實用的高中數(shù)學說課稿模板5篇
作為一名無私奉獻的老師,就難以避免地要準備說課稿,寫說課稿能有效幫助我們總結(jié)和提升講課技巧。我們該怎么去寫說課稿呢?以下是小編精心整理的高中數(shù)學說課稿5篇,僅供參考,大家一起來看看吧。
高中數(shù)學說課稿 篇1
一、 說教材
(一)教材的地位和作用
本節(jié)內(nèi)容著重介紹了三角形的三種特殊線段,已學過的過直線外一點作已知直線的垂線、線段的中點、角的平分線等知識是學習本節(jié)新知識的基礎,其中三角形的高學生從小學起已開始接觸,教材從學生已有認知出發(fā),從高入手,利用圖形,給高作了具體定義,使學生了解三角形的高為線段,進而引出三角形的另外幾種特殊線段——中線、角平分線。通過本節(jié)內(nèi)容學習,可使學生掌握三角形的高、中線、角平分線與垂線、角平分線的聯(lián)系與區(qū)別。通過學習作圖、觀察與探究,會發(fā)現(xiàn)三角形的三條高所在的直線、三條角平分線、三條中線都各自交于一點,這為以后三角形的內(nèi)心、重心等知識的學習打下一定的基礎,另外,本節(jié)內(nèi)容也是日后學習等腰三角形等特殊三角形的墊腳石。故學好本節(jié)內(nèi)容是十分必要的。因此,對三角的高、中線、角平分線定義的理解及畫法的掌握是本節(jié)教學的重點,而三角形的高由于三角形的形狀改變而使其位置呈現(xiàn)多樣性,學生難以掌握,故在各類三角形中作出它們是本課的難點。
。ǘ┙虒W目標分析
本節(jié)課的教學設計力圖體現(xiàn)“尊重學生,注重發(fā)展”的教學理念,著重培養(yǎng)和發(fā)展學生基本作圖能力、語言表達能力、觀察能力等,根據(jù)這一目的確定本節(jié)教學目標為:
1、理解三角形的高、中線、角平分線的概念
2、能正確作出一個三角形的高、中線、角平分線
3、通過觀察、探究、畫一畫、折一折與描述等數(shù)學活動,感受數(shù)學語言的準確性,提高觀察能力,語言表達能力,發(fā)展推理能力。
重點:掌握三角形的高、中線、角平分線的概念,并能在具體三角形中畫出它們
難點:在各種三角形中作出它們的高
二、 說教法
1、情境創(chuàng)設法 :利用張師傅如何將一塊三角形的地分成面積相等的兩塊三角形地創(chuàng)設問題情境,并引導學生去簡單分析思路,目的使數(shù)學能密切聯(lián)系實際體現(xiàn)知識的形成和應用過程。以實際問題為出發(fā)點和歸宿,更能貼近學生生活,以激發(fā)學生對學習本節(jié)內(nèi)容的求知欲,培養(yǎng)他們運用所學知識解決問題的能力。
2、加強學生學習的主動性與探究性 在課堂中要充分調(diào)動學生自主學習的潛能,讓他們自由探究中發(fā)現(xiàn),從而發(fā)展他們的創(chuàng)新能力,讓他們感受到成功的喜悅。學生在畫一畫、折一折、何三個探究活動中體驗數(shù)學知識的形成過程。當學生在探究過程中遇到困難時,才取消組建的交流與合作,充分發(fā)揮學生的團隊作用,以更好地激發(fā)學生的積極思維,得到更大的收獲。
3、運用多媒體等作為教輔工具,增強學生的直觀感受,掃除學生從形象思維難以跨越到抽象思維的障礙,突出重點,突破難點。
三、說學法
1、本節(jié)重點是三角形的三種重要線段,難點是對三角形的角平分線、中線、高的準確理解、作圖與正確運用,而突破難點的關鍵是運用好數(shù)形結(jié)合的數(shù)學思想從畫圖入手,從大量的活動入手獲得三種線段的直觀形象,進一步架起數(shù)與形之間的橋梁,加強知識間的相互聯(lián)系。
2、小組討論、合作探究,既可讓學生互相啟發(fā),互相促進,積極交流,表達思想又可促進數(shù)學思考,擴大和加深對問題的認識,本節(jié)課中我讓學生以小組進行探究,歸納圖形特征,做到仔細觀察,大膽探索,勇于發(fā)現(xiàn),抽象概括。讓學生通過探索活動來發(fā)現(xiàn)結(jié)論,經(jīng)歷知識的“再發(fā)現(xiàn)”過程,從而改變學生學習的方式,發(fā)展創(chuàng)新思維能力。
四、說教學過程:
1、創(chuàng)設問題情境,引出新知: 從生活實例引出新問題,調(diào)動學生學習積極性
2、預習檢查:以題組的形勢
考點1:三角形的高
1.如圖7.1.2-1,在△ABC中,BC邊上的高是________;在△AFC中,CF邊上的高是________;在△ABE中,AB邊上的高是_________.
