1. <rp id="zsypk"></rp>

      2. 高中數(shù)學函數(shù)教案

        時間:2024-06-18 16:55:40 數(shù)學教案 我要投稿

        高中數(shù)學函數(shù)教案

          在教學工作者實際的教學活動中,可能需要進行教案編寫工作,教案有利于教學水平的提高,有助于教研活動的開展。那么問題來了,教案應該怎么寫?下面是小編為大家收集的高中數(shù)學函數(shù)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

        高中數(shù)學函數(shù)教案

        高中數(shù)學函數(shù)教案1

          自讀要求:

          1、理解“記憶所蘊涵著的真諦”及“門檻”的象征意義。

          2、體會兩篇散文詩中所飽含的作者的思想感情,品味雋永的富有哲理的語言。

          3、學習比喻、象征等手法的運用,認知散文詩的基本特點,初步學會對散文詩的欣賞。

          學習重點

          從品味語言入手,通過兩首散文詩的對比閱讀,歸納散文詩的基本特點,進而欣賞兩首散文詩的語言美、形式美、意境美。

          ◆ 自讀程序

          記憶

          一、導語設計

          前蘇聯(lián)作家高爾基的《海燕》運用象征的手法,使人們在鳥兒(海燕、海鷗、海鴨、企鵝……)“嘰嘰喳喳”的叫喊聲中聽出了革命先驅(qū)對暴風雨的渴望,看到了革命勇士搏擊長空的雄姿,文章具有散文的形式美,更具有詩歌的意境美。這種詩歌散文化、散文詩歌化的文學體裁,人們稱之為散文詩。今天我們再閱讀兩篇散文詩,了解體會這種文體。

          二、整體感知——理解,感受結(jié)構(gòu)美

          首先明確本文是一篇散文詩,它具有詩一樣優(yōu)美的語言,優(yōu)美的意境;同時又兼具散文的形散神聚的特點。

          1,學生快速默讀《記憶》,根據(jù)文章的內(nèi)容,將其劃分一下層次,理出作者的寫作思路。

          明確:

          第一部分:1—7自然段,引出記憶的話題。以文學家的筆墨來表現(xiàn)記憶的社會本質(zhì)。

          第二部分:8—14自然段,談到記憶,既涉及話題,又脫離話題。描述有關記憶的種種現(xiàn)象,進一步探討記憶的社會本質(zhì)。

          第三部分:15—24自然段,用比喻性的說法正面回答什么是記憶。

          第四部分:25—31自然段,描寫各種人對待記憶的態(tài)度,或者說記憶在各種人身上的表現(xiàn)。

          綜合以上,本文圍繞“記憶”展開話題,但卻始終沒有明確點出記憶到底是什么,。可見記憶不過是作者思想感情賴以表達的憑借,作者真正想表達的是對正義、對高尚情操的歌頌,對惡勢力、對卑下行為的批判,但這寫作意圖藏而不露。

          2,論“記憶所蘊涵著的真諦”。學生自由發(fā)言,回答文中“記憶”究竟指什么?進而初步了解作者所表達的觀點態(tài)度。

          明確:本文從記憶這一角度入手,對紛繁的社會現(xiàn)象和人們的種種品行作了概括而生動的描寫,表達了對真善美的歌頌,對假惡丑的批判。從根本上說,這里的“記憶”,是廣大人民心中判斷是非曲直的客觀尺度。

          三、揣摩剖析——悟讀,領悟意境美

          1,理解“記憶嘛,沒有重量……又可以使另一個人的靈魂貶值到零以下”這段話的含義。

          明確:

          “沒有重量”——過去犯了錯誤,而又沒有正確對待,那么犯錯誤的記憶就可以壓得你匍匐在地;由于你刻苦學習從而取得了學習或工作的進步,學或工作進步的記憶就可以鼓舞你在理想的空間里飛翔。

          “沒有體積”——襟懷坦蕩,光明磊落的做事的`記憶,可以讓人去擁抱整個世界;反之以小心眼處事,那么你的世界會很狹小。

          “沒有色彩”——做過的有損于社會的事情的記憶,就可以使人的心靈變得蒼白幽暗;而對人民,對社會做出貢獻的記憶,可以使人的內(nèi)心世界絢麗輝煌。

          “沒有標價”——對人民對社會做出巨大貢獻的的記憶,可以讓一個人生命價值上升到崇高境界,而做出嚴重危害社會危害人民的記憶,則可以是一個人的靈魂貶值到零以下。

          1,輕聲閱讀“記憶沒有體積……”這部分,討論記憶對人有哪些影響。學生自由發(fā)言,回答作者從人生的哪些方面對人類品性作了剖析?你還能列舉出哪些方面?

          2,默讀兩個傳說,輕讀“嗯,只記得一己憂患的,是庸人!攀怯率,真正的勇士!”討論:兩個傳說表達了作者的什么觀點?后面的議論表達了作者什么樣的愛憎情感?

          3,綜合以上兩大段,討論:你體會到了作者什么樣的心靈境界?

          四、鑒別賞析——品讀,欣賞形式美

          1,聲情并茂閱讀“……而你,朋友,卻執(zhí)拗地望著我……他就永不會從后人的記憶中泯滅”。討論:這一段語言有何特色?運用了哪些表達方式?通過哪些表現(xiàn)手法表達情感?

          2,由此段推及全文,討論語言、結(jié)構(gòu)形式、體裁有何特色,從而掌握散文詩的一般特點。

          五、遷移運用——練讀,體驗鑒賞美

          1,自讀《門檻》,揣摩“門檻”的象征意

          2,討論文中“俄羅斯的姑娘”具有怎樣的性格特征。

          3,比較《記憶》與《門檻》在語言、取材、表現(xiàn)手法、意境上的異同。

          ◆自讀點撥

          1、多方面的美感在《記憶》中的體現(xiàn)。

         、偾椴倜溃阂姟白宰x程序”三。

          ②結(jié)構(gòu)美:全文采用了層進式與錯綜分承式相結(jié)合的開放性創(chuàng)新結(jié)構(gòu)。對“人生價值”這一永恒的話題,以一老者向年輕人談話的形式,娓娓而談,步步推進,賦予了有形的篇章以無限的聯(lián)想空間。

         、壅路溃撼晒Φ剡\用了美學中“和諧”與“奇異”的原理,采用的是參照系方法。在關于“記憶真諦”方面,采用虛實參照,表現(xiàn)出奇異。

         、苷Z言美:化虛為實,變抽象說理為形象思考,極具感染力,不僅具有視覺美和聽覺美,更具有靈覺美(使讀者心靈受到感動)。形式上既有詩歌視覺整齊,聽覺爽朗,富有氣勢的特點,又有散文“形散神聚”、意象廣博、文化價值內(nèi)涵豐富的特征,形象、生動、精練、深邃、雋永,富有哲理。

         、菀饩趁溃何闹谢摓閷崳忠?qū)嵨蛱,以“記憶”作為審視“人生真諦”的載體,進行多層面、多視角的價值評判,從而構(gòu)成了開闊的、積極向上的多視角意象和多層面意境。

          2、強烈感情在《記憶》中的表現(xiàn)。

          對記憶真諦揭示的全過程,鮮明地表現(xiàn)了作者的愛憎。首先是對“記憶”的價值評判中,四句名言,作者從忘卻(記憶的反面)的角度表達了對忘恩負義和背叛的堅決否定。接著,在描述“記憶”時,以“重量”“體積”“色彩”“標價”為突破口,對理想遠大、胸懷?寬闊、心靈絢麗、價值崇高的人生予以了充分的肯定;同時對胸無大志、心胸狹隘、心靈幽暗、價值低下的人生給予了徹底的批判。隨后的設喻更是對勇于奉獻精神的高度贊美。兩個傳說對流芳千古與遺臭萬年的人生態(tài)度十分鮮明,加上反面的議論,使作者對庸人、叛徒、蠢貨、懦夫的憤慨,和對智者、勇士的頌揚得到充分的體現(xiàn),作者的感情也達到了高潮。

          3、《記憶》與《門檻》在語言、取材、表現(xiàn)手法、情感、意境上有許多異同點 。

          ◆自讀訓練

          課外閱讀一篇散文詩,說說散文詩這種文體的一些特征。

        高中數(shù)學函數(shù)教案2

          今天我說課的課題是《銳角三角函數(shù)》(第一課時),所選用的教材為人教版義務教育課程標準實驗教科書。

          根據(jù)新課標的理念,對于本節(jié)課,我將以教什么,怎樣教,為什么這樣教為思路,從教材分析,教學目標分析,教學方法和學法分析,教學過程分析四個方面加以說明。

          一、教材的地位和作用

          本節(jié)教材是人教版初中數(shù)學新教材九年級下第28章第一節(jié)內(nèi)容,是初中數(shù)學的重要內(nèi)容之一。一方面,這是在學習了直角三角形兩銳角關系、勾股定理等知識的基礎上,對直角三角形邊角關系的進一步深入和拓展;另一方面,又為解直角三角形等知識奠定了基礎,也是高中進一步研究三角函數(shù)、反三角函數(shù)、三角方程的工具性內(nèi)容。鑒于這種認識,我認為,本節(jié)課不僅有著廣泛的實際應用,而且起著承前啟后的作用。

          2、學情分析

          從學生的年齡特征和認知特征來看:

          九年級學生的思維活躍,接受能力較強,具備了一定的數(shù)學探究活動經(jīng)歷和應用數(shù)學的意識。

          從學生已具備的知識和技能來看:

          九年級學生已經(jīng)掌握直角三角形中各邊和各角的關系,能靈活運用相似圖形的性質(zhì)及判定方法解決問題,有較強的推理證明能力,這為順利完成本節(jié)課的教學任務打下了基礎

          從心理特征來看:初三學生邏輯思維從經(jīng)驗型逐步向理論型發(fā)展,觀察能力,記憶能力和想象能力也隨著迅速發(fā)展。

          從學生有待于提高的知識和技能來看:

          學生要得出直角三角形中邊與角之間的關系,需要觀察、思考、交流,進一步體會數(shù)學知識之間的聯(lián)系,感受數(shù)形結(jié)合的思想,體會銳角三角函數(shù)的意義,提高應用數(shù)學和合作交流的能力。學生可能會產(chǎn)生一定的困難,所以教學中應予以簡單明了,深入淺出的剖析。

          3、教學重、難點

          根據(jù)以上對教材的地位和作用,以及學情分析,結(jié)合新課標對本節(jié)課的要求,我將本節(jié)課的重點確定為:理解正弦函數(shù)意義,并會求銳角的正弦值。

          難點確定為:根據(jù)銳角的正弦值及一邊,求直角三角形的其他邊長。

          二、教學目標分析

          新課標指出,教學目標應從知識技能、數(shù)學思考、問題解決、情感態(tài)度等四個方面闡述,而這四維目標又應是緊密聯(lián)系的一個完整的整體,學生學知識技能的過程同時成為學會學習,形成正確價值觀的過程,這告訴我們,在教學中應以知識技能為主線,滲透情感態(tài)度,并把前面兩者通過數(shù)學思考充分體現(xiàn)在問題解決中。借此結(jié)合以上教材分析,我將四個目標進行整合,確定本節(jié)課的教學目標為:

          1。理解銳角正弦的意義,并會求銳角的正弦值;

          2。初步了解銳角正弦取值范圍及增減性;

          3。掌握根據(jù)銳角的正弦值及直角三角形的一邊,求直角三角形的其他邊長的方法;

          4。經(jīng)歷銳角正弦的意義探索的過程,培養(yǎng)學生觀察分析、類比歸納的探究問題的能力;

          5。通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學的合理性和嚴謹性,使學生養(yǎng)成積極思考,獨立思考的好習慣,并且同時培養(yǎng)學生的團隊合作精神。

          三、教學方法和學法分析

          現(xiàn)代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者,教學的一切活動都必須以強調(diào)學生的主動性、積極性為出發(fā)點。根據(jù)這一教學理念,結(jié)合本節(jié)課的內(nèi)容特點和學生的學情情況,本節(jié)課我采用“三動五自主”的教學模式,以問題的提出、問題的解決為主線,始終在學生知識的“最近發(fā)展區(qū)”設置問題,倡導學生主動參與教學實踐活動,以獨立思考和合作交流的形式,在教師的指道下發(fā)現(xiàn)、分析和解決問題,在引導分析時,給學生流出足夠的思考時間和空間,讓學生去聯(lián)想、探索,從真正意義上完成對知識的自我建構(gòu)。

          另外,在教學過程中,我采用多媒體輔助教學,以直觀呈現(xiàn)教學素材,從而更好地激發(fā)學生的學習興趣,增大教學容量,提高教學效率。

          本節(jié)課的教法采用的是情境引導和探究發(fā)現(xiàn)教學法,在教學過程中,通過適宜的問題情境引發(fā)新的認知沖突;建立知識間的聯(lián)系。教師通過引導、指導、反饋、評價,不斷激發(fā)學生對問題的好奇心,使其在積極的自主活動中主動參與概念的建構(gòu)過程,并運用數(shù)學知識解決實際問題,享受數(shù)學學習帶來的樂趣。

          本節(jié)課的學習方法采用自主探究法與合作交流法相結(jié)合。本節(jié)課數(shù)學活動貫穿始終,既有學生自主探究的,也有小組合作交流的,旨在讓學生從自主探究中發(fā)展,從合作交流中提高。

          四、教學過程

          新課標指出,數(shù)學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進行教學,本節(jié)課我主要安排以下教學環(huán)節(jié):

         。ㄒ唬┳灾魈骄

          1、復習舊知,溫故知新

          1、已知:在Rt△ABC中,∠C=900,∠A=350,則∠B= 0

          2、已知:在Rt△ABC中,∠C=900,AB=5,AC=3,則BC=

          設計意圖:建構(gòu)注意主張教學應從學生已有的知識體系出發(fā),相似的三角形性質(zhì)是本節(jié)課深入研究銳角正弦的認知基礎,這樣設計有利于引導學生順利地進入學習情境。

          2、創(chuàng)設情境,提出問題

          利用多媒體播放意大利比薩斜塔圖片,然后老師問:比薩斜塔中條件和要探究的問題:“你能根據(jù)問題背景畫出直角三角形并且利用邊求出斜塔的傾斜角嗎?”這就是今天我們要學習銳角三角函數(shù)(板書課題)

          設計意圖:以問題串的形式創(chuàng)設情境,引起學生的認知沖突,使學生對舊知識產(chǎn)生設疑,從而激發(fā)學生的學習興趣和求知欲望‘

          通過情境創(chuàng)設,學生已激發(fā)了強烈的求知欲望,產(chǎn)生了強勁的學習動力,此時我把學生帶入下一環(huán)節(jié)———

         。ǘ┳灾骱献

          1、發(fā)現(xiàn)問題,探求新知(要求學生獨立思考后小組內(nèi)合作探究)

          1、(播放綠化荒山的視頻)課本P74問題與思考,求的值

          2、課本P75思考:求的值

          設計意圖:現(xiàn)代數(shù)學教學論指出,數(shù)學知識的教學必須在學生自主探索,經(jīng)驗歸納的基礎上獲得,教學中必須展現(xiàn)思維的過程性,在這里,通過觀察分析、獨立思考、小組交流等活動,引導學生歸納。

          2、分析思考,加深理解

          1、課本P75探索,問:與有什么關系?你能解釋嗎?

