)學(xué)

          1、分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時(shí),為了使樣本更客觀地反映總體的情況,常將總體按不同的`特點(diǎn)分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”。

          說(shuō)明:

         、俜謱映闃訒r(shí),由于各部分抽取的個(gè)體數(shù)與這一部分個(gè)體數(shù)的比等于樣本容量與總體的個(gè)體數(shù)的比,每一個(gè)個(gè)體被抽到的可能性都是相等的;

         、谟捎诜謱映闃映浞掷昧宋覀兯莆盏男畔ⅲ箻颖揪哂休^好的代表性,而且在各層抽樣時(shí)可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實(shí)踐中有著非常廣泛的應(yīng)用。

          2、三種抽樣方法對(duì)照表:

          類別:

          共同點(diǎn):

          各自特點(diǎn):

          相互聯(lián)系:

          適用范圍:

          簡(jiǎn)單隨機(jī)抽樣:

          抽樣過(guò)程中每個(gè)個(gè)體被抽取的概率是相同的:

          從總體中逐個(gè)抽。

          總體中的個(gè)體數(shù)較少:

          系統(tǒng)抽樣:

          將總體均分成幾個(gè)部分,按事先確定的規(guī)則在各部分抽取:

          在第一部分抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣:

          總體中的個(gè)體數(shù)較多:

          分層抽樣:

          將總體分成幾層,分層進(jìn)行抽取:

          各層抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng):

          總體由差異明顯的幾部分組成:

          3、分層抽樣的步驟:

          (1)分層:將總體按某種特征分成若干部分。

          (2)確定比例:計(jì)算各層的個(gè)體數(shù)與總體的個(gè)體數(shù)的比。

          (3)確定各層應(yīng)抽取的樣本容量。

          (4)在每一層進(jìn)行抽樣(各層分別按簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣的方法抽取),綜合每層抽樣,組成樣本。

          四、數(shù)學(xué)運(yùn)用

          1、例題。

          (1)分層抽樣中,在每一層進(jìn)行抽樣可用。

          (2)①教育局督學(xué)組到學(xué)校檢查工作,臨時(shí)在每個(gè)班各抽調(diào)2人參加座談;

          ②某班期中考試有15人在85分以上,40人在60-84分,1人不及格,F(xiàn)欲從中抽出8人研討進(jìn)一步改進(jìn)教和學(xué);

          ③某班元旦聚會(huì),要產(chǎn)生兩名“幸運(yùn)者”。

          對(duì)這三件事,合適的抽樣方法為

          A、分層抽樣,分層抽樣,簡(jiǎn)單隨機(jī)抽樣

          B、系統(tǒng)抽樣,系統(tǒng)抽樣,簡(jiǎn)單隨機(jī)抽樣

          C、分層抽樣,簡(jiǎn)單隨機(jī)抽樣,簡(jiǎn)單隨機(jī)抽樣

          D、系統(tǒng)抽樣,分層抽樣,簡(jiǎn)單隨機(jī)抽樣

          2、某電視臺(tái)在因特網(wǎng)上就觀眾對(duì)某一節(jié)目的喜愛(ài)程度進(jìn)行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:

          很喜愛(ài)

          喜愛(ài)

          一般

          不喜愛(ài)

          電視臺(tái)為進(jìn)一步了解觀眾的具體想法和意見(jiàn),打算從中抽取60人進(jìn)行更為詳細(xì)的調(diào)查,應(yīng)怎樣進(jìn)行抽樣?