2.如圖7.1.2-2,△ABC的三條高AD、BE、CF相交于點H,則△ABH的三條高是_______,這三條高交于________.BD是△________、△________、△________的高.
3.如圖7.1.2-3,在△ABC中EF∥AC,BD⊥AC于D,交EF于G,則下面說話中錯誤的是( )
A.BD是△ABC的高 BD是△BCD的高 C.EG是△ABD的高 D.BG是△BEF的高
7.1.2《三角形的高、中線、角平分線》說課稿
圖7.1.2-1 圖7.1.2-2 圖7.1.2-3
4.如果一個三角形的三條高的交點恰是三角形的一個頂點,那么這個三角形是( )
A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不能確定
5.三角形的三條高的交點一定在( )
A.三角形內(nèi)部 B.三角形的外部 C.三角形的內(nèi)部或外部 D.以上答案都不對
考點2:三角形的中線與角平分線
6.如圖7.1.2-5所示:(1)AD⊥BC,垂足為D,則AD是________的高,∠________=∠________=90°.
(2)AE平分∠BAC,交BC于E點,則AE叫做△ABC的________,∠________=∠________=7.1.2《三角形的高、中線、角平分線》說課稿∠________.
(3)若AF=FC,則△ABC的中線是________,S△ABF=________.
(4)若BG=GH=HF,則AG是________的中線,AH是________的中線.
圖7.1.2-5 圖7.1.2-6 圖7.1.2-7
7.如圖7.1.2-6,DE∥BC,CD是∠ACB的平分線,∠ACB=60°,那么∠EDC=______度.
8.如圖7.1.2-7,BD=DC,∠ABN=7.1.2《三角形的高、中線、角平分線》說課稿∠ABC,則AD是△ABC的________線,BN是△ABC的________,
ND是△BNC的________線.
9.下列判斷中,正確的個數(shù)為( )
。1)D是△ABC中BC邊上的一個點,且BD=CD,則AD是△ABC的中線
。2)D是△ABC中BC邊上的一個點,且∠ADC=90°,則AD是△ABC的高
。3)D是△ABC中BC邊上的一個點,且∠BAD=7.1.2《三角形的高、中線、角平分線》說課稿∠BAC,則AD是△ABC的角平分線
(4)三角形的中線、高、角平分線都是線段
A.1 B.2 C.3 D.4
3、探究活動1:探究三角形的高,師提出問題,生獨立解答,教師關注學生對高和邊的對應關系是否明確,并結(jié)合圖形引出三角形高的定義,并且利用圖形,讓生用語言描述,師加以修正,目的發(fā)展學生的觀察力與語言表述能力。在此基礎上讓學生明確三角形的高是一條線段。為了培養(yǎng)學生的繪圖能力,讓小組之間合作完成銳角三角形、直角三角形、鈍角三角形各邊上的高。小組交流,歸納三角形高的特點,再讓他們敘述小組所探究的結(jié)論,師加以適當修正與鼓勵。
在活動中,師應重點關注:
、賹W生能否多方位的加以探究
、趯W生能否用流利的語言描述自己的發(fā)現(xiàn)
、蹖W生能否對不同的觀點進行質(zhì)疑,感受數(shù)學結(jié)論的正確性。之后設計的是鞏固性練習,通過學生練習,對三角形高的的有關知識加以鞏固,讓學生從運用所學知識解決問題的過程,獲得成功的體驗,從而激發(fā)他們學習的積極性。
3、探究活動2 : 探究三角形的中線:學生在畫一畫中體會三角形中線的定義,培養(yǎng)學生動腦、動手能力,語言表達能力。
4、探究活動3:探究三角形的角平分線。首先讓學生折一折,在動手操作中體會折痕是否平分三角形的內(nèi)角,之后分小組折疊銳角三角形、直角三角形、鈍角三角形的角平分線,小組交流,歸納三角形角平分線的特點,再讓他們敘述小組所探究的結(jié)論,師加以適當修正與鼓勵。從而很好的培養(yǎng)了學生的動手操作和探究能力。
5、練習鞏固,深化拓展
先以搶答形式解決問題1、問題2,讓學生利用所學知識,進一步鞏固三角形的高、中線、角平分線的有關概念,提高學生獨立解決問題的能力。拓展練習是一個綜合性題目,一方面引導學生從復雜圖形中抽取基本圖形,從而加強學生對概念的掌握,進一步發(fā)展學生的思維,拓展能力,運用以增強直觀性。
6、感悟與收獲:進一步提升學生對知識點理解。
7、作業(yè)布置:讓學生運用數(shù)學知識解決生活實例,是讓學生感受數(shù)學和生活的聯(lián)系及數(shù)學在生活中的重要性,充分體現(xiàn)數(shù)學于生活又還原于生活。
高中數(shù)學說課稿 篇2
說教材:
1、地位、作用和特點:
《 》是高中數(shù)學課本第 冊( 修)的第 章“ ”的第 節(jié)內(nèi)容,高中數(shù)學課本說課稿。
本節(jié)是在學習了 之后編排的。通過本節(jié)課的學習,既可以對 的知識進一步鞏固和深化,又可以為后面學習 打下基礎,所以是本章的重要內(nèi)容。此外,《 》的知識與我們?nèi)粘I、生產(chǎn)、科學研究 有著密切的聯(lián)系,因此學習這部分有著廣泛的現(xiàn)實意義。