          2、正弦函數(shù)定義:在Rt△ABC中,∠C=900,把銳角A的`對邊與斜邊的比叫做∠A的正弦,記作sinA,即sinA=

          對定義的幾點說明:

          1、sinA是一個完整的符號,表示∠A的正切習慣上省略“∠”的符號。

          2、本章我們只研究銳角∠A的正弦。

          3、sinA的范圍:0

          設計意圖:數(shù)學教學論指出,數(shù)學概念要明確其內(nèi)涵和外延(條件、結(jié)論、應用范圍等),通過對銳角正弦定義闡述,使學生的認知結(jié)構(gòu)得到優(yōu)化,知識體系得到完善,使學生的數(shù)學理解又一次突破思維的難點。

          通過前面的學習,學生已基本把握了本節(jié)課所要學習的內(nèi)容,此時,他們急于尋找一塊用武之地,以展示自我,體驗成功,于是我把學生引入到下一環(huán)節(jié)。

          (三)自主展示(強化訓練,鞏固雙基)

          1、(例1課本P76)已知:在Rt△ABC中,∠C=900,根據(jù)圖中數(shù)據(jù)

          求sinA和sinB

          2、判斷對錯(學生口答)

          (1)若銳角∠A=∠B,則sinA=sinB ( )

         。2)sin600=sin300+sin300 ( )

          3、如圖,將Rt△ABC各邊擴大100倍,則tanA的值( )

          A。擴大100倍B。縮小100倍C。不變D。不確定

          4、如圖,平面直角坐標系中點P(3,— 4),OP與x軸的夾角為∠1,求sin∠1的值。

          設計意圖:幾道例題及練習題由淺入深、由易到難、各有側(cè)重,其中例1……例2……,體現(xiàn)新課標提出的讓不同的學生在數(shù)學上得到不同發(fā)展的教學理念。這一環(huán)節(jié)總的設計意圖是反饋教學,內(nèi)化知識。

         。ㄋ模┳灾魍卣梗ㄌ岣呱A)

          1、課本習題28。1第1、2、題;

          2、選做題:已知:在Rt△ABC中,∠C=900,sinA=,周長為60,求:斜邊AB的長?

          以作業(yè)的鞏固性和發(fā)展性為出發(fā)點,我設計了必做題和選做題,必做題是對本節(jié)課內(nèi)容的一個反饋,選做題是對本節(jié)課知識的一個延伸?偟脑O計意圖是反饋教學,鞏固提高。

          (五)自主評價(小結(jié)歸納,拓展深化)

          我的理解是,小結(jié)歸納不應該僅僅是知識的簡單羅列,而應該是優(yōu)化認知結(jié)構(gòu),完善知識體系的一種有效手段,為充分發(fā)揮學生的主題作用,從學習的知識、方法、體驗是那個方面進行歸納,我設計了這么三個問題:

         、偻ㄟ^本節(jié)課的學習,你學會了哪些知識;

         、谕ㄟ^本節(jié)課的學習,你最大的體驗是什么;

         、弁ㄟ^本節(jié)課的學習,你掌握了哪些學習數(shù)學的方法?

          以上幾個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學生的交流互動,在教師的整體調(diào)控下,學生通過動腦思考、層層遞進,對知識的理解逐步深入,為了使課堂效益達到最佳狀態(tài),我設計以下問題加以追問:

          1、sinA能為負嗎?

          2、比較sin450和sin300的大小?

          設計要求:(1)先學生獨立思考后小組內(nèi)探究

          (2)各組交流展示探究結(jié)果,并且組內(nèi)或各組之間自主評價。

          設計意圖:

          (1)有一定難度需要學生進行合作探究,有利于培養(yǎng)學生善于反思的好習慣。

         。2)學生通過互評自評,可以使學生全面了解自己的學習過程,感受自己的成長和進步,同時促進學生對學習及時進行反思,為教師全面了解學生的學習狀況,改進教學,實施因材施教提供重要依據(jù)。我的說課到此結(jié)束,敬請各位老師批評、指正,謝謝!

          教學反思

          1。本教學設計以直角三角形為主線,力求體現(xiàn)生活化課堂的理念,讓學生在經(jīng)歷“問題情境——形成概念——應用拓展——反思提高”的基本過程中,體驗知識間的內(nèi)在聯(lián)系,讓學生感受探究的樂趣,使學生在學中思,在思中學。

          2。在教學過程中,重視過程,深化理解,通過學生的主動探究來體現(xiàn)他們的主體地位,教師是通過對學生參與學習的啟發(fā)、調(diào)整、激勵來體現(xiàn)自己的引導作用,對學生的主體意識和合作交流的能力起著積極作用。

          3。正弦是生活中應用較廣泛的三角函數(shù)。因而在本節(jié)課的設計中力求貼近生活。又從意大利比薩斜塔提煉出了數(shù)學問題,讓學生體會學數(shù)學、用數(shù)學的樂趣。

        高中數(shù)學函數(shù)教案3

          教學目標

          知識目標:初步理解增函數(shù)、減函數(shù)、函數(shù)的單調(diào)性、單調(diào)區(qū)間的概念,并掌握判斷一些簡單函數(shù)單調(diào)性的方法。

          能力目標:啟發(fā)學生能夠發(fā)現(xiàn)問題和提出問題,學會分析問題和創(chuàng)造地解決問題;通過觀察——猜想——推理——證明這一重要的思想方法,進一步培養(yǎng)學生的邏輯推理能力和創(chuàng)新意識。

          德育目標:在揭示函數(shù)單調(diào)性實質(zhì)的同時進行辯證唯物主義思想教育。

          教學重點:函數(shù)單調(diào)性的有關概念的理解

          教學難點:利用函數(shù)單調(diào)性的概念判斷或證明函數(shù)單調(diào)性

          教具:多媒體課件、實物投影儀

          教學過程:

          一、創(chuàng)設情境,導入課題

          [引例1]如圖為20xx年黃石市元旦24小時內(nèi)的氣溫變化圖.觀察這張氣溫變化圖:

          問題1:氣溫隨時間的增大如何變化?

          問題2:怎樣用數(shù)學語言來描述“隨著時間的增大氣溫逐漸升高”這一特征?

          [引例2]觀察二次函數(shù)

          的圖象,從左向右函數(shù)圖象如何變化?并總結(jié)歸納出函數(shù)圖象中自變量x和y值之間的變化規(guī)律。

          結(jié)論:

         。1)y軸左側(cè):逐漸下降;y軸右側(cè):逐漸上升;

          (2)左側(cè)y隨x的增大而減。挥覀(cè)y隨x的增大而增大。

          上面的結(jié)論是直觀地由圖象得到的。還有很多函數(shù)具有這種性質(zhì),因此,我們有必要對函數(shù)這種性質(zhì)作更進一步的一般性的討論和研究。

          二、給出定義,剖析概念

         、俣x:對于函數(shù)f(x)的定義域I內(nèi)某個區(qū)間上的.任意兩個自變量的值

          ②單調(diào)性與單調(diào)區(qū)間

          若函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),則就說函數(shù)y=f(x)在這一區(qū)間具有單調(diào)性,這一區(qū)間叫做函數(shù)y=f(x)的單調(diào)區(qū)間.此時也說函數(shù)是這一區(qū)間上的單調(diào)函數(shù).由此可知單調(diào)區(qū)間分為單調(diào)增區(qū)間和單調(diào)減區(qū)間。

          注意:

         。1)函數(shù)單調(diào)性的幾何特征:在單調(diào)區(qū)間上,增函數(shù)的圖象是上升的,減函數(shù)的圖象是下降的。當x1 f(x2)y隨x增大而減小。幾何解釋:遞增函數(shù)圖象從左到右逐漸上升;遞減函數(shù)圖象從左到右逐漸下降。

         。2)函數(shù)單調(diào)性是針對某一個區(qū)間而言的,是一個局部性質(zhì)。

          判斷1:有些函數(shù)在整個定義域內(nèi)是單調(diào)的;有些函數(shù)在定義域內(nèi)的部分區(qū)間上是增函數(shù),在部分區(qū)間上是減函數(shù);有些函數(shù)是非單調(diào)函數(shù),如常數(shù)函數(shù)。

          判斷2:定義在R上的函數(shù)f (x)滿足f (2)> f(1),則函數(shù)f (x)在R上是增函數(shù)。

          函數(shù)的單調(diào)性是函數(shù)在一個單調(diào)區(qū)間上的“整體”性質(zhì),不能用特殊值代替。

          訓練:畫出下列函數(shù)圖像,并寫出單調(diào)區(qū)間:

          三、范例講解,運用概念

          具有任意性

          例1:如圖,是定義在閉區(qū)間[-5,5]上的函數(shù)出函數(shù)的單調(diào)區(qū)間,以及在每一單調(diào)區(qū)間上,函數(shù)的圖象,根據(jù)圖象說是增函數(shù)還減

          注意:

         。1)函數(shù)的單調(diào)性是對某一個區(qū)間而言的,對于單獨的一點,由于它的函數(shù)值是唯一確定的常數(shù),因而沒有增減變化,所以不存在單調(diào)性問題。

         。2)在區(qū)間的端點處若有定義,可開可閉,但在整個定義域內(nèi)要完整。

          例2:判斷函數(shù)f (x) =3x+2在R上是增函數(shù)還是減函數(shù)?并證明你的結(jié)論。

          分析證明中體現(xiàn)函數(shù)單調(diào)性的定義。

          利用定義證明函數(shù)單調(diào)性的步驟。

        高中數(shù)學函數(shù)教案4

          一、教學目標

          (一)知識教學點

          知道一次函數(shù)的圖象是直線,了解直線方程的概念,掌握直線的傾斜角和斜率的概念以及直線的斜率公式。

          (二)能力訓練點

          通過對研究直線方程的必要性的分析,培養(yǎng)學生分析、提出問題的能力;通過建立直線上的點與直線的方程的解的一一對應關系、方程和直線的對應關系,培養(yǎng)學生的知識轉(zhuǎn)化、遷移能力。

          (三)學科滲透點

          分析問題、提出問題的思維品質(zhì),事物之間相互聯(lián)系、互相轉(zhuǎn)化的辯證唯物主義思想。

          二、教材分析

          1。重點:通過對一次函數(shù)的研究,學生對直線的方程已有所了解,要對進一步研究直線方程的內(nèi)容進行介紹,以激發(fā)學生學習這一部分知識的興趣;直線的傾斜角和斜率是反映直線相對于x軸正方向的傾斜程度的,是研究兩條直線位置關系的重要依據(jù),要正確理解概念;斜率公式要在熟練運用上多下功夫。

          2。難點:一次函數(shù)與其圖象的對應關系、直線方程與直線的對應關系是難點。由于以后還要專門研究曲線與方程,對這一點只需一般介紹就可以了。

          3。疑點:是否有繼續(xù)研究直線方程的必要?

          三、活動設計

          啟發(fā)、思考、問答、討論、練習。

          四、教學過程

          (一)復習一次函數(shù)及其圖象

          已知一次函數(shù)y=2x+1,試判斷點A(1,2)和點B(2,1)是否在函數(shù)圖象上。初中我們是這樣解答的`:∵A(1,2)的坐標滿足函數(shù)式,

          ∴點A在函數(shù)圖象上。

          ∵B(2,1)的坐標不滿足函數(shù)式,∴點B不在函數(shù)圖象上。

          現(xiàn)在我們問:這樣解答的理論依據(jù)是什么?(這個問題是本課的難點,要給足夠的時間讓學生思考、體會。)討論作答:判斷點A在函數(shù)圖象上的理論依據(jù)是:滿足函數(shù)關系式的點都在函數(shù)的圖象上;判斷點B不在函數(shù)圖象上的理論依據(jù)是:函數(shù)圖象上的點的坐標應滿足函數(shù)關系式。簡言之,就是函數(shù)圖象上的點與滿足函數(shù)式的有序數(shù)對具有一一對應關系。

          (二)直線的方程

          引導學生思考:直角坐標平面內(nèi),一次函數(shù)的圖象都是直線嗎?直線都是一次函數(shù)的圖象嗎?