          解:抽取人數(shù)與總的比是60∶12000=1∶200,則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,取近似值得各層人數(shù)分別是12,23,20,5。

          然后在各層用簡(jiǎn)單隨機(jī)抽樣方法抽取。

          答用分層抽樣的方法抽取,抽取“很喜愛(ài)”、“喜愛(ài)”、“一般”、“不喜愛(ài)”的人數(shù)分別為12,23,20,5。

          說(shuō)明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對(duì)于不能取整數(shù)的情況,取其近似值。

          3、某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名。為了了解教職工對(duì)學(xué)校在校務(wù)公開(kāi)方面的某意見(jiàn),擬抽取一個(gè)容量為20的樣本。

          分析:

          (1)總體容量較小,用抽簽法或隨機(jī)數(shù)表法都很方便。

          (2)總體容量較大,用抽簽法或隨機(jī)數(shù)表法都比較麻煩,由于人員沒(méi)有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣。

          (3)由于學(xué)校各類人員對(duì)這一問(wèn)題的看法可能差異較大,所以應(yīng)采用分層抽樣方法。

          五、要點(diǎn)歸納與方法小結(jié)

          本節(jié)課學(xué)習(xí)了以下內(nèi)容:

          1、分層抽樣的概念與特征;

          2、三種抽樣方法相互之間的區(qū)別與聯(lián)系。

        高中數(shù)學(xué)教案12

          教學(xué)目標(biāo):

          (1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問(wèn)題。

          (2)進(jìn)一步理解曲線的方程和方程的曲線。

         。3)初步掌握求曲線方程的方法。

         。4)通過(guò)本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問(wèn)題和轉(zhuǎn)化的能力。

          教學(xué)重點(diǎn)、難點(diǎn):

          求曲線的方程。

          教學(xué)用具:

          計(jì)算機(jī)。

          教學(xué)方法:

          啟發(fā)引導(dǎo)法,討論法。

          教學(xué)過(guò)程:

          【引入】

          1、提問(wèn):什么是曲線的方程和方程的曲線。

          學(xué)生思考并回答。教師強(qiáng)調(diào)。

          2、坐標(biāo)法和解析幾何的意義、基本問(wèn)題。

          對(duì)于一個(gè)幾何問(wèn)題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過(guò)研究方程的性質(zhì)間接地來(lái)研究曲線的性質(zhì),這一研究幾何問(wèn)題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何。解析幾何的兩大基本問(wèn)題就是:

         。1)根據(jù)已知條件,求出表示平面曲線的方程。

         。2)通過(guò)方程,研究平面曲線的性質(zhì)。

          事實(shí)上,在前邊所學(xué)的直線方程的理論中也有這樣兩個(gè)基本問(wèn)題。而且要先研究如何求出曲線方程,再研究如何用方程研究曲線。本節(jié)課就初步研究曲線方程的求法。

          【問(wèn)題】

          如何根據(jù)已知條件,求出曲線的方程。

          【實(shí)例分析】

          例1:設(shè)、兩點(diǎn)的坐標(biāo)是、(3,7),求線段的垂直平分線的方程。

          首先由學(xué)生分析:根據(jù)直線方程的知識(shí),運(yùn)用點(diǎn)斜式即可解決。

          解法一:易求線段的中點(diǎn)坐標(biāo)為(1,3),

          由斜率關(guān)系可求得l的斜率為

          于是有

          即l的方程為

         、

          分析、引導(dǎo):上述問(wèn)題是我們?cè)缇蛯W(xué)過(guò)的,用點(diǎn)斜式就可解決?墒,你們是否想過(guò)①恰好就是所求的嗎?或者說(shuō)①就是直線的方程?根據(jù)是什么,有證明嗎?

         。ㄍㄟ^(guò)教師引導(dǎo),是學(xué)生意識(shí)到這是以前沒(méi)有解決的問(wèn)題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條)。

          證明:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解。

          設(shè)是線段的垂直平分線上任意一點(diǎn),則

          即

          將上式兩邊平方,整理得

          這說(shuō)明點(diǎn)的坐標(biāo)是方程的解。

         。2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。

          設(shè)點(diǎn)的坐標(biāo)是方程①的任意一解,則

          到、的距離分別為

          所以,即點(diǎn)在直線上。

          綜合(1)、(2),①是所求直線的方程。

          至此,證明完畢;仡櫳鲜鰞(nèi)容我們會(huì)發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象:在證明(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解中,設(shè)是線段的垂直平分線上任意一點(diǎn),最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見(jiàn),這個(gè)證明過(guò)程就表明一種求解過(guò)程,下面試試看:

          解法二:設(shè)是線段的垂直平分線上任意一點(diǎn),也就是點(diǎn)屬于集合

          由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為

          將上式兩邊平方,整理得

          果然成功,當(dāng)然也不要忘了證明,即驗(yàn)證兩條是否都滿足。顯然,求解過(guò)程就說(shuō)明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證。

          這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點(diǎn)集與對(duì)應(yīng)的思想。因此是個(gè)好方法。

          讓我們用這個(gè)方法試解如下問(wèn)題:

          例2:點(diǎn)與兩條互相垂直的直線的距離的積是常數(shù)求點(diǎn)的軌跡方程。

          分析:這是一個(gè)純粹的幾何問(wèn)題,連坐標(biāo)系都沒(méi)有。所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系。然后仿照例1中的解法進(jìn)行求解。

          求解過(guò)程略。

          【概括總結(jié)】通過(guò)學(xué)生討論,師生共同總結(jié):

          分析上面兩個(gè)例題的求解過(guò)程,我們總結(jié)一下求解曲線方程的大體步驟:

          首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正。說(shuō)得更準(zhǔn)確一點(diǎn)就是:

         。1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)例如表示曲線上任意一點(diǎn)的坐標(biāo);

          (2)寫出適合條件的點(diǎn)的集合

         ;

          (3)用坐標(biāo)表示條件,列出方程;

         。4)化方程為最簡(jiǎn)形式;

         。5)證明以化簡(jiǎn)后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的`點(diǎn)。

          一般情況下,求解過(guò)程已表明曲線上的點(diǎn)的坐標(biāo)都是方程的解;如果求解過(guò)程中的轉(zhuǎn)化都是等價(jià)的,那么逆推回去就說(shuō)明以方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。所以,通常情況下證明可省略,不過(guò)特殊情況要說(shuō)明。

          上述五個(gè)步驟可簡(jiǎn)記為:建系設(shè)點(diǎn);寫出集合;列方程;化簡(jiǎn);修正。

          下面再看一個(gè)問(wèn)題:

          例3:已知一條曲線在軸的上方,它上面的每一點(diǎn)到點(diǎn)的距離減去它到軸的距離的差都是2,求這條曲線的方程。

          【動(dòng)畫演示】用幾何畫板演示曲線生成的過(guò)程和形狀,在運(yùn)動(dòng)變化的過(guò)程中尋找關(guān)系。

          解:設(shè)點(diǎn)是曲線上任意一點(diǎn),軸,垂足是(如圖2),那么點(diǎn)屬于集合

          由距離公式,點(diǎn)適合的條件可表示為

         、

          將①式移項(xiàng)后再兩邊平方,得

          化簡(jiǎn)得

          由題意,曲線在軸的上方,所以,雖然原點(diǎn)的坐標(biāo)(0,0)是這個(gè)方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對(duì)稱的拋物線,但不包括拋物線的頂點(diǎn),如圖2中所示。

          【練習(xí)鞏固】

          題目:在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三個(gè)頂點(diǎn)的距離分別為、、,且有,求點(diǎn)軌跡方程。

          分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個(gè)坐標(biāo)軸,這條邊的垂直平分線為另一個(gè)軸,建立直角坐標(biāo)系比較簡(jiǎn)單,如圖3所示。設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為。

          根據(jù)條件,代入坐標(biāo)可得

          化簡(jiǎn)得

          ①

          由于題目中要求點(diǎn)在三角形內(nèi),所以,在結(jié)合①式可進(jìn)一步求出、的范圍,最后曲線方程可表示為

          【小結(jié)】師生共同總結(jié):

         。1)解析幾何研究研究問(wèn)題的方法是什么?

          (2)如何求曲線的方程?

          (3)請(qǐng)對(duì)求解曲線方程的五個(gè)步驟進(jìn)行評(píng)價(jià)。各步驟的作用,哪步重要,哪步應(yīng)注意什么?