教學目標:
根據(jù)《教學大綱》的要求和學生已有的知識基礎和認知能力,確定以下教學目標:
(1)知識目標:A、B、C
(2)能力目標:A、B、C
(3)德育目標:A、B
教學的重點和難點:
。1)教學重點:
。2)教學難點:
二、說教法:
基于上面的教材分析,我根據(jù)自己對研究性學習“啟發(fā)式”教學模式和新課程改革的理論認識,結(jié)合本校學生實際,主要突出了幾個方面:一是創(chuàng)設問題情景,充分調(diào)動學生求知欲,并以此來激發(fā)學生的探究心理。二是運用啟發(fā)式教學方法,就是把教和學的各種方法綜合起來統(tǒng)一組織運用于教學過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內(nèi)外的綜合。并且在整個教學設計盡量做到注意學生的心理特點和認知規(guī)律,觸發(fā)學生的思維,使教學過程真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數(shù)學思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學方法)。讓學生在探索學習知識的過程中,領會常見數(shù)學思想方法,培養(yǎng)學生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應在處理教學內(nèi)容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設計如下教學程序:
導入新課 新課教學
反饋發(fā)展
三、說學法:
學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應盡量避免單純地、直露地向?qū)W生灌輸某種學習方法。有效的能被學生接受的學法指導應是滲透在教學過程中進行的,是通過優(yōu)化教學程序來增強學法指導的目的性和實效性。在本節(jié)課的教學中主要滲透以下幾個方面的學法指導。
1、培養(yǎng)學生學會通過自學、觀察、實驗等方法獲取相關知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。
本節(jié)教師通過列舉具體事例來進行分析,歸納出 ,并依
據(jù)此知識與具體事例結(jié)合、推導出 ,這正是一個分析和推理的全過程。
2、讓學生親自經(jīng)歷運用科學方法探索的過程。 主要是努力創(chuàng)設應用科學方法探索、解決問題情境,讓學生在探索中體會科學方法,如在講授 時,可通過
演示,創(chuàng)設探索 規(guī)律的情境,引導學生以可靠的事實為基礎,經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學生領悟到把可靠的事實和深刻的理論思維結(jié)合起來的特點。
3、讓學生在探索性實驗中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學生的發(fā)散思維和收斂思維能力,激發(fā)學生的創(chuàng)造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發(fā)、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結(jié)和推廣。
4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質(zhì)差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養(yǎng)成認真分析過程、善于比較的好習慣,又有利于培養(yǎng)學生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的能力。
四、教學過程:
。ㄒ唬⒄n題引入:
教師創(chuàng)設問題情景(創(chuàng)設情景:A、教師演示實驗。B、使用多媒體模擬一些比較有趣、與生活實踐比較有關的事例。C、講述數(shù)學科學史上的有關情況。)激發(fā)學生的探究欲望,引導學生提出接下去要研究的問題。
。ǘ、新課教學:
1、針對上面提出的問題,設計學生動手實踐,讓學生通過動手探索有關的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。
2、組織學生進行新問題的實驗方法設計—這時在設計上最好是有對比性、數(shù)學方法性的設計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的實驗數(shù)據(jù),模擬強化出實驗情況,由學生分析比較,歸納總結(jié)出知識的結(jié)構(gòu)。
(三)、實施反饋:
1、課堂反饋,遷移知識(最好遷移到與生活有關的例子)。讓學生分析有關的問題,實現(xiàn)知識的升華、實現(xiàn)學生的再次創(chuàng)新。