          一次函數(shù)的圖象是直線,直線不一定是一次函數(shù)的圖象,如直線x=a連函數(shù)都不是。一次函數(shù)y=kx+b,x=a都可以看作二元一次方程,這個方程的解和它所表示的直線上的點一一對應。

          以一個方程的解為坐標的點都是某條直線上的點;反之,這條直線上的點的坐標都是這個方程的解。這時,這個方程就叫做這條直線的方程;這條直線就叫做這個方程的直線。

          上面的定義可簡言之:(方程)有一個解(直線上)就有一個點;(直線上)有一個點(方程)就有一個解,即方程的解與直線上的點是一一對應的。

          顯然,直線的方程是比一次函數(shù)包含對象更廣泛的一個概念。

          (三)進一步研究直線方程的必要性

          通過研究一次函數(shù),我們對直線的方程已有了一些了解,但有些問題還沒有完全解決,如y=kx+b中k的幾何含意、已知直線上一點和直線的方向怎樣求直線的方程、怎樣通過直線的方程來研究兩條直線的位置關系等都有待于我們繼續(xù)研究。

          (四)直線的傾斜角

          一條直線l向上的方向與x軸的正方向所成的最小正角,叫做這條直線的傾斜角,如圖1-21中的α。特別地,當直線l和x軸平行時,我們規(guī)定它的傾斜角為0°,因此,傾斜角的取值范圍是0°≤α<180°。

          直線傾斜角角的定義有下面三個要點:

          (1)以x軸正向作為參考方向(始邊);

          (2)直線向上的方向作為終邊;

          (3)最小正角。

          按照這個定義不難看出:直線與傾角是多對一的映射關系。

          (五)直線的斜率

          傾斜角不是90°的直線。它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示,即

          直線與斜率之間的對應不是映射,因為垂直于x軸的直線沒有斜率。

          (六)過兩點的直線的斜率公式

          在坐標平面上,已知兩點P1(x1,y1)、P2(x2,y2),由于兩點可以確定一條直線,直線P1P2就是確定的。當x1≠x2時,直線的傾角不等于90°時,這條直線的斜率也是確定的。怎樣用P2和P1的坐標來表示這條直線的斜率?

          P2分別向x軸作垂線P1M1、P2M2,再作P1Q⊥P2M,垂足分別是M1、M2、Q。那么:

          α=∠QP1P2(圖1-22甲)或α=π-∠P2P1Q(圖1-22乙)

          綜上所述,我們得到經(jīng)過點P1(x1,y1)、P2(x2,y2)兩點的直線的斜率公式:

          對于上面的斜率公式要注意下面四點:(1)當x1=x2時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

          (2)k與P1、P2的順序無關;

          (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

          (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

          (七)例題

          例1如圖1-23,直線l1的傾斜角α1=30°,直線l2⊥l1,求l1、l2的斜率。

          ∵l2的傾斜角α2=90°+30°=120°,

          本例題是用來復習鞏固直線的傾斜角和斜率以及它們之間的關系的,可由學生課堂練習,學生演板。

          例2求經(jīng)過A(-2,0)、B(-5,3)兩點的直線的斜率和傾斜角。

          ∴tgα=-1。∵0°≤α<180°,∴α=135°。

          因此,這條直線的斜率是-1,傾斜角是135°。

          講此例題時,要進一步強調(diào)k與P1P2的順序無關,直線的斜率和傾斜角可通過直線上的兩點的坐標求得。

          (八)課后小結(jié)

          (1)直線的方程的傾斜角的概念。(2)直線的傾斜角和斜率的概念。

          (3)直線的斜率公式。

          五、布置作業(yè)

          1。(練習

          六、板書設計

          直線方程的點斜式、斜截式、兩點式和截距式

        高中數(shù)學函數(shù)教案5

          整體設計

          教學分析

          本節(jié)通過圖象變換,揭示參數(shù)φ、ω、A變化時對函數(shù)圖象的形狀和位置的影響,討論函數(shù)y=Asin(ωx+φ)的圖象與正弦曲線的關系,以及A、ω、φ的物理意義,并通過圖象的變化過程,進一步理解正、余弦函數(shù)的性質(zhì),它是研究函數(shù)圖象變換的一個延伸,也是研究函數(shù)性質(zhì)的一個直觀反映.這節(jié)是本章的一個難點.

          如何經(jīng)過變換由正弦函數(shù)y=sinx來獲取函數(shù)y=Asin(ωx+φ)的圖象呢?通過引導學生對函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律的探索,讓學生體會到由簡單到復雜、由特殊到一般的化歸思想;并通過對周期變換、相位變換先后順序調(diào)整后,將影響圖象變換這一難點的突破,讓學生學會抓住問題的主要矛盾來解決問題的基本思想方法;通過對參數(shù)φ、ω、A的分類討論,讓學生深刻認識圖象變換與函數(shù)解析式變換的內(nèi)在聯(lián)系.

          本節(jié)課建議充分利用多媒體,倡導學生自主探究,在教師的引導下,通過圖象變換和“五點”作圖法,正確找出函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律,這也是本節(jié)課的重點所在.

          三維目標

          1.通過學生自主探究,理解φ對y=sin(x+φ)的圖象的影響,ω對y=sin(ωx+φ)的圖象的影響,A對y=Asin(ωx+φ)的圖象的影響.

          2.通過探究圖象變換,會用圖象變換法畫出y=Asin(ωx+φ)圖象的簡圖,并會用“五點法”畫出函數(shù)y=Asin(ωx+φ)的簡圖.

          3.通過學生對問題的自主探究,滲透數(shù)形結(jié)合思想.培養(yǎng)學生的獨立意識和獨立思考能力.學會合作意識,培養(yǎng)學生理解動與靜的辯證關系,善于從運動的觀點觀察問題,培養(yǎng)學生解決問題抓主要矛盾的思想.在問題逐步深入的研究中喚起學生追求真理,樂于創(chuàng)新的情感需求,引發(fā)學生渴求知識的強烈愿望,樹立科學的人生觀、價值觀.

          重點難點

          教學重點:用參數(shù)思想分層次、逐步討論字母φ、ω、A變化時對函數(shù)圖象的形狀和位置的影響,掌握函數(shù)y=Asin(ωx+φ)圖象的簡圖的作法.

          教學難點:由正弦曲線y=sinx到y(tǒng)=Asin(ωx+φ)的圖象的變換過程.

          課時安排

          2課時

          教學過程

          第1課時

          導入新課

          思路1.(情境導入)在物理和工程技術的許多問題中,都要遇到形如y=Asin(ωx+φ)的函數(shù)(其中A、ω、φ是常數(shù)).例如,物體做簡諧振動時位移y與時間x的關系,交流電中電流強度y與時間x的關系等,都可用這類函數(shù)來表示.這些問題的實際意義往往可從其函數(shù)圖象上直觀地看出,因此,我們有必要畫好這些函數(shù)的圖象.揭示課題:函數(shù)y=Asin(ωx+φ)的圖象.

          思路2.(直接導入)從解析式來看,函數(shù)y=sinx與函數(shù)y=Asin(ωx+φ)存在著怎樣的關系?從圖象上看,函數(shù)y=sinx與函數(shù)y=Asin(ωx+φ)存在著怎樣的關系?接下來,我們就分別探索φ、ω、A對y=Asin(ωx+φ)的圖象的影響.

          推進新課

          新知探究

          提出問題

          ①觀察交流電電流隨時間變化的圖象,它與正弦曲線有何關系?你認為可以怎樣討論參數(shù)φ、ω、A對y=Asin(ωx+φ)的圖象的影響?

          ②分別在y=sinx和y=sin(x+)的圖象上各恰當?shù)剡x取一個縱坐標相同的點,同時移動這兩點并觀察其橫坐標的變化,你能否從中發(fā)現(xiàn),φ對圖象有怎樣的影響?對φ任取不同的值,作出y=sin(x+φ)的圖象,看看與y=sinx的圖象是否有類似的關系?

         、壅埬愀爬ㄒ幌氯绾螐恼仪出發(fā),經(jīng)過圖象變換得到y(tǒng)=sin(x+φ)的圖象.

         、苣隳苡蒙鲜鲅芯繂栴}的方法,討論探究參數(shù)ω對y=sin(ωx+φ)的圖象的影響嗎?為了作圖的方便,先不妨固定為φ=,從而使y=sin(ωx+φ)在ω變化過程中的比較對象固定為y=sin(x+).

         、蓊愃频,你能討論一下參數(shù)A對y=sin(2x+)的圖象的影響嗎?為了研究方便,不妨令ω=2,φ=.此時,可以對A任取不同的值,利用計算器或計算機作出這些函數(shù)在同一坐標系中的圖象,觀察它們與y=sin(2x+)的圖象之間的關系.

          ⑥可否先伸縮后平移?怎樣先伸縮后平移的?

          活動:問題①,教師先引導學生閱讀課本開頭一段,教師引導學生思考研究問題的方法.同時引導學生觀察y=sin(x+)圖象上點的坐標和y=sinx的圖象上點的坐標的關系,獲得φ對y=sin(x+φ)的圖象的影響的具體認識.然后通過計算機作動態(tài)演示變換過程,引導學生觀察變化過程中的不變量,得出它們的橫坐標總是相差的結(jié)論.并讓學生討論探究.最后共同總結(jié)出:先分別討論參數(shù)φ、ω、A對y=Asin(ωx+φ)的圖象的影響,然后再整合.

          圖1

          問題②,由學生作出φ取不同值時,函數(shù)y=sin(x+φ)的圖象,并探究它與y=sinx的圖象的關系,看看是否仍有上述結(jié)論.教師引導學生獲得更多的關于φ對y=sin(x+φ)的圖象影響的經(jīng)驗.為了研究的.方便,不妨先取φ=,利用計算機作出在同一直角坐標系內(nèi)的圖象,如圖1,分別在兩條曲線上恰當?shù)剡x取一個縱坐標相同的點A、B,沿兩條曲線同時移動這兩點,并保持它們的縱坐標相等,觀察它們橫坐標的關系.可以發(fā)現(xiàn),對于同一個y值,y=sin(x+)的圖象上的點的橫坐標總是等于y=sinx的圖象上對應點的橫坐標減去.這樣的過程可通過多媒體課件,使得圖中A、B兩點動起來(保持縱坐標相等),在變化過程中觀察A、B的坐標、xB-xA、|AB|的變化情況,這說明y=sin(x+)的圖象,可以看作是把正弦曲線y=sinx上所有的點向左平移個單位長度而得到的,同時多媒體動畫演示y=sinx的圖象向左平移使之與y=sin(x+)的圖象重合的過程,以加深學生對該圖象變換的直觀理解.再取φ=,用同樣的方法可以得到y(tǒng)=sinx的圖象向右平移后與y=sin(x)的圖象重合.

          如果再變換φ的值,類似的情況將不斷出現(xiàn),這時φ對y=sin(x+φ)的圖象的影響的鋪墊已經(jīng)完成,學生關于φ對y=sin(x+φ)的圖象的影響的一般結(jié)論已有了大致輪廓.

          問題③,引導學生通過自己的研究認識φ對y=sin(x+φ)的圖象的影響,并概括出一般結(jié)論:

          y=sin(x+φ)(其中φ≠0)的圖象,可以看作是把正弦曲線上所有的點向左(當φ>0時)或向右(當φ<0時)平行移動|φ|個單位長度而得到.

          問題④,教師指導學生獨立或小組合作進行探究,教師作適當指導.注意提醒學生按照從具體到一般的思路得出結(jié)論,具體過程是:(1)以y=sin(x+)為參照,把y=sin(2x+)的圖象與y=sin(x+)的圖象作比較,取點A、B觀察.發(fā)現(xiàn)規(guī)律:

          圖2

          如圖2,對于同一個y值,y=sin(2x+)的圖象上點的橫坐標總是等于y=sin(x+)的圖象上對應點的倍.教學中應當非常認真地對待這個過程,展示多媒體課件,體現(xiàn)伸縮變換過程,引導學生在自己獨立思考的基礎上給出規(guī)律.(2)取ω=,讓學生自己比較y=sin(x+)的圖象與y=sin(x+)圖象.教學中可以讓學生通過作圖、觀察和比較圖象、討論等活動,得出結(jié)論:把y=sin(x+)圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),就得到y(tǒng)=sin(x+)的圖象.

          當取ω為其他值時,觀察相應的函數(shù)圖象與y=sin(x+)的圖象的關系,得出類似的結(jié)論.這時ω對y=sin(ωx+φ)的圖象的影響的鋪墊已經(jīng)完成,學生關于ω對y=sin(ωx+φ)的圖象的影響的一般結(jié)論已有了大致輪廓.教師指導學生將上述結(jié)論一般化,歸納y=sin(ωx+φ)的圖象與y=sin(x+φ)的圖象之間的關系,得出結(jié)論:

          函數(shù)y=sin(ωx+φ)的圖象可以看作是把y=sin(x+φ)的圖象上所有點的橫坐標縮短(當ω>1時)或伸長(當0<ω<1時)到原來的倍(縱坐標不變)而得到.