          【作業(yè)】課本第72頁(yè)練習(xí)1,2,3;

        高中數(shù)學(xué)教案13

          一、指導(dǎo)思想與理論依據(jù)

          數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識(shí)和方法的思維過(guò)程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問(wèn)題情境——提出數(shù)學(xué)問(wèn)題——嘗試解決問(wèn)題——驗(yàn)證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問(wèn)題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。

          二、教材分析

          三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教A版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六).本節(jié)是第一課時(shí),教學(xué)內(nèi)容為公式(二)、(三)、(四).教材要求通過(guò)學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對(duì)稱思想發(fā)現(xiàn)任意角 與 、 、 終邊的對(duì)稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四)。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位。

          三、學(xué)情分析

          本節(jié)課的授課對(duì)象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動(dòng)手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容。

          四、教學(xué)目標(biāo)

          (1)基礎(chǔ)知識(shí)目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過(guò)程,掌握正弦、余弦、正切的誘導(dǎo)公式;

          (2)能力訓(xùn)練目標(biāo):能正確運(yùn)用誘導(dǎo)公式求任意角的正弦、余弦、正切值,以及進(jìn)行簡(jiǎn)單的三角函數(shù)求值與化簡(jiǎn);

          (3)創(chuàng)新素質(zhì)目標(biāo):通過(guò)對(duì)公式的推導(dǎo)和運(yùn)用,提高三角恒等變形的能力和滲透化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力;

          (4)個(gè)性品質(zhì)目標(biāo):通過(guò)誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運(yùn)用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀。

          五、教學(xué)重點(diǎn)和難點(diǎn)

          1.教學(xué)重點(diǎn)

          理解并掌握誘導(dǎo)公式。

          2.教學(xué)難點(diǎn)

          正確運(yùn)用誘導(dǎo)公式,求三角函數(shù)值,化簡(jiǎn)三角函數(shù)式。

          六、教法學(xué)法以及預(yù)期效果分析

          高中數(shù)學(xué)優(yōu)秀教案高中數(shù)學(xué)教學(xué)設(shè)計(jì)與教學(xué)反思

          “授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想方法, 如何實(shí)現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究.下面我從教法、學(xué)法、預(yù)期效果等三個(gè)方面做如下分析。

          1.教法

          數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動(dòng)的教學(xué),而不僅僅是數(shù)學(xué)活動(dòng)的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識(shí),更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì)。

          在本節(jié)課的教學(xué)過(guò)程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問(wèn)題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時(shí)間”、“空間”, 由易到難,由特殊到一般,盡力營(yíng)造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂(lè)和成功的喜悅。

          2.學(xué)法

          “現(xiàn)代的文盲不是不識(shí)字的人,而是沒(méi)有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點(diǎn)、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識(shí)點(diǎn),卻忽略了學(xué)生接受知識(shí)需要時(shí)間消化,進(jìn)而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情.如何能讓學(xué)生最大程度的消化知識(shí),提高學(xué)習(xí)熱情是教者必須思考的問(wèn)題。

          在本節(jié)課的教學(xué)過(guò)程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問(wèn)題、共同探討、解決問(wèn)題 簡(jiǎn)單應(yīng)用、重現(xiàn)探索過(guò)程、練習(xí)鞏固。讓學(xué)生參與探索的全部過(guò)程,讓學(xué)生在獲取新知識(shí)及解決問(wèn)題的方法后,合作交流、共同探索,使之由被動(dòng)學(xué)習(xí)轉(zhuǎn)化為主動(dòng)的自主學(xué)習(xí)。

          3.預(yù)期效果

          本節(jié)課預(yù)期讓學(xué)生能正確理解誘導(dǎo)公式的發(fā)現(xiàn)、證明過(guò)程,掌握誘導(dǎo)公式,并能熟練應(yīng)用誘導(dǎo)公式了解一些簡(jiǎn)單的化簡(jiǎn)問(wèn)題。

          七、教學(xué)流程設(shè)計(jì)

          (一)創(chuàng)設(shè)情景

          1.復(fù)習(xí)銳角300,450,600的三角函數(shù)值;

          2.復(fù)習(xí)任意角的三角函數(shù)定義;