2、課后反饋,延續(xù)創(chuàng)新。通過課后練習,學生互改作業(yè),課后研實驗,實現(xiàn)課堂內(nèi)外的綜合,實現(xiàn)創(chuàng)新精神的延續(xù)。
五、板書設計:
在教學中我把黑板分為三部分,把知識要點寫在左側(cè),中間知識推導過程,右邊實例應用。
六、說課綜述:
以上是我對《 》這節(jié)教材的認識和對教學過程的設計。在整個課堂中,我引導學生回顧前面學過的 知識,并把它運用到對的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。
總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎,以能力、方法為主線,有計劃培養(yǎng)學生的自學能力、觀察和實踐能力、思維能力、應用知識解決實際問題的能力和創(chuàng)造能力為指導思想。并且能從各種實際出發(fā),充分利用各種教學手段來激發(fā)學生的學習興趣,體現(xiàn)了對學生創(chuàng)新意識的培養(yǎng)。
高中數(shù)學說課稿 篇3
尊敬的各位評委、各位老師大家好!我說課的題目是《直線的點斜式方程》,選自人民教育出版社普通高中課程標準試驗教科書數(shù)學必修2(A版),是第三章直線與方程中的第2節(jié)的第一課時3.2.1直線的點斜式方程的內(nèi)容。下面我將從教學背景、教學方法、教學過程及教學特點等四個方面具體說明。
一、教學背景的分析
1.教材分析
直線的方程是學生在初中學習了一次函數(shù)的概念和圖象及高中學習了直線的斜率后進行研究的。直線的方程屬于解析幾何學的基礎知識,是研究解析幾何學的開始,對后續(xù)研究兩條直線的位置關系、圓的方程、直線與圓的位置關系、圓錐曲線等內(nèi)容,無論在知識上還是方法上都是地位顯要,作用非同尋常,是本章的重點內(nèi)容之一!爸本的點斜式方程”可以說是直線的方程的形式中最重要、最基本的形式,在此花多大的時間和精力都不為過。直線作為常見的最簡單的曲線,在實際生活和生產(chǎn)實踐中有著廣泛的應用。同時在這一節(jié)中利用坐標法來研究曲線的數(shù)形結(jié)合、幾何直觀等數(shù)學思想將貫穿于我們整個高中數(shù)學教學。
2.學情分析
我校的生源較差,學生的基礎和學習習慣都有待加強。又由于剛開始學習解析幾何,第一次用坐標法來求曲線的方程,在學習過程中,會出現(xiàn)“數(shù)”與“形”相互轉(zhuǎn)化的困難。另外我校學生在探究問題的能力,合作交流的意識等方面更有待加強。
根據(jù)上述教材分析,考慮到學生已有的認知結(jié)構(gòu)和心理特征,我制定如下教學目標:
3.教學目標
(1)了解直線的方程的概念和直線的點斜式方程的推導過程及方法;
(2)明確點斜式、斜截式方程的形式特點和適用范圍;初步學會準確地使用直線的點斜式、斜截式方程 ;
(3)從實例入手,通過類比、推廣、特殊化等,使學生體會從特殊到一般再到特殊的認知規(guī)律;
(4)提倡學生用舊知識解決新問題,通過體會直線的斜截式方程與一次函數(shù)的關系等活動,培養(yǎng)學生主動探究知識、合作交流的意識,并初步了解數(shù)形結(jié)合在解析幾何中的應用。
4. 教學重點與難點
(1)重點: 直線點斜式、斜截式方程的特點及其初步應用。
(2)難點:直線的方程的概念,點斜式方程的推導及點斜式、斜截式方程的應用。
二、教法學法分析
1.教法分析:根據(jù)學情,為了能調(diào)動學生學習的積極性,本節(jié)課采用“實例引導的啟發(fā)式”問題教學法。幫助學生將幾何問題代數(shù)化,用代數(shù)的語言描述直線的幾何要素及其關系,進而將直線的問題轉(zhuǎn)化為直線方程的問題,通過對直線的方程的研究,最終解決有關直線的一些簡單的問題。另外可以恰當?shù)睦枚嗝襟w課件進行輔助教學,激發(fā)學生的學習興趣。
2.學法分析:學生從問題中嘗試、總結(jié)、質(zhì)疑、運用,體會學習數(shù)學的樂趣;通過推導直線的點斜式方程的學習,要了解用坐標法求方程的思想;通過一個點和方向可以確定一條直線,進而可求出直線的點斜式方程,要能體會“形”與“數(shù)”的轉(zhuǎn)化思想。
下面我就對具體的教學過程和設計加以說明:
三、教學過程的設計及實施
整個教學過程是由六個問題組成,共分為四個環(huán)節(jié),學習或涉及四個概念:
溫故知新,澄清概念----直線的方程
深入探究,獲得新知--------點斜式
拓展知識,再獲新知--------斜截式
小結(jié)引申,思維延續(xù)--------兩點式
平面上的點可以用坐標表示,直線的傾斜程度可以用斜率表示,那么平面上的直線如何表示呢?這就是本節(jié)要學習的內(nèi)容。
(一)溫故知新,澄清概念----直線的方程
問題一:畫出一次函數(shù)y=2x+1的圖象;y=2x+1是一個方程嗎?若是,那么方程的解與圖象上的點的坐標有何關系?