          圖3

          問題⑤,教師點撥學生,探索A對圖象的影響的過程,與探索ω、φ對圖象的影響完全一致,鼓勵學生獨立完成.學生觀察y=3sin(2x+)的圖象和y=sin(2x+)的圖象之間的關系.如圖3,分別在兩條曲線上各取一個橫坐標相同的點A、B,沿兩條曲線同時移動這兩點,并使它們的橫坐標保持相同,觀察它們縱坐標的關系.可以發(fā)現(xiàn),對于同一個x值,函數(shù)y=3sin(2x+)的圖象上的點的縱坐標等于函數(shù)y=sin(2x+)的圖象上點的縱坐標的3倍.這說明,y=3sin(2x+)的圖象,可以看作是把y=sin(2x+)的圖象上所有的點的縱坐標伸長到原來的3倍(橫坐標不變)而得到的通過實驗可以看到,A取其他值時也有類似的情況.有了前面兩個參數(shù)的探究,學生得出一般結(jié)論:

          函數(shù)y=Asin(ωx+φ)(其中A>0,ω>0)的圖象,可以看作是把y=sin(ωx+φ)上所有點的縱坐標伸長(當A>1時)或縮短(當0 由此我們得到了參數(shù)φ、ω、A對函數(shù)y=Asin(ωx+φ)(其中A>0,ω>0)的圖象變化的影響情況.一般地,函數(shù)y=Asin(ωx+φ)(其中A>0,ω>0)的圖象,可以看作用下面的方法得到:先畫出函數(shù)y=sinx的圖象;再把正弦曲線向左(右)平移|φ|個單位長度,得到函數(shù)y=sin(x+φ)的圖象;然后使曲線上各點的橫坐標變?yōu)樵瓉淼谋,得到函?shù)y=sin(ωx+φ)的圖象;最后把曲線上各點的縱坐標變?yōu)樵瓉淼腁倍,這時的曲線就是函數(shù)y=Asin(ωx+φ)的圖象.

         、抟龑W生類比得出.其順序是:先伸縮橫坐標(或縱坐標),再伸縮縱坐標(或橫坐標),最后平移.但學生很容易在第三步出錯,可在圖象變換時,對比變換,以引起學生注意,并體會一些細節(jié).

          由此我們完成了參數(shù)φ、ω、A對函數(shù)圖象影響的探究.教師適時地引導學生回顧思考整個探究過程中體現(xiàn)的思想:由簡單到復雜,由特殊到一般的化歸思想.

          討論結(jié)果:①把從函數(shù)y=sinx的圖象到函數(shù)y=Asin(ωx+φ)的圖象的變換過程,分解為先分別考察參數(shù)φ、ω、A對函數(shù)圖象的影響,然后整合為對y=Asin(ωx+φ)的整體考察.

         、诼.

          ③圖象左右平移,φ影響的是圖象與x軸交點的位置關系.

         、芸v坐標不變,橫坐標伸縮,ω影響了圖象的形狀.

          ⑤橫坐標不變,縱坐標伸縮,A影響了圖象的形狀.

         、蘅梢.先伸縮后平移(提醒學生盡量先平移),但要注意第三步的平移.

          y=sinx的圖象

          得y=Asinx的圖象

          得y=Asin(ωx)的圖象

          得y=Asin(ωx+φ)的圖象.

          規(guī)律總結(jié):

          先平移后伸縮的步驟程序如下:

          y=sinx的圖象

          得y=sin(x+φ)的圖象

          得y=sin(ωx+φ)的圖象

          得y=Asin(ωx+φ)的圖象.

          先伸縮后平移的步驟程序(見上).

          應用示例

          例1 畫出函數(shù)y=2sin(x-)的簡圖.

          活動:本例訓練學生的畫圖基本功及鞏固本節(jié)所學知識方法.

          (1)引導學生從圖象變換的角度來探究,這里的φ=,ω=,A=2,鼓勵學生根據(jù)本節(jié)所學內(nèi)容自己寫出得到y(tǒng)=2sin(x-)的圖象的過程:只需把y=sinx的曲線上所有點向右平行移動個單位長度,得到y(tǒng)=sin(x-)的圖象;再把后者所有點的橫坐標伸長到原來的3倍(縱坐標不變),得到y(tǒng)=sin(x-)的圖象;再把所得圖象上所有點的縱坐標伸長到原來的2倍(橫坐標不變)而得到函數(shù)y=2sin(x-)的圖象,如圖4所示.

          圖4

          (2)學生完成以上變換后,為了進一步掌握圖象的變換規(guī)律,教師可引導學生作換個順序的圖象變換,要讓學生自己獨立完成,仔細體會變化的實質(zhì).

          (3)學生完成以上兩種變換后,就得到了兩種畫函數(shù)y=2sin(x-),簡圖的方法,教師再進一步的啟發(fā)學生能否利用“五點法”作圖畫出函數(shù)y=2sin(x-)的簡圖,并鼓勵學生動手按“五點法”作圖的要求完成這一畫圖過程.

          解:方法一:畫出函數(shù)y=2sin(x-)簡圖的方法為

          y=sinxy=sin(x-)

          y=sin(x-)

          y=2sin(x-).

          方法二:畫出函數(shù)y=2sin(x-)簡圖的又一方法為

          y=sinxy=sinx

          y=2sinxy=2sin(x-)=2sin(x-).

          方法三:(利用“五點法”作圖——作一個周期內(nèi)的圖象)

          令X=x-,則x=3(X+).列表:

          X

          π

          2π

          X

          2π

          5π

          Y

          2

          -2

          描點畫圖,如圖5所示.

          圖5

          點評:學生獨立完成以上探究后,對整個的圖象變換及“五點法”作圖會有一個新的認識.但教師要強調(diào)學生注意方法二中第三步的變換,左右平移變換只對“單個”x而言,這點是個難點,學生極易出錯.對于“五點法”作圖,要強調(diào)這五個點應該是使函數(shù)取最大值、最小值以及曲線與x軸相交的點.找出它們的方法是先作變量代換,設X=ωx+φ,再用方程思想由X取0,,π,,2π來確定對應的x值.

          變式訓練

          1.20xx山東威海一模統(tǒng)考,12 要得到函數(shù)y=sin(2x+)的圖象,只需將函數(shù)y=sinx的圖象( )

          A.向左平移個單位,再把所有點的橫坐標伸長到原來的2倍,縱坐標不變

          B.向右平移個單位,再把所有點的橫坐標伸長到原來的2倍,縱坐標不變

          C.向左平移個單位,再把所有點的橫坐標縮短到原來的倍,縱坐標不變

          D.向右平移個單位,再把所有點的橫坐標縮短到原來的倍,縱坐標不變

          答案:C

          2.20xx山東菏澤一模統(tǒng)考,7 要得到函數(shù)y=2sin(3x)的圖象,只需將函數(shù)y=2sin3x的圖象( )

          A.向左平移個單位 B.向右平移個單位

          C.向左平移個單位 D.向右平移個單位

          答案:D

          例2 將y=sinx的圖象怎樣變換得到函數(shù)y=2sin(2x+)+1的圖象?

          活動:可以用兩種圖象變換得到.但無論哪種變換都是針對字母x而言的由y=sin2x的圖象向左平移個單位長度得到的函數(shù)圖象的解析式是y=sin2(x+)而不是y=sin(2x+),把y=sin(x+)的圖象的橫坐標縮小到原來的,得到的函數(shù)圖象的解析式是y=sin(2x+),而不是y=sin2(x+).

          解:方法一:①把y=sinx的圖象沿x軸向左平移個單位長度,得y=sin(x+)的圖象;②將所得圖象的橫坐標縮小到原來的,得y=sin(2x+)的圖象;③將所得圖象的縱坐標伸長到原來的2倍,得y=2sin(2x+)的圖象;④最后把所得圖象沿y軸向上平移1個單位長度得到y(tǒng)=2sin(2x+)+1的圖象.

          方法二:①把y=sinx的圖象的縱坐標伸長到原來的2倍,得y=2sinx的圖象;②將所得圖象的橫坐標縮小到原來的,得y=2sin2x的圖象;③將所得圖象沿x軸向左平移個單位長度,得y=2sin2(x+)的圖象;④最后把圖象沿y軸向上平移1個單位長度得到y(tǒng)=2sin(2x+)+1的圖象.

          點評:三角函數(shù)圖象變換是個難點.本例很好地鞏固了本節(jié)所學知識方法,關鍵是教師引導學生理清變換思路和各種變換對解析式的影響.

          變式訓練

          1.將y=sin2x的圖象怎樣變換得到函數(shù)y=cos(2x-)的圖象?

          解:y=sin2x=cos(-2x)=cos(2x-).

          在y=cos(2x-)中以x-a代x,有y=cos[2(x-a)-]=cos(2x-2a-).根據(jù)題意,有2x-2a-=2x-,得a=-.

          所以將y=sin2x的圖象向左平移個單位長度可得到函數(shù)y=cos(2x-)的圖象.

          2.如何由函數(shù)y=3sin(2x+)的圖象得到函數(shù)y=sinx的圖象?

          方法一:y=3sin(2x+)y=sin(2x+)

          y=sin(x+)y=sinx.

          方法二:y=3sin(2x+)=3sin2(x+)y=3sin2x

          y=sin2xy=sinx.

          3.20xx山東高考,4 要得到函數(shù)y=sinx的圖象,只需將函數(shù)y=cos(x-)的圖象( )

          A.向右平移個單位 B.向右平移個單位

          C.向左平移個單位 D.向左平移個單位

          答案:A

          知能訓練

          課本本節(jié)練習1、2.

          解答:

          1.如圖6.

          點評:第(1)(2)(3)小題分別研究了參數(shù)A、ω、φ對函數(shù)圖象的影響,第(4)小題則綜合研究了這三個參數(shù)對y=Asin(ωx+φ)圖象的影響.

          2.(1)C;(2)B;(3)C.

          點評:判定函數(shù)y=A1sin(ω1x+φ1)與y=A2sin(ω2x+φ2)的圖象間的關系.為了降低難度,在A1與A2,ω1與ω2,φ1與φ2中,每題只有一對數(shù)值不同.

          課堂小結(jié)

          1.由學生自己回顧總結(jié)本節(jié)課探究的知識與方法,以及對三角函數(shù)圖象及三角函數(shù)解析式的新的認識,使本節(jié)的總結(jié)成為學生凝練提高的平臺.

          2.教師強調(diào)本節(jié)課借助于計算機討論并畫出y=Asin(ωx+)的圖象,并分別觀察參數(shù)φ、ω、A對函數(shù)圖象變化的影響,同時通過具體函數(shù)的圖象的變化,領會由簡單到復雜、特殊到一般的化歸思想.

          作業(yè)

          1.用圖象變換的方法在同一坐標系內(nèi)由y=sinx的圖象畫出函數(shù)y=sin(-2x)的圖象.

          2.要得到函數(shù)y=cos(2x-)的圖象,只需將函數(shù)y=sin2x的圖象通過怎樣的變換得到?

          3.指出函數(shù)y=cos2x+1與余弦曲線y=cosx的關系.

          解答:1.∵y=sin(-2x)=sin2x,作圖過程:

          y=sinxy=sin2xy=sin2x.

          2.∵y=cos(2x-)=sin[+(2x-)]=sin(2x+)=sin2(x+),

          ∴將曲線y=sin2x向左平移個單位長度即可.

          3.∵y=cos2x+1,

          ∴將余弦曲線y=cosx上各點的橫坐標縮短到原來的倍,再將所得曲線上所有的點向上平移1個單位長度,即可得到曲線y=cos2x+1.

          設計感想

          1.本節(jié)圖象較多,學生活動量大,因此本節(jié)設計的主要指導思想是充分利用信息技術工具,從整體上探究參數(shù)φ、ω、A對函數(shù)y=Asin(ωx+φ)圖象整體變化的影響.這符合新課標精神,符合教育課改新理念.現(xiàn)代教育要求學生在富有的學習動機下主動學習,合作探究,教師僅是學生主動學習的激發(fā)者和引導者.

          2.對于函數(shù)y=sinx的圖象與函數(shù)y=Asin(ωx+φ)的圖象間的變換,由于“平移變換”與“伸縮變換”在“順序”上的差別,直接會對圖象平移量產(chǎn)生影響,這點也是學習三角函數(shù)圖象變換的難點所在,設計意圖旨在通過對比讓學生領悟它們的異同.

          3.學習過程是一個認知過程,學生內(nèi)部的認知因素和學習情景的因素是影響學生認知結(jié)構(gòu)的變量.如果學生本身缺乏學習動機和原有的認知結(jié)構(gòu),外部的變量就不能發(fā)揮它們的作用,但外部變量所提供的刺激也能使內(nèi)部能力引起學習.

          (設計者:張云全)

          第2課時

          導入新課

          思路1.(直接導入)上一節(jié)課中,我們分別探索了參數(shù)φ、ω、A對函數(shù)y=Asin(ωx+φ)的圖象的影響及“五點法”作圖.現(xiàn)在我們進一步熟悉掌握函數(shù)y=Asin(ωx+φ)(其中A>0,ω>0,φ≠0)的圖象變換及其物理背景.由此展開新課.

          思路2.(復習導入)請同學們分別用圖象變換及“五點作圖法”畫出函數(shù)y=4sin(x-)的簡圖,學生動手畫圖,教師適時的點撥、糾正,并讓學生回答有關的問題.在學生回顧與復習上節(jié)所學內(nèi)容的基礎上展開新課.

          推進新課

          新知探究

          提出問題

         、僭谏瞎(jié)課的學習中,用“五點作圖法”畫函數(shù)y=Asin(ωx+φ)的圖象時,列表中最關鍵的步驟是什么?