          3.問(wèn)題:由xx,你能否知道sin2100的值嗎?引如新課。

          設(shè)計(jì)意圖

          高中數(shù)學(xué)優(yōu)秀教案 高中數(shù)學(xué)教學(xué)設(shè)計(jì)與教學(xué)反思。

          自信的鼓勵(lì)是增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信,簡(jiǎn)單易做的題加強(qiáng)了每個(gè)學(xué)生學(xué)習(xí)的熱情,具體數(shù)據(jù)問(wèn)題的出現(xiàn),讓學(xué)生既有好像會(huì)做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機(jī)會(huì)證明我能行,從而思考解決的辦法。

          (二)新知探究

          1. 讓學(xué)生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;

          2.讓學(xué)生發(fā)現(xiàn)300角的終邊和2100角的終邊與單位圓的交點(diǎn)的'坐標(biāo)有什么關(guān)系;

          3.Sin2100與sin300之間有什么關(guān)系。

          設(shè)計(jì)意圖:由特殊問(wèn)題的引入,使學(xué)生容易了解,實(shí)現(xiàn)教學(xué)過(guò)程的平淡過(guò)度,為同學(xué)們探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關(guān)系做好鋪墊。

          (三)問(wèn)題一般化

          探究一

          1.探究發(fā)現(xiàn)任意角的終邊與的終邊關(guān)于原點(diǎn)對(duì)稱;

          2.探究發(fā)現(xiàn)任意角的終邊和角的終邊與單位圓的交點(diǎn)坐標(biāo)關(guān)于原點(diǎn)對(duì)稱;

          3.探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系。

          設(shè)計(jì)意圖:首先應(yīng)用單位圓,并以對(duì)稱為載體,用聯(lián)系的觀點(diǎn),把單位圓的性質(zhì)與三角函數(shù)聯(lián)系起來(lái),數(shù)形結(jié)合,問(wèn)題的設(shè)計(jì)提問(wèn)從特殊到一般,從線對(duì)稱到點(diǎn)對(duì)稱到三角函數(shù)值之間的關(guān)系,逐步上升,一氣呵成誘導(dǎo)公式二.同時(shí)也為學(xué)生將要自主發(fā)現(xiàn)、探索公式三和四起到示范作用,下面練習(xí)設(shè)計(jì)為了熟悉公式一,讓學(xué)生感知到成功的喜悅,進(jìn)而敢于挑戰(zhàn),敢于前進(jìn)。

          (四)練習(xí)

          利用誘導(dǎo)公式(二),口答三角函數(shù)值。

          喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問(wèn)題。

          (五)問(wèn)題變形

          由sin3000= -sin600 出發(fā),用三角的定義引導(dǎo)學(xué)生求出 sin(-3000),Sin150 0值,讓學(xué)生聯(lián)想若已知sin3000= -sin600 ,能否求出sin(-3000),Sin150 0)的值。

        高中數(shù)學(xué)教案14

          三維目標(biāo):

          1、知識(shí)與技能:正確理解隨機(jī)抽樣的概念,掌握抽簽法、隨機(jī)數(shù)表法的一般步驟;

          2、過(guò)程與方法:

          (1)能夠從現(xiàn)實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統(tǒng)計(jì)問(wèn)題;

          (2)在解決統(tǒng)計(jì)問(wèn)題的過(guò)程中,學(xué)會(huì)用簡(jiǎn)單隨機(jī)抽樣的方法從總體中抽取樣本。

          3、情感態(tài)度與價(jià)值觀:通過(guò)對(duì)現(xiàn)實(shí)生活和其他學(xué)科中統(tǒng)計(jì)問(wèn)題的提出,體會(huì)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界及各學(xué)科知識(shí)之間的聯(lián)系,認(rèn)識(shí)數(shù)學(xué)的重要性。

          4、重點(diǎn)與難點(diǎn):正確理解簡(jiǎn)單隨機(jī)抽樣的概念,掌握抽簽法及隨機(jī)數(shù)法的步驟,并能靈活應(yīng)用相關(guān)知識(shí)從總體中抽取樣本。

          教學(xué)方法:

          講練結(jié)合法

          教學(xué)用具:

          多媒體

          課時(shí)安排:

          1課時(shí)

          教學(xué)過(guò)程:

          一、問(wèn)題情境

          假設(shè)你作為一名食品衛(wèi)生工作人員,要對(duì)某食品店內(nèi)的一批小包裝餅干進(jìn)行衛(wèi)生達(dá)標(biāo)檢驗(yàn),你準(zhǔn)備怎樣做?顯然,你只能從中抽取一定數(shù)量的餅干作為檢驗(yàn)的樣本。(為什么?)那么,應(yīng)當(dāng)怎樣獲取樣本呢?