[學生活動] 通過動手畫圖,思考并嘗試用語言進行初步的表述。
[教師活動] 對于不同學生的表述進行分析、歸納,用規(guī)范的語言對方程和直線的方程進行描述。
[設計意圖]從學生熟知的舊知識出發(fā)澄清直線的方程的概念,試圖做到“用學生已有的數(shù)學知識去學數(shù)學”,從而突破難點。通過對這個問題的研究,一方面認識到以方程的解為坐標的點在直線上,另一方面認識到直線上的點的坐標滿足方程;從而使同學意識到直線可以由直線上任意一點P(x,y)的坐標x和y之間的等量關系來表示。
問題二:若直線經(jīng)過點A(-1, 3),斜率為-2,點P在直線l上。
(1) 若點P在直線l上從A點開始運動,橫坐標增加1時,點P的坐標是 ;
(2)畫出直線l,你能求出直線l的方程嗎?
(3)若點P在直線l上運動,設P點的坐標為(x,y),你會有什么方法找到x,y滿足的關系式?
[學生活動]學生獨立思考5分鐘,必要的話可進行分組討論、合作交流。
[教師活動]巡視?隙▽W生的各種方法及大膽嘗試的行為;并引導學生觀察發(fā)現(xiàn),得到當點P在直線l上運動時(除點 A外),點P與定點A(-1, 3)所確定的直線的斜率恒等于-2,體會“動中有靜”的思維策略。
[設計意圖]復習斜率公式;待定系數(shù)法;初步體會坐標法。同時引導學生注意為什么要把分式化簡?(若不化簡,就少一點),感受數(shù)學簡潔的美感和嚴謹性。還要指出這樣的事實:當點P在直線l上運動時,P的坐標(x,y)滿足方程2x+y-1=0.反過來,以方程2x+y-1=0的解為坐標的點在直線l上。把學生的思維引到用坐標法研究直線的方程上來,此時再把問題深入,進入第二環(huán)節(jié)。
(二)深入探究,獲得新知----點斜式
問題三: ① 若直線l經(jīng)過點P0(x0,y0),且斜率為k,求直線l的方程。
、谥本的點斜式方程能否表示經(jīng)過P0(x0,y0)的所有直線?
[學生活動] ①學生敘述,老師板書,強調(diào)斜率公式與點斜式的區(qū)別。 ②指導學生用筆轉(zhuǎn)一轉(zhuǎn)不難發(fā)現(xiàn),當直線l的傾斜角α=90°時,斜率k不存在,當然不存在點斜式方程;討論k=0的情況;觀察并總結(jié)點斜式方程的特征。
[設計意圖] 由特殊到一般的學習思路,突破難點,培養(yǎng)學生的歸納概括能力。通過對這個問題的探究使學生獲得直線點斜式方程;由②知:當直線斜率k不存在時,不能用點斜式方程表示直線,培養(yǎng)思維的嚴謹性,這時直線l與y軸平行,它上面的每一點的`橫坐標都等于x0,直線l的方程是:x=x0;通過學生的觀察討論總結(jié),明確點斜式方程的形式特點和適用范圍,通過下面的例題和基礎練習,突破重難點。
問題四:分別求經(jīng)過點且滿足下列條件的直線的方程
(1) 斜率;(2)傾斜角; (3)與軸平行 ;(4)與軸垂直。
[練習]P95.1、2。
[學生活動]學生獨立完成并展示或敘述,老師點評。
[設計意圖]充分用好教材的例題和習題,因為這些題都是專家精心編排的,充分體現(xiàn)必要性及合理性;做到及時反饋,便于反思本環(huán)節(jié)的教學,指導下個環(huán)節(jié)的安排;突破重點內(nèi)容后,進入第三環(huán)節(jié)。
(三)拓展知識,再獲新知----斜截式
問題五:(1)一條直線與y軸交于點(0,3),直線的斜率為2,求這條直線的方程。
(2)若直線l斜率為k,且與y軸的交點是 P(0,b),求直線l的方程。
[學生活動]學生獨立完成后口述,教師板書。
[設計意圖] 由一般到特殊再到一般,培養(yǎng)學生的推理能力,同時引出截距的概念及斜截式方程,強調(diào)截距不是距離。類比點斜式明確斜截式方程的形式特點和適用范圍及幾何意義,并討論其與一次函數(shù)的關系。通過下面的基礎練習,突破重點。
[練習]P95.3。
[設計意圖]充分用好教材習題,及時反饋本環(huán)節(jié)的教學情況,指導下個環(huán)節(jié)的安排。
(四)小結(jié)引申,思維延續(xù)----兩點式
課堂小結(jié) 1、有哪些收獲?(點斜式方程:;斜截式方程:;求直線方程的方法:公式法、等斜率法、待定系數(shù)法。)
2、哪些地方還沒有學好?