          ②(1)把函數(shù)y=sin2x的圖象向_____平移_____個單位長度得到函數(shù)y=sin(2x-)的圖象;(2)把函數(shù)y=sin3x的圖象向_______平移_______個單位長度得到函數(shù)y=sin(3x+)的圖象;(3)如何由函數(shù)y=sinx的圖象通過變換得到函數(shù)y=sin(2x+)的圖象?

         、蹖⒑瘮(shù)y=f(x)的圖象上各點的橫坐標伸長到原來的2倍,再向左平移個單位長度,所得到的曲線是y=sinx的圖象,試求函數(shù)y=f(x)的解析式.

          對這個問題的求解現(xiàn)給出以下三種解法,請說出甲、乙、丙各自解法的正誤.(多媒體出示各自解法)

          甲生:所給問題即是將y=sinx的圖象先向右平移個單位長度,得到y(tǒng)=sin(x-)的圖象,再將所得的圖象上所有點的橫坐標縮短到原來的,得到y(tǒng)=sin(2x-),即y=cos2x的圖象,∴f(x)=cos2x.

          乙生:設f(x)=Asin(ωx+φ),將它的圖象上各點的橫坐標伸長到原來的2倍,得到y(tǒng)=Asin(x+φ)的圖象,再將所得的圖象向左平移個單位長度,得到y(tǒng)=Asin(x++φ)=sinx,∴A=,=1,+φ=0,

          即A=,ω=2,φ=-.∴f(x)=sin(2x-)=cos2x.

          丙生:設f(x)=Asin(ωx+φ),將它的圖象上各點的橫坐標伸長到原來的2倍,得到y(tǒng)=Asin(x+φ)的圖象,再將所得的圖象向左平移個單位長度,得到y(tǒng)=Asin[(x+)+φ]=Asin(x++φ)= sinx,

          ∴A=,=1,+φ=0.

          解得A=,ω=2,φ=-,

          ∴f(x)=sin(2x-)=cos2x.

          活動:問題①,復習鞏固已學三種基本變換,同時為導入本節(jié)課重、難點創(chuàng)設情境.讓學生回答并回憶A、ω、φ對函數(shù)y=Asin(ωx+φ)圖象變化的影響.引導學生回顧“五點作圖法”,既復習了舊知識,又為學生準確使用本節(jié)課的工具提供必要的保障.

          問題②,讓學生通過實例綜合以上兩種變換,再次回顧比較兩種方法平移量的區(qū)別和導致這一現(xiàn)象的根本原因,以此培養(yǎng)訓練學生變換的逆向思維能力,訓練學生對變換實質(zhì)的理解及使用誘導公式的綜合能力.

          問題③,甲生的解法是考慮以上變換的“逆變換”,即將以上變換倒過來,由y=sinx變換到y(tǒng)=f(x),解答正確.乙、丙兩名同學都是采用代換法,即設y=Asin(ωx+φ),然后按題設中的變換得到兩次變換后圖象的函數(shù)解析式,這種思路清晰,但值得注意的是:乙生的解答過程中存在實質(zhì)性的錯誤,就是將y=Asin(x+φ)的圖象向左平移個單位長度時,把y=Asin(x+φ)函數(shù)中的自變量x變成x+,應該變換成y=Asin[(x+)+φ],而不是變換成y=Asin(x++φ),雖然結(jié)果一樣,但這是巧合,丙同學的解答是正確的

          三角函數(shù)圖象的“逆變換”一定要注意其順序,比如甲生解題的過程中如果交換了順序就會出錯,故在對這種方法不是很熟練的情況下,用丙同學的解法較合適(即待定系數(shù)法).平移變換是對自變量x而言的,比如乙同學的變換就出現(xiàn)了這種錯誤.

          討論結(jié)果:①將ωx+φ看作一個整體,令其分別為0, ,π, ,2π.

         、(1)右, ;(2)左, ;(3)先y=sinx的圖象左移,再把所有點的橫坐標壓縮到原來的倍(縱坐標不變).

         、勐.

          提出問題

         、倩貞浳锢碇泻喼C運動的相關內(nèi)容,并閱讀本章開頭的簡諧運動的圖象,你能說出簡諧運動的函數(shù)關系嗎?

         、诨貞浳锢碇泻喼C運動的相關內(nèi)容,回答:振幅、周期、頻率、相位、初相等概念與A、ω、φ有何關系.

          活動:教師引導學生閱讀并適時點撥.通過讓學生回憶探究,建立與物理知識的聯(lián)系,了解常數(shù)A、ω、φ與簡諧運動的某些物理量的關系,得出本章開頭提到的“簡諧運動的圖象”所對應的函數(shù)解析式有如下形式:y=Asin(ωx+φ),x∈[0,+∞),其中A>0,ω>0.物理中,描述簡諧運動的物理量,如振幅、周期和頻率等都與這個解析式中的常數(shù)有關:A就是這個簡諧運動的振幅,它是做簡諧運動的物體離開平衡位置的最大距離;這個簡諧運動的周期是T=,這是做簡諧運動的物體往復運動一次所需要的時間;這個簡諧運動的頻率由公式f==給出,它是做簡諧運動的物體在單位時間內(nèi)往復運動的次數(shù);ωx+φ稱為相位;x=0時的相位φ稱為初相.

          討論結(jié)果:①y=Asin(ωx+φ),x∈[0,+∞),其中A>0,ω>0.

         、诼.

          應用示例

          例1 圖7是某簡諧運動的圖象.試根據(jù)圖象回答下列問題:

          (1)這個簡諧運動的振幅、周期和頻率各是多少?

          (2)從O點算起,到曲線上的哪一點,表示完成了一次往復運動?如從A點算起呢?

          (3)寫出這個簡諧運動的函數(shù)表達式.

          圖7

          活動:本例是根據(jù)簡諧運動的圖象求解析式.教師可引導學生再次回憶物理學中學過的相關知識,并提醒學生注意本課開始時探討的知識,思考y=Asin(ωx+φ)中的參數(shù)φ、ω、A在圖象上是怎樣反映的,要解決這個問題,關鍵要抓住什么.關鍵是搞清φ、ω、A等參數(shù)在圖象上是如何得到反映的讓學生明確解題思路,是由形到數(shù)地解決問題,學會數(shù)形結(jié)合地處理問題.完成解題后,教師引導學生進行反思學習過程,概括出研究函數(shù)y=Asin(ωx+φ)的圖象的思想方法,找兩名學生闡述思想方法,教師作點評、補充.

          解:(1)從圖象上可以看到,這個簡諧運動的振幅為2 cm;周期為0.8 s;頻率為.

          (2)如果從O點算起,到曲線上的D點,表示完成了一次往復運動;如果從A點算起,則到曲線上的E點,表示完成了一次往復運動.

          (3)設這個簡諧運動的函數(shù)表達式為y=Asin(ωx+φ),x∈[0,+∞),

          那么A=2;由=0.8,得ω=;由圖象知初相φ=0.

          于是所求函數(shù)表達式是y=2sinx,x∈[0,+∞).

          點評:本例的實質(zhì)是由函數(shù)圖象求函數(shù)解析式,要抓住關鍵點.應用數(shù)學中重要的思想方法——數(shù)形結(jié)合的思想方法,應讓學生熟練地掌握這種方法.

          變式訓練

          函數(shù)y=6sin(x-)的振幅是,周期是____________,頻率是____________,初相是___________,圖象最高點的坐標是_______________.

          解:6 8π (8kπ+,6)(k∈Z)

          例2 若函數(shù)y=Asin(ωx+φ)+B(其中A>0,ω>0)在其一個周期內(nèi)的圖象上有一個最高點(,3)和一個最低點(,-5),求這個函數(shù)的解析式.

          活動:讓學生自主探究題目中給出的條件,本例中給出的實際上是一個圖象,它的解析式為y=Asin(ωx+φ)+B(其中A>0,ω>0),這是學生未遇到過的教師應引導學生思考它與y=Asin(ωx+φ)的圖象的關系,它只是把y=Asin(ωx+φ)(其中A>0,ω>0)的圖象向上(B>0)或向下(B<0)平移|B|個單位.由圖象可知,取最大值與最小值時相應的x的值之差的絕對值只是半個周期.這里φ的確定學生會感到困難,因為題目中畢竟沒有直接給出圖象,不像例1那樣能明顯地看出來,應告訴學生一般都會在條件中注明|φ|<π,如不注明,就取離y軸最近的一個即可.

          解:由已知條件,知ymax=3,ymin=-5,

          則A=(ymax-ymin)=4,B= (ymax+ymin)=-1,=-=.

          ∴T=π,得ω=2.

          故有y=4sin(2x+φ)-1.

          由于點(,3)在函數(shù)的圖象上,故有3=4sin(2×+φ)-1,

          即sin(+φ)=1.一般要求|φ|<,故取+φ=.∴φ=.

          故所求函數(shù)的解析式為y=4sin(2x+)-1.

          點撥:這是數(shù)形結(jié)合的又一典型應用,應讓學生明了,題中無圖但腦中應有圖或根據(jù)題意畫出草圖,結(jié)合圖象可直接求得A、ω,進而求得初相φ,但要注意初相φ的確定.求初相也是這節(jié)課的一個難點.

          變式訓練

          已知函數(shù)y=Asin(ωx+φ)(其中A>0,ω>0)一個周期的圖象如圖8所示,求函數(shù)的解析式.

          解:根據(jù)“五點法”的作圖規(guī)律,認清圖象中的一些已知點屬于五點法中的哪一點,而選擇對應的方程ωxi+φ=0,,π,,2π(i=1,2,3,4,5),得出φ的值.

          方法一:由圖知A=2,T=3π,

          由=3π,得ω=,∴y=2sin(x+φ).

          由“五點法”知,第一個零點為(,0),

          ∴·+φ=0葒=-,

          故y=2sin(x-).

          方法二:得到y(tǒng)=2sin(x+φ)同方法一.

          由圖象并結(jié)合“五點法”可知,(,0)為第一個零點,(,0)為第二個零點.

          ∴·+φ=π葒=.

          ∴y=2sin(x-).

          點評:要熟記判斷“第一點”和“第二點”的方法,然后再利用ωx1+φ=0或ωx2+φ=π求出φ.

          2.20xx海南高考,3函數(shù)y=sin(2x-)在區(qū)間[,π]上的簡圖是( )

          圖9

          答案:A

          知能訓練

          課本本節(jié)練習3、4.

          3.振幅為,周期為4π,頻率為.先將正弦曲線上所有的點向右平行移動個單位長度,再在縱坐標保持不變的情況下將各點的橫坐標伸長到原來的2倍,最后在橫坐標保持不變的情況下將各點的縱坐標縮短到原來的倍.

          點評:了解簡諧運動的物理量與函數(shù)解析式的關系,并認識函數(shù)y=Asin(ωx+φ)的圖象與正弦曲線的關系.

          4..把正弦曲線在區(qū)間[,+∞)的部分向左平行移動個單位長度,就可得到函數(shù)y=sin(x+),x∈[0,+∞)的圖象.

          點評:了解簡諧運動的物理量與函數(shù)解析式的關系,并認識函數(shù)y=sin(x+φ)的圖象與正弦曲線的關系.

          課堂小結(jié)

          1.由學生自己回顧本節(jié)學習的數(shù)學知識:簡諧運動的有關概念.本節(jié)學習的數(shù)學方法:由簡單到復雜、特殊到一般、具體到抽象的化歸思想,數(shù)形結(jié)合思想,待定系數(shù)法,數(shù)學的應用價值.

          2.三角函數(shù)圖象變換問題的常規(guī)題型是:已知函數(shù)和變換方法,求變換后的函數(shù)或圖象,這種題目的解題的思路是:如果函數(shù)同名則按兩種變換方法的步驟進行即可;如果函數(shù)不同名,則將異名函數(shù)化為同名函數(shù),且需x的系數(shù)相同.左右平移時,如果x前面的系數(shù)不是1,需將x前面的系數(shù)提出,特別是給出圖象確定解析式y(tǒng)=Asin(ωx+φ)的題型.有時從尋找“五點法”中的第一零點(,0)作為突破口,一定要從圖象的升降情況找準第一零點的位置.

          作業(yè)

          把函數(shù)y=cos(3x+)的圖象適當變動就可以得到y(tǒng)=sin(-3x)的圖象,這種變動可以是( )

          A.向右平移 B.向左平移 C.向右平移 D.向左平移

          解:∵y=cos(3x+)=sin(-3x)=sin[-3(x-)],

          ∴由y=sin[-3(x-)]向左平移才能得到y(tǒng)=sin(-3x)的圖象.

          答案:D

          點評:本題需逆推,教師在作業(yè)講評時應注意加強學生逆向思維的訓練.如本題中的-3x需寫成-3(x-),這樣才能確保平移變換的正確性.

          設計感想

          1.本節(jié)課符合新課改精神,突出體現(xiàn)了以學生能力的發(fā)展為主線,應用啟發(fā)式、講述式引導學生層層深入,培養(yǎng)學生自主探索及發(fā)現(xiàn)問題、分析問題和解決問題的能力.注重利用非智力因素促進學生的學習,實現(xiàn)數(shù)學知識價值、思維價值和人文價值的高度統(tǒng)一.

          2.由于本節(jié)內(nèi)容綜合性強,所以本節(jié)教案設計的指導思想是:在教師的引導下,讓學生積極、主動地提出問題,自主分析,再合作交流,達到殊途同歸.在思維訓練的過程中,感受數(shù)學知識的魅力,成為學習的主人.新課改要求教師在新的教學理念下,要勇于,更要善于把問題拋給學生,激發(fā)學生探求知識的強烈欲望和創(chuàng)新意識.教學的目的是以知識為平臺,全面提升學生的綜合能力.