          二、探究新知

          1、統(tǒng)計(jì)的有關(guān)概念:總體:在統(tǒng)計(jì)學(xué)中,所有考察對(duì)象的全體叫做總體、個(gè)體:每一個(gè)考察的對(duì)象叫做個(gè)體、樣本:從總體中抽取的一部分個(gè)體叫做總體的一個(gè)樣本、樣本容量:樣本中個(gè)體的數(shù)目叫做樣本的容量、統(tǒng)計(jì)的基本思想:用樣本去估計(jì)總體、

          2、簡(jiǎn)單隨機(jī)抽樣的概念一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機(jī)抽樣,這樣抽取的樣本,叫做簡(jiǎn)單隨機(jī)樣本。

          下列抽樣的方式是否屬于簡(jiǎn)單隨機(jī)抽樣?為什么?

          (1)從無(wú)限多個(gè)個(gè)體中抽取50個(gè)個(gè)體作為樣本。

          (2)箱子里共有100個(gè)零件,從中選出10個(gè)零件進(jìn)行質(zhì)量檢驗(yàn),在抽樣操作中,從中任意取出一個(gè)零件進(jìn)行質(zhì)量檢驗(yàn)后,再把它放回箱子。

          (3)從8臺(tái)電腦中,不放回地隨機(jī)抽取2臺(tái)進(jìn)行質(zhì)量檢查(假設(shè)8臺(tái)電腦已編好號(hào),對(duì)編號(hào)隨機(jī)抽取)

          3、常用的簡(jiǎn)單隨機(jī)抽樣方法有:

          (1)抽簽法的定義。一般地,抽簽法就是把總體中的N個(gè)個(gè)體編號(hào),把號(hào)碼寫在號(hào)簽上,將號(hào)簽放在一個(gè)容器中,攪拌均勻后,每次從中抽取一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本。

          思考?你認(rèn)為抽簽法有什么優(yōu)點(diǎn)和缺點(diǎn):當(dāng)總體中的個(gè)體數(shù)很多時(shí),用抽簽法方便嗎?例1、若已知高一(6)班總共有57人,現(xiàn)要抽取8位同學(xué)出來(lái)做游戲,請(qǐng)?jiān)O(shè)計(jì)一個(gè)抽取的方法,要使得每位同學(xué)被抽到的機(jī)會(huì)相等。

          分析:可以把57位同學(xué)的學(xué)號(hào)分別寫在大小,質(zhì)地都相同的紙片上,折疊或揉成小球,把紙片集中在一起并充分?jǐn)嚢韬,在從中個(gè)抽出8張紙片,再選出紙片上的學(xué)號(hào)對(duì)應(yīng)的同學(xué)即可、基本步驟:第一步:將總體的所有N個(gè)個(gè)體從1至N編號(hào);第二步:準(zhǔn)備N個(gè)號(hào)簽分別標(biāo)上這些編號(hào),將號(hào)簽放在容器中攪拌均勻后每次抽取一個(gè)號(hào)簽,不放回地連續(xù)取n次;第三步:將取出的n個(gè)號(hào)簽上的號(hào)碼所對(duì)應(yīng)的n個(gè)個(gè)體作為樣本。