問題六:(1)直線l過(1,0)點,且與直線平行,求直線l的方程。
(2)直線l過點(2,-1)和點(3,-3),求直線l的方程。
[學生活動]學生獨立思考并嘗試自主完成,可以相互討論,探討解題思路。
[教師活動]教師深入學生中,與學生交流,了解學生思考問題的進展過程,有時間的話,可以讓學生口述解題思路,也可以投影學生的證明過程,糾正出現(xiàn)的錯誤,規(guī)范書寫的格式;沒時間就布置分層作業(yè)。
[設計意圖](1)小題與上一節(jié)的平行綜合,學生應該有思路求出方程;(2)小題解決方法較多,預設有利用公式法、等斜率法、待定系數(shù)法,讓好一點的學生有一些發(fā)散思維的機會,以及課后學習的空間,使探究氣氛有一點高潮。另外也為下節(jié)課研究直線的兩點式方程作了重要的準備。
分層作業(yè) 必做題:P100.A組:1.(1)(2)(3)、5.
選做題:P100.A組:1.(4)(5)(6).
[設計意圖]通過分層作業(yè),做到因材施教,使不同的學生在數(shù)學上得到不同的發(fā)展,讓每一個學生都得到符合自身實踐的感悟,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,促進學生自主發(fā)展。
四、教學特點分析
(一)實例引導。在字母運算、公式推導之前,總是用實例作為鋪墊,使學生有學習知識的可能和興趣,關注學困生的成長與發(fā)展。
(二)啟發(fā)式教學。教學中總是以提問的方式敘述所學內(nèi)容,如:1.直角坐標系內(nèi)的所有直線都有點斜式方程嗎?2.截距是距離嗎?它可以是負數(shù)嗎?3.你會求直線在軸上的截距嗎?4.觀察方程 ,它的形式具有什么特點?它與我們學過的一次函數(shù)有什么關系?等等。啟發(fā)學生的思維,作好與學生的對話與交流活動。
(三)注重自主探究。設計問題鏈,環(huán)環(huán)相扣,使學生的探究活動貫穿始終。教師總是站在學生思維的最近發(fā)展區(qū)上,布設了由淺入深的學習環(huán)境突破重點、難點,引導學生逐步發(fā)現(xiàn)知識的形成過程。設計了兩次思維發(fā)散點,分別是問題二和問題六的第(2)問,要求學生分組討論,合作交流,為學生創(chuàng)造充分的探究空間,學生在交流成果的過程中,高效的完成教學任務。
高中數(shù)學說課稿 篇4
說課:古典概型
麻城理工學校謝衛(wèi)華
(一)教材地位及作用:本節(jié)課是高中數(shù)學(必修
3)第三章概率的第二節(jié)古典概型的第一課時,是在
隨機事件的概率之后,幾何概型之前,尚未學習排列組合的情況下教學的。古典概型是一種特殊的數(shù)學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。學好古典概型可以為其它概率的學習奠定基礎,同時有利于理解概率的概念,有利于計算一些事件的概率,有利于解釋生活中的一些問題。
根據(jù)本節(jié)課的地位和作用以及新課程標準的具體要求,制訂教學重點:理解古典概型的概念及利用古典概型求解隨機事件的概率;
根據(jù)本節(jié)課的內(nèi)容,即尚未學習排列組合,以及學生的心理特點和認知水平,制定了教學難點:如何判斷一個試驗是否是古典概型,分清在一個古典概型中某隨機事件包含的基本事件的個數(shù)和試驗中基本事件的總數(shù)。
。ǘ└鶕(jù)新課程標準,并結(jié)合學生心理發(fā)展的需求,以及人格、情感、價值觀的具體要求制訂教學目標:
1.知識與技能
(1)理解古典概型及其概率計算公式(2)會用列舉法計算一些隨機事件所含的基本事件數(shù)及事件發(fā)生的概率2.情感態(tài)度與價值觀
概率教學的核心問題是讓學生了解隨機現(xiàn)象與概率的意義,加強與實際生活的聯(lián)系,以科學的態(tài)度評價身邊的一些隨機現(xiàn)象。適當?shù)卦黾訉W生合作學習交流的機會,盡量地讓學生自己舉出生活和學習中與古典概型有關的實例。使得學生在體會概率意義的同時,感受與他人合作的重要性以及初步形成實事求是地科學態(tài)度和鍥而不舍的求學精神
。ㄈ┙虒W方法:根據(jù)本節(jié)課的內(nèi)容和學生的實際水平,通過模擬試驗讓學生理解古典概型的特征,觀
察類比各個試驗,歸納總結(jié)出古典概型的概率計算公式,體現(xiàn)了化歸的重要思想,掌握列舉法,學會運用數(shù)形結(jié)合、分類討論的思想解決概率的計算問題。
。ㄋ模┙虒W過程:
一、提出問題引入新課:在課前,教師布置任務,以數(shù)學小組為單位,完成下面兩個模擬試驗:試驗一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄“正面朝上”和“反面朝上”的次數(shù),要求每個數(shù)學小組至少完成20次(最好是整十數(shù)),最后由科代表匯總;
試驗二:拋擲一枚質(zhì)地均勻的骰子,分別記錄“1點”、“2點”、“3點”、“4點”、“5點”和“6點”的次數(shù),要求每個數(shù)學小組至少完成60次(最好是整十數(shù)),最后由科代表匯總。
教師最后匯總方法、結(jié)果和感受,并提出問題:1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?2.根據(jù)以前的學習,上述兩個模擬試驗的每個結(jié)果之間都有什么特點?