        高中數(shù)學函數(shù)教案6

          【教學目標】

         。ㄒ唬┲R與技能

          1、了解冪函數(shù)的概念,會畫冪函數(shù)y?x,y?x,y?x,y?x,y?x的圖象,并能結(jié)合這幾個冪函數(shù)的圖象,了解冪函數(shù)圖象的變化情況和性質(zhì)。

          2、了解幾個常見的冪函數(shù)的性質(zhì)。

          (二)過程與方法

          1、通過觀察、總結(jié)冪函數(shù)的性質(zhì),提高概括抽象和識圖能力。

          2、體會數(shù)形結(jié)合的思想。

          (三)情感態(tài)度與價值觀

          1、通過生活實例引出冪函數(shù)的概念,體會生活中處處有數(shù)學,樹立學以致用的意識。

          2、通過合作學習,增強合作意識。

          【教學重點】

          冪函數(shù)的定義

          【教學難點】

          會求冪函數(shù)的定義域,會畫簡單冪函數(shù)的圖象、

          【教學方法】

          啟發(fā)式、講練結(jié)合教學過程

          一、復習舊課

          二、創(chuàng)設情景,引入新課

          問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數(shù)p(元)和購買的水果量w(千克)之間有何關系?

         。ǹ偨Y(jié):根據(jù)函數(shù)的定義可知,這里p是w的函數(shù))

          問題2:如果正方形的邊長為a,那么正方形的面積S?a2,這里S是a的函數(shù)。

          問題3:如果正方體的邊長為a,那么正方體的體積V?a3,這里V是a的函數(shù)。

          問題4:如果正方形場地面積為S,那么正方形的邊長a?S12,這里a是S的函數(shù)

          問題5:如果某人ts內(nèi)騎車行進了1km,那么他騎車的速度V?t?1km/s,這里v是t的函數(shù)。

          以上是我們生活中經(jīng)常遇到的幾個數(shù)學模型,你能發(fā)現(xiàn)以上幾個函數(shù)解析式有什么共同點嗎?(右邊指數(shù)式,且底數(shù)都是變量)這只是我們生活中常用到的一類函數(shù)的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什么名字呢?(變量在底數(shù)位置,解析式右邊都是冪的形式)(適當引導:從自變量所處的位置這個角度)(引入新課,書寫課題)

          二、新課講解

         。ㄒ唬﹥绾瘮(shù)的概念

          如果設變量為x,函數(shù)值為y,你能根據(jù)以上的生活實例得到怎樣的一些具體的函數(shù)式?

          這里所得到的函數(shù)是冪函數(shù)的`幾個典型代表,你能根據(jù)此給出冪函數(shù)的一般式嗎?冪函數(shù)的定義:一般地,我們把形如y?x?的函數(shù)稱為冪函數(shù)(power function),其中x是自變量,?是常數(shù)。 【探究一】冪函數(shù)有什么特點?

          結(jié)論:對冪函數(shù)來說,底數(shù)是自變量,指數(shù)是常數(shù)試一試:判斷下列函數(shù)那些是冪函數(shù)練習1判斷下列函數(shù)是不是冪函數(shù)3(1) y=2 x;(2) y=2 x5;7(3) y=x8;(4) y=x2+3、

          根據(jù)你的學習經(jīng)歷,你覺得求一個函數(shù)的定義域應該從哪些方面來考慮?

         。ǘ呵髢绾瘮(shù)的定義域

          1.什么是函數(shù)的定義域?

          函數(shù)自變量的取值范圍叫做函數(shù)的定義域2.求函數(shù)的定義域時依據(jù)哪些原則?(1)解析式為整式時,x取值是全體實數(shù)。

          2 (2)解析式是分式時,x取值使分母不等于零。

          (3)解析式為偶次方根時,x取值使被開方數(shù)取非負實數(shù)。 (4)以上幾種情況同時出現(xiàn)時,x取各部分的交集。

          (5)當解析式涉及到具體應用題時,x取值除了使解析式有意義還要使實際問題有意義。例1寫出下列函數(shù)的定義域:1(1) y=x3;(2) y=x2;-32、 (3) y=x-;(4) y=x2解:(1)函數(shù)y=x3的定義域為R;

          1(2)函數(shù)y=x2,即y=x,定義域為[0,+∞);

          12(3)函數(shù)y=x-,即y=2,定義域為(-∞,0)∪(0,+∞);

          x3-1(4)函數(shù)y=x2,即y=,其定義域為(0,+∞)、

          3 x練習2求下列函數(shù)的定義域:

          11-(1) y=x2;(2) y=x 3;(3) y=x-1;(4) y=x2、

          (三)、幾個常見冪函數(shù)的圖象和性質(zhì)

          我們已經(jīng)學習了冪函數(shù)(1) y=x;(2) y=x2.(3) y=x-、(4)y=x3 (5) y=1x2;請同學們在同一坐標系中畫出它們的圖象.性質(zhì):冪函數(shù)隨冪指數(shù)α的取值不同,它們的性質(zhì)和圖象也不盡相同,但也有一些共性,例如,所有的冪函數(shù)都通過點(1,1),都經(jīng)過第一象限;當??0是,圖象過點(1,1),(0,0),且在第一象限隨x的增大而上升,函數(shù)在區(qū)間?0,???上是單調(diào)增函數(shù)。??0時冪函數(shù)y?x?圖象的基本特征:過點(1,1),且在第一象限隨x的增大而下降,函數(shù)在區(qū)間(0,??)上是單調(diào)減函數(shù),且向右無限接近X軸,向上無限接 近Y軸。

         。ㄋ模┱n堂小結(jié)

         。ㄎ澹┱n后作業(yè)

          1、教材P 100,練習A第1題、

          12在同一坐標系中畫出函數(shù)y=x與y=x2的圖象,并指數(shù)這兩個函數(shù)各有什么性質(zhì)以

          3及它們的圖象關系

        高中數(shù)學函數(shù)教案7

          一、教學內(nèi)容

          本節(jié)主要內(nèi)容為:經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進行含有30°、45°、60°角的三角函數(shù)值的計算。

          二、教學目標

          1、經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進行有關推理,進一步體會三角函數(shù)的意義。

          2、能夠進行含有30°、45°、60°角的`三角函數(shù)值的計算。

          3、能夠根據(jù)30°、45°、60°角的三角函數(shù)值,說出相應的銳角的大小。

          三、過程與方法

          通過進行有關推理,探索30°、45°、60°角的三角函數(shù)值。在具體教學過程中,教師可在教材的基礎上適當拓展,使得內(nèi)容更為豐富,教師可以運用和學生共同探究式的教學方法,學生可以采取自主探討式的學習方法.

          四、教學重點和難點

          重點:進行含有30°、45°、60°角的三角函數(shù)值的計算

          難點:記住30°、45°、60°角的三角函數(shù)值

          五、教學準備

          教師準備

          預先準備教材、教參以及多媒體課件

          學生準備

          教材、同步練習冊、作業(yè)本、草稿紙、作圖工具等

          六、教學步驟

          教學流程設計

          教師指導學生活動

          1。新章節(jié)開場白。 1。進入學習狀態(tài)。

          2。進行教學。 2。配合學習。

          3。總結(jié)和指導學生練習。 3記錄相關內(nèi)容,完成練習。

          教學過程設計

          1、從學生原有的認知結(jié)構(gòu)提出問題

          2、師生共同研究形成概念

          3、隨堂練習

          4、小結(jié)

          5、作業(yè)

          板書設計

          1、敘述三角函數(shù)的意義

          2、30°、45°、60°角的三角函數(shù)值

          3、例題

          七、課后反思

          本節(jié)課基本上能夠突出重點、弱化難點,在時間上也能掌控得比較合理,學生也比較積極投入學習中,但是學生好像并不是掌握得很好,在今后的教學中應該再加強關于這方面的學習。

        高中數(shù)學函數(shù)教案8

          教學目標

          1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關證明和判斷的基本方法.

          (1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.

          (2)能從數(shù)和形兩個角度認識單調(diào)性和奇偶性.

          (3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.

          2.通過函數(shù)單調(diào)性的證明,提高學生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學生的觀察,歸納,抽象的能力,同時滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學思想.

          3.通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學生對數(shù)學美的體驗,培養(yǎng)樂于求索的精神,形成科學,嚴謹?shù)难芯繎B(tài)度.

          教學建議

          一、知識結(jié)構(gòu)

          (1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關系.

          (2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.

          二、重點難點分析

          (1)本節(jié)教學的重點是函數(shù)的單調(diào)性,奇偶性概念的形成與認識.教學的難點是領悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.

          (2)函數(shù)的單調(diào)性這一性質(zhì)學生在初中所學函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準確的數(shù)學語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫.單調(diào)性的證明是學生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學生在代數(shù)論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數(shù)證明,也沒有意識到它的重要性,所以單調(diào)性的證明自然就是教學中的難點.

          三、教法建議

          (1)函數(shù)單調(diào)性概念引入時,可以先從學生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性認識出發(fā),通過問題逐步向抽象的定義靠攏.如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數(shù)值的關系的角度來解釋,引導學生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學語言表示出來.在這個過程中對一些關鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結(jié)合起來.

          (2)函數(shù)單調(diào)性證明的步驟是嚴格規(guī)定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結(jié)規(guī)律.

          函數(shù)的奇偶性概念引入時,可設計一個課件,以

          的圖象為例,讓自變量互為相反數(shù),觀察對應的函數(shù)值的變化規(guī)律,先從具體數(shù)值

          開始,逐漸讓

          在數(shù)軸上動起來,觀察任意性,再讓學生把看到的用數(shù)學表達式寫出來.經(jīng)歷了這樣的過程,再得到等式

          時,就比較容易體會它代表的是無數(shù)多個等式,是個恒等式.關于定義域關于原點對稱的問題,也可借助課件將函數(shù)圖象進行多次改動,幫助學生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象(如

          )說明定義域關于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.

          教案網(wǎng)權(quán)威發(fā)布高中高一下冊語文《孔雀東南飛》教學設計,更多高中高一下冊語文《孔雀東南飛》教學設計相關信息請訪問教案網(wǎng)。

          設計說明

          1、指導思想

          本設計依據(jù)新課標的要求,立足于培養(yǎng)學生識記理解古漢語知識和鑒賞古典文學作品的能力,在自主、合作、探究的學習過程中養(yǎng)成自主學習、深入探究的良好習慣。

          2、教學設想

          《孔雀東南飛》是我國古代最長的敘事詩,也是樂府詩中的一朵奇葩,在思想上和藝術上都有極高的成就,對于這樣一篇經(jīng)典名作,我認為應該不惜時間精讀細研,因此我確定用三課時完成。

          本單元的話題為“愛的生命的樂章”,與單元話題相一致,我把本課的教學重點確定為:理解青年男女對美好愛情的執(zhí)著追求和封建禮教、專制家長摧殘青年男女愛情的罪惡。要深入理解這一重點問題,必須先掃清字詞障礙,讀懂原文。本文寫作年代離我們十分久遠,文中有很多生詞、古今異義詞等文言知識,可通過本課的學習讓學生積累有關文言基礎知識,培養(yǎng)學生閱讀文言文的能力。另外,人物形象的塑造、思想價值的實現(xiàn)要借助于一定的'寫作手法,樂府詩常用的賦、比、興手法也應是學習的內(nèi)容之一。因此,我確定了這樣三個方面的學習目標。

          疏通文意,學習積累文言基礎知識,學生依靠課下注釋和工具書基本可以完成,因此可采用自主、合作、探究的學習方式以學生自行解決為主,教師可就疑難問題略作指導。重點目標的實現(xiàn)可從分析人物形象入手,采用問題研討的方式引導學生層層深入地理解作品思想內(nèi)涵和社會意義。難點(起興手法)的突破可引導學生拓展聯(lián)想,用學生較為熟悉的例子幫助他們理解。

          3、本設計的特點

          本設計沒有刻意求新,而是重在扎實嚴謹上作文章。教學內(nèi)容的安排由易到難;各教學環(huán)節(jié)環(huán)環(huán)相扣,層層深入,過渡嚴謹自然。教學活動突出了學生的主體地位。

          《孔雀東南飛》教學設計

          教學目標:

          1、學習積累文言基礎知識:實詞、多義詞、偏義復詞、古今異義詞、互文等,培養(yǎng)學生閱讀文言文的能力

          2、分析人物形象,理解劉蘭芝、焦仲卿對愛情的執(zhí)著追求和封建禮教、專制家長摧殘青年男女愛情幸福的罪惡,深入理解作品的社會意義,培養(yǎng)學生分析鑒賞文學作品的能力并引導學生樹立正確的愛情觀、價值觀

          3、了解樂府詩歌的常用表現(xiàn)手法賦、比、興

          教學重點:劉蘭芝、焦仲卿對愛情的執(zhí)著追求和封建禮教、專制家長摧殘青年男女愛情幸福的罪惡

          教學難點:賦、比、興手法

          教學用具:課件

          教學時數(shù):三課時

          教學過程

          第一課時

          活動內(nèi)容:疏通文本,理清情節(jié)結(jié)構(gòu),初步認識作品思想內(nèi)涵

          活動過程:

          一、導入

          愛情是文學作品永恒的主題,古今中外的文人墨客寫下無數(shù)優(yōu)美的詩篇謳歌美麗的愛情。但在中國漫長的封建社會里,封建禮教、家長制等傳統(tǒng)文化的冷漠殘酷使無數(shù)美麗的愛情遭到了無情的摧殘,從而造成了一幕幕愛情悲劇。今天就讓我們走近焦仲卿和劉蘭芝的愛情悲劇,感受封建家長制的罪惡和這種制度下的青年男女對愛情的不屈追求。