          (2)隨機(jī)數(shù)法的定義:利用隨機(jī)數(shù)表、隨機(jī)數(shù)骰子或計(jì)算機(jī)產(chǎn)生的隨機(jī)數(shù)進(jìn)行抽樣,叫隨機(jī)數(shù)表法,這里僅介紹隨機(jī)數(shù)表法。怎樣利用隨機(jī)數(shù)表產(chǎn)生樣本呢?下面通過(guò)例子來(lái)說(shuō)明,假設(shè)我們要考察某公司生產(chǎn)的`500克袋裝牛奶的質(zhì)量是否達(dá)標(biāo),現(xiàn)從800袋牛奶中抽取60袋進(jìn)行檢驗(yàn),利用隨機(jī)數(shù)表抽取樣本時(shí),可以按照下面的步驟進(jìn)行。第一步,先將800袋牛奶編號(hào),可以編為000,001,799。

          第二步,在隨機(jī)數(shù)表中任選一個(gè)數(shù),例如選出第8行第7列的數(shù)7(為了便于說(shuō)明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28第三步,從選定的數(shù)7開(kāi)始向右讀(讀數(shù)的方向也可以是向左、向上、向下等),得到一個(gè)三位數(shù)785,由于785<799,說(shuō)明號(hào)碼785在總體內(nèi),將它取出;

          繼續(xù)向右讀,得到916,由于916>799,將它去掉,按照這種方法繼續(xù)向右讀,又取出567,199,507,依次下去,直到樣本的60個(gè)號(hào)碼全部取出,這樣我們就得到一個(gè)容量為60的樣本。

          三、課堂練習(xí)

          四、課堂小結(jié)

          1、簡(jiǎn)單隨機(jī)抽樣的概念一般地,設(shè)一個(gè)總體的個(gè)體數(shù)為N,如果通過(guò)逐個(gè)抽取的方法從中抽取一個(gè)樣本,且每次抽取時(shí)各個(gè)個(gè)體被抽到的概率相等,就稱這樣的抽樣為簡(jiǎn)單隨機(jī)抽樣。

          2、簡(jiǎn)單隨機(jī)抽樣的方法:抽簽法隨機(jī)數(shù)表法

          五、課后作業(yè)

          P57練習(xí)1、2

          六、板書設(shè)計(jì)

          1、統(tǒng)計(jì)的有關(guān)概念

          2、簡(jiǎn)單隨機(jī)抽樣的概念

          3、常用的簡(jiǎn)單隨機(jī)抽樣方法有:(1)抽簽法(2)隨機(jī)數(shù)表法

          4、課堂練習(xí)

        高中數(shù)學(xué)教案15

          一、教學(xué)目標(biāo)

          【知識(shí)與技能】

          掌握三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。

          【過(guò)程與方法】

          經(jīng)歷三角函數(shù)的單調(diào)性的探索過(guò)程,提升邏輯推理能力。

          【情感態(tài)度價(jià)值觀】

          在猜想計(jì)算的過(guò)程中,提高學(xué)習(xí)數(shù)學(xué)的興趣。

          二、教學(xué)重難點(diǎn)

          【教學(xué)重點(diǎn)】

          三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。

          【教學(xué)難點(diǎn)】

          探究三角函數(shù)的單調(diào)性以及三角函數(shù)值的.取值范圍過(guò)程。

          三、教學(xué)過(guò)程

         。ㄒ唬┮胄抡n

          提出問(wèn)題:如何研究三角函數(shù)的單調(diào)性

          (四)小結(jié)作業(yè)

          提問(wèn):今天學(xué)習(xí)了什么?

          引導(dǎo)學(xué)生回顧:基本不等式以及推導(dǎo)證明過(guò)程。

          課后作業(yè):

          思考如何用三角函數(shù)單調(diào)性比較三角函數(shù)值的大小。

        【高中數(shù)學(xué)教案】相關(guān)文章:

        高中數(shù)學(xué)教案12-29

        高中數(shù)學(xué)教案07-11

        高中數(shù)學(xué)教案模板11-18

        優(yōu)秀高中數(shù)學(xué)教案03-20

        高中數(shù)學(xué)教案【推薦】01-25

        高中數(shù)學(xué)教案【精】01-25

        高中數(shù)學(xué)教案【熱】01-27

        【精】高中數(shù)學(xué)教案02-04

        高中數(shù)學(xué)教案【熱門】02-04

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>