二、思考交流形成概念:學生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關特點加以說明,加深新概念的理解。我們把上述試驗中的隨機事件稱為基本事件,它是試驗的每一個可能結(jié)果。
基本事件有如下的兩個特點:(1)任何兩個基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。給出例題1,讓學生自行解決,從而進一步理解基本事件,然后讓學生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結(jié)得到的結(jié)論,(1)試驗中所有可能出現(xiàn)的基本事件只有有限個(有限性);(2)每個基本事件出現(xiàn)的可能性相等(等可能性)。我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱
古典概型。
三、觀察分析推導公式:教師提出問題:在古典概型下,基本事件出現(xiàn)的概率是多少?隨機事件出現(xiàn)的概率如何計算?引導學生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率
結(jié)果,發(fā)現(xiàn)其中的聯(lián)系。實驗一中,出現(xiàn)正面朝上的概率與反面朝上的概率相等,即
1“出現(xiàn)正面朝上”所包含的基本事件的個數(shù),試驗二中,出現(xiàn)各個點的概率相等,即
P(“出現(xiàn)正面朝上”)==
2基本事件的總數(shù)3“出現(xiàn)偶數(shù)點”所包含的基本事件的個數(shù),根據(jù)上述兩則模擬試驗,可以概括總結(jié)出,古典
P(“出現(xiàn)偶數(shù)點”)==
6基本事件的總數(shù)
概型計算任何事件的
的理解,教師提問:在使用古典概型的概率公式時,應該注意什么?學生回答,教師歸納:應該注意,(1)要判斷該概率模型是不是古典概型;
。2)要找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù)。
四、例題分析推廣應用:通過例題2及3,鞏固學生對已學知識的掌握,提高學生分析問題、解決問題的能力。讓學生明確決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù)。適時利用列表數(shù)形結(jié)合和分類討論等思想方法,既能形象直觀地列出基本事件的總數(shù),又能做到列舉的不重不漏。
五、總結(jié)概括加深理解:學生小結(jié)歸納,不足的地方老師補充說明。使學生對本節(jié)課的知識有一個系統(tǒng)全面的認識,并把學過的相關知識有機地串聯(lián)起來,便于記憶和應用,也進一步升華了這節(jié)課所要表達的本質(zhì)思想,讓學生的認知更上一層。
。ㄎ澹┎贾米鳂I(yè)P123練習1、2題(六)板書設計
3.2.13.2.1古典概型古典概型試驗一試驗二基本事件
古典概型概率
計算公式
例3列表
例1樹狀圖古典概型
例2
以上是我對《古典概型概型》這節(jié)課的理解和處理方法,歡迎各位專家朋友批評指正,謝謝!
說課教案:古典概型
麻城理工學校謝衛(wèi)華
高中數(shù)學說課稿 篇5
一、說教材:
1、教材的地位與作用
導數(shù)是微積分的核心概念之一,它為研究函數(shù)提供了有效的方法. 在前面幾節(jié)課里學生對導數(shù)的概念已經(jīng)有了充分的認識,本節(jié)課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導數(shù)的幾何意義,更有利于學生理解導數(shù)概念的本質(zhì)內(nèi)涵. 這節(jié)課可以利用幾何畫板進行動畫演示,讓學生通過觀察、思考、發(fā)現(xiàn)、思維、運用形成完整概念. 通過本節(jié)的學習,可以幫助學生更好的體會導數(shù)是研究函數(shù)的單調(diào)性、變化快慢等性質(zhì)最有效的工具,是本章的關鍵內(nèi)容。
2、教學的重點、難點、關鍵
教學重點:導數(shù)的幾何意義、切線方程的求法以及“數(shù)形結(jié)合,逼近”的思想方法。
教學難點:理解導數(shù)的幾何意義的本質(zhì)內(nèi)涵
1) 從割線到切線的過程中采用的逼近方法;
2) 理解導數(shù)的概念,將多方面的意義聯(lián)系起來,例如,導數(shù)反映了函數(shù)f(x)在點x附近的變化快慢,導數(shù)是曲線上某點切線的斜率,等等.