          二、學生自己閱讀注解,識記有關文學常識

          1、樂府:本是漢武帝設立的音樂機關,它的職責是采集民間歌謠或文人的詩來配樂,以備朝廷之用。它所搜集整理的詩歌后世就叫“樂府詩”或“樂府”。

          2、《孔雀東南飛》是我國古代最長的一首長篇敘事詩,也是樂府民歌的代表作之一,與北朝的《木蘭辭》并稱“樂府雙璧”。

          3、本詩出自南朝徐陵編寫的《玉臺新詠》!队衽_新詠》是繼《詩經(jīng)》、《楚辭》之后最早的一部詩歌總集。

          三、初讀課文,疏通文意,掌握有關文言知識

          1、學生默讀全詩,借助工具書和注釋疏通文意,不懂的詞句做出記號

          2、就自己不懂的詞句在小組內(nèi)討論交流

          3、教師解答學生解決不了的疑難字詞,并指導學生理解歸納本課中古今異義詞、偏義復詞、互文等文言知識

          出示示例:(前兩類現(xiàn)象各出示一個例子,其他讓學生自己去整理)

          ①古今異義詞

          汝豈得自由(古:自作主張 今:沒有束縛)

          可憐體無比(古:可愛 今:值得同情)

          葉葉相交通(古:交錯相通 今:指運輸)

          本自無教訓(古:教養(yǎng) 今:失敗的經(jīng)驗)

          處分適兄意(古:處理 今:處罰)

         、谄x復詞

          兩個意義相關或相反的詞連起來當作一個詞使用,實際上只取其中一個詞的意義,另一個詞只作陪襯。如:

          晝夜勤作息(只取“作”之意,“息”只為陪襯)

          便可白公姥(只取“姥”之意)

          我有親父母(只取“母”之意)

          逼迫兼弟兄(只取“兄”之意)

         、 互文句

          東西植松柏,左右種梧桐

          枝枝相覆蓋,葉葉相交通

          四、在掃清文字障礙的基礎上,再瀏覽課文。

          1、結(jié)合詩前小序,了解故事梗概

          2、理清情節(jié)結(jié)構(gòu),給故事發(fā)展的每一個階段擬一個小標題

          學生回答后教師出示:

          故事開端(1-2段) 自請遣歸

          教案網(wǎng)權(quán)威發(fā)布高中高一數(shù)學教案:兩角差的余弦公式教案,更多高中高一數(shù)學教案相關信息請訪問教案網(wǎng)。

          兩角差的余弦公式

          【使用說明】 1、復習教材P124-P127頁,40分鐘時間完成預習學案

          2、有余力的學生可在完成探究案中的部分內(nèi)容。

          【學習目標】

          知識與技能:理解兩角差的余弦公式的推導過程及其結(jié)構(gòu)特征并能靈活運用。

          過程與方法:應用已學知識和方法思考問題,分析問題,解決問題的能力。

          情感態(tài)度價值觀: 通過公式推導引導學生發(fā)現(xiàn)數(shù)學規(guī)律,培養(yǎng)學生的創(chuàng)新意識和學習數(shù)學的興趣。

          .【重點】通過探索得到兩角差的余弦公式以及公式的靈活運用

          【難點】兩角差余弦公式的推導過程

          預習自學案

          一、知識鏈接

          1. 寫出 的三角函數(shù)線 :

          2. 向量 , 的數(shù)量積,

          ①定義:

         、谧鴺诉\算法則:

          3. , ,那么 是否等于 呢?

          下面我們就探討兩角差的余弦公式

          二、教材導讀

          1.、兩角差的余弦公式的推導思路

          如圖,建立單位圓O

          (1)利用單位圓上的三角函數(shù)線

          設

          則

          又OM=OB+BM

          =OB+CP

          =OA_____ +AP_____

          =

          從而得到兩角差的余弦公式:

          ____________________________________

          (2)利用兩點間距離公式

          如圖,角 的終邊與單位圓交于A( )

          角 的終邊與單位圓交于B( )

          角 的終邊與單位圓交于P( )

          點T( )

          AB與PT關系如何?

          從而得到兩角差的余弦公式:

          ____________________________________

          (3) 利用平面向量的知識

          用 表示向量 ,

          =( , ) =( , )

          則 . =

          設 與 的夾角為

         、佼 時:

          =

          從而得出

          ②當 時顯然此時 已經(jīng)不是向量 的夾角,在 范圍內(nèi),是向量夾角的補角.我們設夾角為 ,則 + =

          此時 =

          從而得出

          2、兩角差的余弦公式

          ____________________________

          三、預習檢測

          1. 利用余弦公式計算 的值.

          2. 怎樣求 的值

          你的疑惑是什么?

          ________________________________________________________

          ______________________________________________________

          探究案

          例1. 利用差角余弦公式求 的值.

          例2.已知 , 是第三象限角,求 的值.

          訓練案

          一、 基礎訓練題

          1、

          2、

          3、

          二、綜合題

          --------------------------------------------------

        高中數(shù)學函數(shù)教案9

          我本節(jié)課說課的內(nèi)容是高中數(shù)學第一冊第二章第六節(jié)“指數(shù)函數(shù)”的第一課時——指數(shù)函數(shù)的定義,圖像及性質(zhì)。我將嘗試運用新課標的理念指導本節(jié)課的教學。新課標指出,學生是教學的主體,教師的教要應本著從學生的認知規(guī)律出發(fā),以學生活動為主線,在原有知識的基礎上,建構(gòu)新的知識體系。我將以此為基礎從教材分析,教學目標分析,教法學法分析和教學過程分析這幾個方面加以說明。

          一、教材分析

          1、教材的地位和作用: 函數(shù)是高中數(shù)學學習的重點和難點,函數(shù)的貫穿于整個高中數(shù)學之中。本節(jié)課是學生在已掌握了函數(shù)的一般性質(zhì)和簡單的指數(shù)運算的基礎上,進一步研究指數(shù)函數(shù),以及指數(shù)函數(shù)的圖像與性質(zhì),同時也為今后研究對數(shù)函數(shù)以及等比數(shù)列的性質(zhì)打下堅實的基礎。因此,本節(jié)課的內(nèi)容十分重要,它對知識起到了承上啟下的作用。

          2、教學的.重點和難點:根據(jù)這一節(jié)課的內(nèi)容特點以及學生的實際情況,我將本節(jié)課教學重點定為指數(shù)函數(shù)的圖像、性質(zhì)及其運用,本節(jié)課的難點是指數(shù)函數(shù)圖像和性質(zhì)的發(fā)現(xiàn)過程,及指數(shù)函數(shù)圖像與底的關系。

          二、教學目標分析

          基于對教材的理解和分析,我制定了以下的教學目標

          1、知識目標(直接性目標):理解指數(shù)函數(shù)的定義,掌握指數(shù)函數(shù)的圖像、性質(zhì)及其簡單應用

          2、能力目標(發(fā)展性目標):通過教學培養(yǎng)學生觀察、分析、歸納等思維能力,體會數(shù)形結(jié)合和分類討論,增強學生識圖用圖的能力

          3、情感目標(可持續(xù)性目標): 通過學習,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)學生勇于提問,善于探索的思維品質(zhì)。

          三、教法學法分析

          1、教學策略:首先從實際問題出發(fā),激發(fā)學生的學習興趣。第二步,學生歸納指數(shù)的圖像和性質(zhì)。第三步,典型例題分析,加深學生對指數(shù)函數(shù)的理解。

          2、教學: 貫徹引導發(fā)現(xiàn)式教學原則,在教學中既注重知識的直觀素材和背景材料,又要激活相關知識和引導學生思考、探究、創(chuàng)設有趣的問題。

          3、教法分析:根據(jù)教學內(nèi)容和學生的狀況, 本節(jié)課我采用引導發(fā)現(xiàn)式的教學方法并充分利用多媒體輔助教學。

        高中數(shù)學函數(shù)教案10

          內(nèi)容與解析

          (一)內(nèi)容:對數(shù)函數(shù)及其性質(zhì)

         。ǘ┙馕觯簭慕鼛啄旮呖荚囶}看,主要考查對數(shù)函數(shù)的性質(zhì),一般綜合在對數(shù)函數(shù)中考查。題型主要是選擇題和填空題,命題靈活。學習本部分時,要重點掌握對數(shù)的運算性質(zhì)和技巧,并熟練應用。

          一、目標及其解析:

         。ㄒ唬┙虒W目標

         。1)了解對數(shù)函數(shù)在生產(chǎn)實際中的簡單應用。進一步理解對數(shù)函數(shù)的圖象和性質(zhì);

         。2)學習反函數(shù)的概念,理解對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),能夠在同一坐標上看出互為反函數(shù)的兩個函數(shù)的圖象性質(zhì)。。

         。ǘ┙馕

         。1)在對數(shù)函數(shù)中,底數(shù)且,自變量,函數(shù)值。作為對數(shù)函數(shù)的三個要點,要做到道理明白、記憶牢固、運用準確。

         。2)反函數(shù)求法:①確定原函數(shù)的值域即新函數(shù)的定義域。②把原函數(shù)y=f(x)視為方程,用y表示出x。③把x、y互換,同時標明反函數(shù)的定義域。

          二、問題診斷分析

          在本節(jié)課的教學中,學生可能遇到的問題是不易理解反函數(shù),熟練掌握其轉(zhuǎn)化關系是學好對數(shù)函數(shù)與反函數(shù)的基礎。

          三、教學支持條件分析

          在本節(jié)課一次遞推的.教學中,準備使用PowerPoint 20xx。因為使用PowerPoint 20xx,有利于提供準確、最核心的文字信息,有利于幫助學生順利抓住老師上課思路,節(jié)省老師板書時間,讓學生盡快地進入對問題的分析當中。

          四、教學過程

          問題一。對數(shù)函數(shù)模型思想及應用:

         、俪鍪纠}:溶液酸堿度的測量問題:溶液酸堿度pH的計算公式,其中表示溶液中氫離子的濃度,單位是摩爾/升。

         。á瘢┓治鋈芤核釅A讀與溶液中氫離子濃度之間的關系?

         。á颍┘儍羲/升,計算純凈水的酸堿度。

         、谟懻摚撼橄蟪龅暮瘮(shù)模型?如何應用函數(shù)模型解決問題?強調(diào)數(shù)學應用思想

          問題二。反函數(shù):

         、僖裕寒斠粋函數(shù)是一一映射時,可以把這個函數(shù)的因變量作為一個新函數(shù)的自變量,而把這個函數(shù)的自變量新的函數(shù)的因變量。我們稱這兩個函數(shù)為反函數(shù)(inverse function)

          ②探究:如何由求出x?

         、鄯治觯汉瘮(shù)由解出,是把指數(shù)函數(shù)中的自變量與因變量對調(diào)位置而得出的習慣上我們通常用x表示自變量,y表示函數(shù),即寫為。

          那么我們就說指數(shù)函數(shù)與對數(shù)函數(shù)互為反函數(shù)

         、茉谕黄矫嬷苯亲鴺讼抵,畫出指數(shù)函數(shù)及其反函數(shù)圖象,發(fā)現(xiàn)什么性質(zhì)?

         、莘治觯喝D象上的幾個點,說出它們關于直線的對稱點的坐標,并判斷它們是否在的圖象上,為什么?

          ⑥探究:如果在函數(shù)的圖象上,那么P0關于直線的對稱點在函數(shù)的圖象上嗎,為什么?

          由上述過程可以得到什么結(jié)論?(互為反函數(shù)的兩個函數(shù)的圖象關于直線對稱)

         、呔毩暎呵笙铝泻瘮(shù)的反函數(shù):;

          (師生共練小結(jié)步驟:解x;習慣表示;定義域)

          (二)小結(jié):函數(shù)模型應用思想;反函數(shù)概念;閱讀P84材料

          五、目標檢測

          1(20xx全國卷Ⅱ文)函數(shù)y=(x 0)的反函數(shù)是

          1B解析:本題考查反函數(shù)概念及求法,由原函數(shù)x 0可知A、C錯,原函數(shù)y 0可知D錯,選B。

          2(20xx廣東卷理)若函數(shù)是函數(shù)的反函數(shù),其圖像經(jīng)過點,則()

          2 B解析:,代入,解得,所以,選B。

          3求函數(shù)的反函數(shù)

          3解析:顯然y0,反解可得,將x,y互換可得?傻迷瘮(shù)的反函數(shù)為。

        高中數(shù)學函數(shù)教案11

          一、教學目標

          【知識與技能】

          理解函數(shù)的概念,能對具體函數(shù)指出定義域、對應法則、值域。

          【過程與方法】

          通過對函數(shù)的學習,進一步體會集合與對應的數(shù)學思想方法。

          【情感、態(tài)度與價值觀】

          在探索中感受到成功的喜悅,提高學習數(shù)學的興趣。

          二、教學重難點

          【重點】函數(shù)的概念。

          【難點】從具體實例中抽象出函數(shù)概念。

          三、教學過程

          (一)導入新課

          帶領學生復習初中階段函數(shù)的概念,并舉例說明,從而引出高中階段對函數(shù)的學習。

          (二)講解新知

          利用多媒體展示上一節(jié)的實例,例如:

          (1)加油站儲油罐的儲油量和高度的.關系;

          (2)高速公路總里程與年份的關系。引導學生分析歸納以上兩個實例,變量分別是誰、變量的范圍是什么、變量之間存在的關系是什么、這些例子有什么共同特點。

        高中數(shù)學函數(shù)教案12

          一、教學目標:

          了解可導函數(shù)的單調(diào)性與其導數(shù)的關系.掌握利用導數(shù)判斷函數(shù)單調(diào)性的方法.

          二、教學重點:

          利用導數(shù)判斷一個函數(shù)在其定義區(qū)間內(nèi)的單調(diào)性.

          教學難點:判斷復合函數(shù)的'單調(diào)區(qū)間及應用;利用導數(shù)的符號判斷函數(shù)的單調(diào)性.

          三、教學過程

         。ㄒ唬⿵土曇

          1.增函數(shù)、減函數(shù)的定義

          一般地,設函數(shù)f(x)的定義域為I:如果對于屬于定義域I內(nèi)某個區(qū)間上的任意兩個自變量x1,x2,當x1<x2時,都有f(x1)<f(x2),那么就說f(x)在這個區(qū)間上是增函數(shù).當x1<x2時,都有f(x1)>f(x2),那么就說f(x)在這個區(qū)間上是減函數(shù).

          2.函數(shù)的單調(diào)性

          如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么就說函數(shù)y=f(x)在這一區(qū)間具有(嚴格的)單調(diào)性,這一區(qū)間叫做y=f(x)的單調(diào)區(qū)間.

          在單調(diào)區(qū)間上增函數(shù)的圖象是上升的,減函數(shù)的圖象是下降的.

          例1討論函數(shù)y=x2-4x+3的單調(diào)性.

          解:取x1<x2,x1、x2∈R,取值

          f(x1)-f(x2)=(x12-4x1+3)-(x22-4x2+3)作差

          =(x1-x2)(x1+x2-4)變形

          當x1<x2<2時,x1+x2-4<0,f(x1)>f(x2),定號

          ∴y=f(x)在(-∞, 2)單調(diào)遞減.判斷

          當2<x1<x2時,x1+x2-4>0,f(x1)<f(x2),

          ∴y=f(x)在(2,+∞)單調(diào)遞增.綜上所述y=f(x)在(-∞, 2)單調(diào)遞減,y=f(x)在(2,+∞)單調(diào)遞增。

          能否利用導數(shù)的符號來判斷函數(shù)單調(diào)性?

        高中數(shù)學函數(shù)教案13

          教材:已知三角函數(shù)值求角(反正弦,反余弦函數(shù))

          目的:要求學生初步(了解)理解反正弦、反余弦函數(shù)的意義,會由已知角的正弦值、余弦值求出 范圍內(nèi)的角,并能用反正弦,反余弦的符號表示角或角的集合。

          過程:

          一、簡單理解反正弦,反余弦函數(shù)的意義。

          由

          1在R上無反函數(shù)。

          2在 上, x與y是一一對應的,且區(qū)間 比較簡單

          在 上, 的反函數(shù)稱作反正弦函數(shù),

          記作 ,(奇函數(shù))。

          同理,由

          在 上, 的反函數(shù)稱作反余弦函數(shù),

          記作

          二、已知三角函數(shù)求角

          首先應弄清:已知角求三角函數(shù)值是單值的。

          已知三角函數(shù)值求角是多值的。

          例一、1、已知 ,求x

          解: 在 上正弦函數(shù)是單調(diào)遞增的,且符合條件的角只有一個

          (即 )

          2、已知

          解: , 是第一或第二象限角。

          即( )。

          3、已知

          解: x是第三或第四象限角。

          (即 或 )

          這里用到 是奇函數(shù)。

          例二、1、已知 ,求

          解:在 上余弦函數(shù) 是單調(diào)遞減的,

          且符合條件的角只有一個

          2、已知 ,且 ,求x的值。

          解: , x是第二或第三象限角。

          3、已知 ,求x的值。

          解:由上題: 。

          介紹:∵

          上題

          例三、(見課本P74-P75)略。

          三、小結(jié):求角的'多值性

          法則:1、先決定角的象限。

          2、如果函數(shù)值是正值,則先求出對應的銳角x;

          如果函數(shù)值是負值,則先求出與其絕對值對應的銳角x,

          3、由誘導公式,求出符合條件的其它象限的角。

          四、作業(yè):

          P76-77 練習 3

          習題4.11 1,2,3,4中有關部分。

        高中數(shù)學函數(shù)教案14

          教學目標

         。1)理解四種命題的概念;

         。2)理解四種命題之間的相互關系,能由原命題寫出其他三種形式;

         。3)理解一個命題的真假與其他三個命題真假間的關系;

          (4)初步掌握反證法的概念及反證法證題的基本步驟;

         。5)通過對四種命題之間關系的學習,培養(yǎng)學生邏輯推理能力;

          (6)通過對四種命題的存在性和相對性的認識,進行辯證唯物主義觀點教育;

          (7)培養(yǎng)學生用反證法簡單推理的技能,從而發(fā)展學生的思維能力.

          教學重點和難點

          重點:四種命題之間的關系;難點:反證法的運用.

          教學過程設計

          第一課時:四種命題

         一、導入新課

          【練習】1.把下列命題改寫成“若則”的形式:

         。1)同位角相等,兩直線平行;

         。2)正方形的四條邊相等.

          2.什么叫互逆命題?上述命題的逆命題是什么?

          將命題寫成“若則”的形式,關鍵是找到命題的條件與結(jié)論.

          如果第一個命題的條件是第二個命題的結(jié)論,且第一個命題的結(jié)論是第二個命題的條件,那么這兩個命題叫做互道命題.

          上述命題的道命題是“若一個四邊形的四條邊相等,則它是正方形”和“若兩條直線平行,則同位角相等”.

          值得指出的是原命題和逆命題是相對的.我們也可以把逆命題當成原命題,去求它的逆命題.

          3.原命題真,逆命題一定真嗎?

          “同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

          學生活動:

          口答:(1)若同位角相等,則兩直線平行;(2)若一個四邊形是正方形,則它的四條邊相等.

          設計意圖:

          通過復習舊知識,打下學習否命題、逆否命題的基礎.

          二、新課

          【設問】命題“同位角相等,兩條直線平行”除了能構(gòu)成它的逆命題外,是否還可以構(gòu)成其它形式的命題?

          【講述】可以將原命題的條件和結(jié)論分別否定,構(gòu)成“同位角不相等,則兩直線不平行”,這個命題叫原命題的否命題.

          【提問】你能由原命題“正方形的四條邊相等”構(gòu)成它的否命題嗎?

          學生活動:

          口答:若一個四邊形不是正方形,則它的四條邊不相等.

          教師活動:

          【講述】一個命題的條件和結(jié)論分別是另一個命題的條件的否定和結(jié)論的否定,這樣的兩個命題叫做互否命題.把其中一個命題叫做原命題,另一個命題叫做原命題的否命題.

          若用和分別表示原命題的條件和結(jié)論,用┐和┐分別表示和的否定.

          【板書】原命題:若則;

          否命題:若┐則┐.

          【提問】原命題真,否命題一定真嗎?舉例說明?

          學生活動:

          講論后回答:

          原命題“同位角相等,兩直線平行”真,它的否命題“同位角不相等,兩直線不平行”不真.

          原命題“正方形的四條邊相等”真,它的否命題“若一個四邊形不是正方形,則它的四條邊不相等”不真.

          由此可以得原命題真,它的否命題不一定真.

          設計意圖:

          通過設問和討論,讓學生在自己舉例中研究如何由原命題構(gòu)成否命題及判斷它們的真假,調(diào)動學生學習的積極性.

          教師活動:

          【提問】命題“同位角相等,兩條直線平行”除了能構(gòu)成它的逆命題和否命題外,還可以不可以構(gòu)成別的命題?

          學生活動:

          討論后回答

          【總結(jié)】可以將這個命題的條件和結(jié)論互換后再分別將新的條件和結(jié)論分別否定構(gòu)成命題“兩條直線不平行,則同位角不相等”,這個命題叫原命題的逆否命題.

          教師活動:

          【提問】原命題“正方形的四條邊相等”的逆否命題是什么?

          學生活動:

          口答:若一個四邊形的四條邊不相等,則不是正方形.

          教師活動:

          【講述】一個命題的`條件和結(jié)論分別是另一個命題的結(jié)論的否定和條件的否定,這樣的兩個命題叫做互為逆否命題.把其中一個命題叫做原命題,另一個命題就叫做原命題的逆否命題.

          原命題是“若則”,則逆否命題為“若則.

          【提問】“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

          學生活動:

          討論后回答

          這兩個逆否命題都真.

          原命題真,逆否命題也真.

          教師活動:

          【提問】原命題的真假與其他三種命題的真

          假有什么關系?舉例加以說明?

          【總結(jié)】1.原命題為真,它的逆命題不一定為真.

          2.原命題為真,它的否命題不一定為真.

          3.原命題為真,它的逆否命題一定為真.

          設計意圖:

          通過設問和討論,讓學生在自己舉例中研究如何由原命題構(gòu)成逆否命題及判斷它們的真假,調(diào)動學生學的積極性.

          教師活動:

          三、課堂練習

          1.設原命題是“若,則”,寫出它的逆命題、否命題與逆否命題,并分別判斷它們的真假.

          學生活動:

          筆答:

          逆命題“若,則”.逆命題是假命題.

          否命題“若,則”.否命題是假命題.

          逆否命題“若,則”.逆否命題是真命題.

          教師活動:

          2.設原命題是“當時,若,則”,寫出它的逆命題、否定命與逆否命題,并分別判斷它們的真假.

          學生活動:

          筆答

          逆命題“當時,若,則”.

          否命題“當時,若,則”.否命題為真.

          逆否命題“當時,若,則”.逆否命題為真.

          設計意圖:

          通過練習鞏固由原命題構(gòu)成否命題、逆否命題及判斷它的真假的能力.

          教師活動:

          【總結(jié)】“當時”是大前提,寫其他命題時應該將“當時”寫在前面.原命題的條件是,結(jié)論是

          “”的否定是“”,而不是“”,同樣“”的否定是“”,而不是“”.

          【投影】

          3.填圖

          1.若原命題是“若則”,其它三種命題的形式怎樣表示?請寫在方框內(nèi)?

          學生活動:筆答

          教師活動:

          2.根據(jù)上圖所給出的箭頭,寫出箭頭兩頭命題之間的關系?舉例加以說明?

          學生活動:討論后回答

          設計意圖:

          通過學生自己填圖,使學生掌握四種命題的形式和它們之間的關系.

          教師活動:

          四、小結(jié)

          四種命題的形式和關系如下圖:

          由原命題構(gòu)成道命題只要將和換位就可以.由原命題構(gòu)成否命題只要和分別否定為和,但和不必換位.由原命題構(gòu)成逆否命題時不但要將和換位,而且要將換位后的和否定·

          原命題為真,它的逆命題不一定為真.

          原命題為真,它的否命題不一定為真.

          原命題為真,它的逆否命題一定為真.

          因為互為逆否命題同真同假,所以討論四種命題的真假性只討論原命題和逆否命題中的一個,逆命題和否命題中的一個,只討論兩種就可以了,不必對四種命題形式—一加以討論.

          教師活動:

          五、作業(yè)

          1.閱讀課本四種命題.

          2.四種命題,練習(31頁)1、2,練習(32頁)1、2

          3.習題1、2、3、4

          第12頁

        高中數(shù)學函數(shù)教案15

          教學目標:

          1.理解兩個函數(shù)的和(或差)的導數(shù)法則,學會用法則求一些函數(shù)的導數(shù);

          2.理解兩個函數(shù)的積的導數(shù)法則,學會用法則求乘積形式的函數(shù)的導數(shù);

          3.能夠綜合運用各種法則求函數(shù)的導數(shù).

          教學重點:

          函數(shù)的和、差、積、商的求導法則的推導與應用.

          教學過程:

          一、問題情境

          1.問題情境.

          (1)常見函數(shù)的導數(shù)公式:(默寫)

         。2)求下列函數(shù)的導數(shù):; ; .

         。3)由定義求導數(shù)的`基本步驟(三步法).

          2.探究活動.

          例1 求的導數(shù).

          思考 已知,怎樣求呢?

          二、建構(gòu)數(shù)學

          函數(shù)的和差積商的導數(shù)求導法則:

          三、數(shù)學運用

          練習 課本P22練習1~5題.

          點評:正確運用函數(shù)的四則運算的求導法則.

          四、拓展探究

          點評 求導數(shù)前的變形,目的在于簡化運算;如遇求多個積的導數(shù),可以逐層分組進行;求導數(shù)后應對結(jié)果進行整理化簡.

          五、回顧小結(jié)

          函數(shù)的和差積商的導數(shù)求導法則.

          六、課外作業(yè)

          1.見課本P26習題1.2第1,2,5~7題.

          2.補充:已知點P(-1,1),點Q(2,4)是曲線y=x2上的兩點,求與直線PQ平行的曲線y=x2的切線方程.

        【高中數(shù)學函數(shù)教案】相關文章:

        高中數(shù)學函數(shù)教案07-17

        高中數(shù)學函數(shù)教案12篇07-17

        高中數(shù)學 指數(shù)函數(shù) 教案12-28

        高中數(shù)學《函數(shù)的概念》教學反思12-24

        高中數(shù)學函數(shù)部分知識點總結(jié)06-30

        高中數(shù)學函數(shù)的設計思路和教學建議07-08

        初中數(shù)學函數(shù)教案01-03

        高中數(shù)學三角函數(shù)說課稿11-15

        反比例函數(shù)教案03-28

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>