二、說教學目標:
根據(jù)新課程標準的要求、學生的認知水平,確定教學目標如下:
1、知識與技能 :
通過實驗探求理解導數(shù)的幾何意義,理解曲線在一點的切線的概念,會求簡單函數(shù)在某點的切線方程。
過程與方法:
經(jīng)歷切線定義的形成過程,培養(yǎng)學生分析、抽象、概括等思維能力;體會導數(shù)的思想及內(nèi)涵,完善對切線的認識和理解
通過逼近、數(shù)形結(jié)合思想的具體運用,使學生達到思維方式的遷移,了解科學的思維方法。
3、情感態(tài)度與價值觀:
滲透逼近、數(shù)形結(jié)合、以直代曲等數(shù)學思想,激發(fā)學生學習興趣,引導學生領悟特殊與一般、有限與無限,量變與質(zhì)變的辯證關系,感受數(shù)學的統(tǒng)一美,意識到數(shù)學的應用價值
三、說教法與學法
對于直線來說它的導數(shù)就是它的斜率,學生會很自然的思考導數(shù)在函數(shù)圖像上是不是有很特殊的幾何意義。而且剛剛學過了圓錐曲線,學生對曲線的切線的概念也有了一些認識,基于以上學情分析,我確定下列教法:
教法:從圓的切線的定義引入本課,再引導學生討論一般曲線的切線的定義,通過幾何畫板的動畫演示,得出曲線的切線的“逼近”法的定義.同樣通過幾何畫板的實驗觀察得到導數(shù)的幾何意義和直觀感知“逼近”的數(shù)學思想.因此,我采用實驗觀察法、探究性研究教學和信息技術輔助教學法相結(jié)合,以突出重點和突破難點;
學法:為了發(fā)揮學生的主觀能動性,提高學生的綜合能力,本節(jié)課采取了
自主 、合作、探究的學習方法。
教具: 幾何畫板、幻燈片
四、說教學程序
1.創(chuàng)設情境
學生活動——問題系列
問題1 平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?
問題2 如圖直線l是曲線C的切線嗎?
(1)與 (2)與 還有直線與雙曲線的位置關系
問題3 那么對于一般的曲線,切線該如何定義呢?
【設計意圖】:通過類比構(gòu)建認知沖突。
學生活動——復習回顧
導數(shù)的定義
【設計意圖】:從理論和知識基礎兩方面為本節(jié)課作鋪墊。
2.探索求知
學生活動——試驗探究
問一;求導數(shù)的步驟是怎樣的?
第一步:求平均變化率;第二步:當趨近于0時,平均變化率無限趨近于的常數(shù)就是。
【設計意圖】:這是從“數(shù)”的角度描述導數(shù),為探究導數(shù)的幾何意義做準備。
問二;你能借助圖像說說平均變化率表示什么嗎?請在函數(shù)圖像中畫出來。
【設計意圖】:通過學生動手實踐得到平均變化率表示割線PQ的斜率。
問三;在的過程中,你能描述一下割線PQ的變化情況嗎?請在圖像中畫出來。
【設計意圖】:分別從“數(shù)”和“形”的角度描述的過程情況。從數(shù)的角度看,,Q();從形的角度看, 的過程中,Q點向P點無限趨近,割線PQ趨近于確定的位置,這個位置的直線叫做曲線在 處的切線。
探究一:學生通過幾何畫板的演示觀察割線的變化趨勢,教師引導給出一般曲線的切線定義。
【設計意圖】: 借助多媒體教學手段引導學生發(fā)現(xiàn)導數(shù)的幾何意義,使問題變得直觀,易于突破難點;學生在過程中,可以體會逼近的思想方法。能夠同時從數(shù)與形兩個角度強化學生對導數(shù)概念的理解。
問四;你能從上述過程中概括出函數(shù)在處的導數(shù)的幾何意義嗎?
【設計意圖】:引導學生發(fā)現(xiàn)并說出:,割線PQ切線PT,所以割線
PQ的斜率切線PT的斜率。因此,=切線PT的斜率。
五、教學評價
1、通過學生參加活動是否積極主動,能否與他人合作探索,對學生的學習過程評價;
2、通過學生對方法的選擇,對學生的學習能力評價;
3、通過練習、課后作業(yè),對學生的學習效果評價.
4、教學中,學生以研究者的身份學習,在問題解決的過程中,通過自身的體驗對知識的認識從模糊到清晰,從直觀感悟到精確掌握;
5、本節(jié)課設計目標力求使學生體會微積分的基本思想,感受近似與精確的統(tǒng)一,運動和靜止的統(tǒng)一,感受量變到質(zhì)變的轉(zhuǎn)化。希望利用這節(jié)課滲透辨證法的思想精髓.
【實用的高中數(shù)學說課稿模板5篇】相關文章:
人教版高中數(shù)學必修一說課稿 函數(shù)的概念說課稿11-02
高中數(shù)學說課稿(精選10篇)11-02
人教版高中數(shù)學必修2 直線的點斜式方程說課稿11-02
《美麗的彩虹》說課稿模板12-27
初中地理說課稿模板《北京》說課稿12-29
《離騷》說課稿模板12-05
《有趣的影子》優(yōu)秀說課稿模板12-28
《買東西的學問》的說課稿模板12-27
小學音樂說課稿模板12-27
《過秦論》優(yōu)秀說課稿模板12-28